Heavy-Ion Meeting, APCTP, Pohang, Korea September 25-26, 2009

Overview of Heavy-lon Physics Program in CMS

Byungsik Hong (Korea University)

Collaboration

Historical Remark

2009 : A centennial Anniversary of Ion-Ion Collisions

1909 Rutherford gold foil experiment

2009 LHC experiments

✓ Beam: 5 MeV α + fixed Au ($\sqrt{s_{NN}}$ ~1 GeV)	⇒ 5.5 TeV	(X5,000)
✓ # of collaborators: 3 (+Geiger+Marsden)	⇒ ~3,500	(X1,000)
✓ Construction cost:		(X∞)

Outline

- 1. Motivation
 - Importance & challenges

2. CMS Detector

- Acceptance
- High-level trigger
- Plan for the first Pb+Pb run
- 3. Heavy-Ion Physics Capability of CMS
 - Soft probes
 - Hard probes
 - Ultra-peripheral collisions

4. Summary

- Quantum Field Theory with rich dynamical content
 - ✓ asymptotic freedom, confinement, spontaneous broken chiral symmetry & its restoration at high density, non-trivial vacuum, etc.
- Standard Model of the collective behavior becomes important
 - \checkmark phase transition, thermalization, flow, etc.
- Very diverse many-body phenomenology at various limits:

Origin of Visible Mass

- QCD (i.e. χ-sym. breaking), not Higgs (i.e. EW-sym. breaking), is truly responsible for the "origin of the <u>visible (baryonic) mass</u>"
- About 98% of the (light quark) mass generated dynamically (gluons) in the QCD confining potential

Connection between QCD & HI
 Role of CMS for the detailed investigation of QCD

Motivation

Characterizing the early stage by hard probes

- Color charge density, Transport coefficient, QCD $\varepsilon_c \& T_c$, Tomography, ...
- High p_T spectra, Jets, γ (or γ^* , Z⁰)-jet correlations, Quarkonia, ...

Characterizing the later stage by soft probes

- Hydrodynamics, QCD EoS, Medium viscosity, ...
- $dN_{ch}/d\eta$, Low p_T spectra, Elliptic flow, Thermal photons, ...

Initial Evidence at RHIC

Strongly coupled matter is hot & dense!

Jet quenching: strong interaction of high- p_T hadrons with dense medium

Flow & NQ scaling: quark recombination & low η/s

Heavy-Ion Meeting

What is New at LHC?

	AGS	SPS	RHIC	LHC
√s _{NN} (GeV)	5	20	200	5500
Increasing factor		x4	x10	x28
η range	±1.6	±3.0	±5.3	±8.6

■ LHC energies are far exceeding previous heavy-ion accelerators

- A hotter, denser, and longer lived partonic matter

Production Rate at LHC

- Large rates of various hard probes over a larger kinematic range
- Plenty of heavy quarks (b & c)
- Weakly interacting probes are available ($W^{\pm} \& Z^{0}$)

CMS Stands for

Content Management System Creative Marketing Solutions Centers for Medicare & Medicaid Services Convention on Migratory Species Cash Management Service Church Missionary Society College Music Society Cryptographic Message Syntax Canadian Mathematical Society Classic Motorcycle Supplies Common Management System Credit Management Solutions Conceptual Models for Services

Compact Muon Solenoid

CMS Detector

Large Range of Hermetic Coverage

Silicon and µ Tracker	η ≤ 2.4
ECAL	η ≤ 3.0
HCAL	η ≤ 5.2
CASTOR	$5.2 \le \eta \le 6.6$
ZDC	$ \eta \ge 8.3$ for neutrals

 Extended kinematic reach x~(1/40) of RHIC
 <10⁻⁴ measurable

September 25-26, 2009

Key Parameters of "Early" Pb Ion Beam (from LHC Design Report)

Parameter	Units	Early Beam	Nominal
Energy per nucleon	TeV	2.76 → 2	2.76
Initial ion-ion Luminosity Lo	cm-2 s-1	~ 5 ×10 ²⁵	1 ×1027
No. bunches, k _b		62	592
Minimum bunch spacing	ns	1350	99.8
β*	m	1.0	0.5 /0.55
Number of Pb ions/bunch		7 ×107	7 ×107
Transv. norm. RMS emittance	μm	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	h	14, 7.5, 5.5	8, 4.5, 3
At full energy, luminosity lifetime is determined mainly by collisions		Only possibility for 2009 or early 2010	Goal for 2-3 years (?) beyond

Note from the Chamonix meeting: Early Pb Beam will have lower beam energy \Rightarrow 10 TeV in pp corresponds to 4 TeV in Pb+Pb.

J.M. Jowett, LHC Performance Workshop, Chamonix, 6/2/2009

electromagnetic interactions) $\sigma \approx 520$ barn

Pb+Pb	$\sqrt{s_{NN}}$	Collision Rate (Max.)	Collision Rate (Avg.)
Year-1 (2010)	4 TeV	~150 Hz	~100 Hz
Nominal (2012)	5.5 TeV	~8 kHz	~3 kHz

6

- Low collision rate in Year-1 allows us to write all min. bias events to mass storage.
- Fully functional high-level trigger (HLT) is needed at nominal luminosity.

CMS High-Level Trigger

Level 1 (Muon Chambers+Calorimeters)

Level 1	Pb+Pb	p+p
Collision Rate	3 kHz (8 kHz peak)	1 GHz
Event Rate	3 kHz (8 kHz peak)	40 MHz
L1 Accept Rate	3 kHz (8 kHz peak)	100 kHz
Output Bandwidth	100 GByte/sec	100 GByte/sec

<u>High-Level Triggers (high *E_T*-jet, γ, e, μ)</u>

- Large computing farm (Start up with 7.2k CPU cores)
- Run "offline algorithm" on every Pb+Pb events
- Significantly enhanced statistics for hard processes (see the right figure)

High-Level Trigger	Pb+Pb	p+p
Input Rate	3 kHz (8 kHz peak)	100 kHz
Output Bandwidth	225 MByte/sec	225 MByte/sec
Output Rate	10 – 100 Hz	150 Hz
Rejection	97-99.7%	99.85%

Soft Probes of QCD Matter in CMS

Charged Particle Multiplicity

The layout of the CMS inner tracker

Total 66M Si Pixels Occupancy<2% at $dN_{ch}/d\eta \approx 3500$ Cluster shape or tracklet methods Needs only a few thousand events

Estimation of the Gluon Density Gluon Saturation Color Glass Condensate (CGC)

Tracking: Pixel-Triplet Algorithm

Hadron Spectra at Low p_T

September 25-26, 2009

2

Elliptic Flow

Hard Probes of QCD Matter in CMS

September 25-26, 2009

Spectra at High p_T

Jet Recon. in Calorimeters

Iterative cone algorithm (R=0.5) with background subtraction

Spatial resolution $\sigma \phi = 0.032, \sigma \eta = 0.028$ which is smaller than the calorimeter tower size 0.087 x 0.087

100 GeV jet in a Pb+Pb event, after the background subtraction

Jet Spectra

Jet Energy Reconstruction

With high- E_7 jet HLT jet spectra can be measured up to $E_7 \sim 500$ GeV for 1 year running @ nominal luminosity.

Pb+Pb (0.5 nb⁻¹)

CMS can use true jets to study parton energy loss.

How is the energy loss distributed in the jet fragmentation cone?

Photon-Tagged Jets

ECAL cluster distributions in the most central 10% Pb+Pb

- Photons
 - Cluster shape variable is used to differentiate isolated photons from mostly non-isolated hadrons (S/B was improved by factor ~15).
 - $E_T(\gamma) > 70 \text{ GeV}$

Photon-Tagged Jets

 Require the back-to-back γ-jet correlation by Δφ(γ,jet) > 3 rad. with E_τ(jet)>30 GeV

Heavy Flavor (J/ ψ)

Pb+Pb (0.5 nb⁻¹)

The J/ ψ spectra can be measured beyond 40 GeV/c using HLT.

- $\sigma_{J/\Psi}$ = 35 MeV/c² for $|\eta| < 2.4$
- S/B~5 for |η|<0.8
 N_{J/ψ}~1.8 x 10⁵ for 0.5 nb⁻¹

- Regeneration vs. Screening
- J/ ψ may survive up to 2T_C (?)

Heavy Flavor (Υ)

Y Production in UPC

- 1. The CMS detector is versatile not only for *pp*, but also for heavy-ion collisions.
- 2. The CMS high-resolution trackers, calorimeters, and muon chambers cover almost 4π phase space.
- 3. The CMS detector can measure various hard probes with the best resolution at the LHC.
- 4. The CMS detector can also measure soft hadrons for p_T >200 MeV/c with good particle identification.