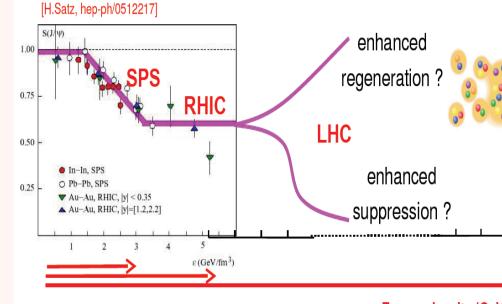


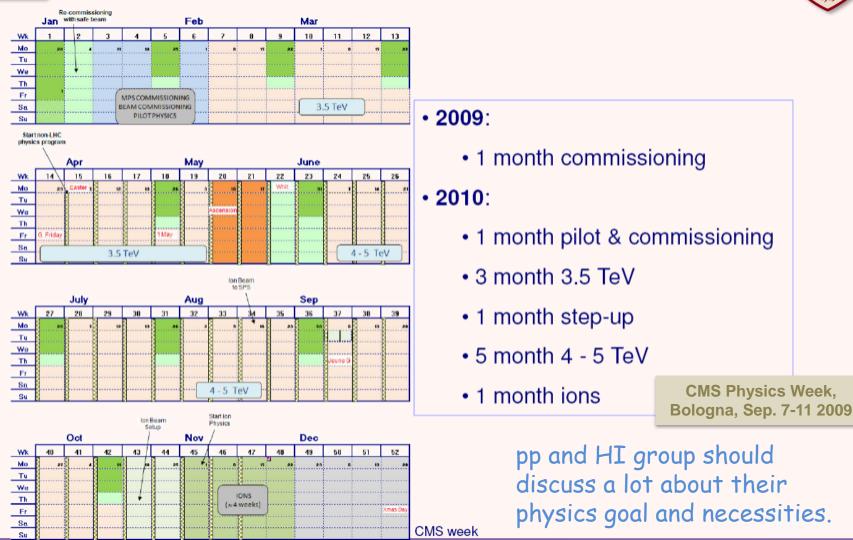
Low-p_T dimuon triggering for quarkonia measurements in p+p collisions in CMS

- Introduction
- Results of Trigger Study
 - Event generation
 - Trigger efficiency
- Trigger rates and Statistics


Introduction

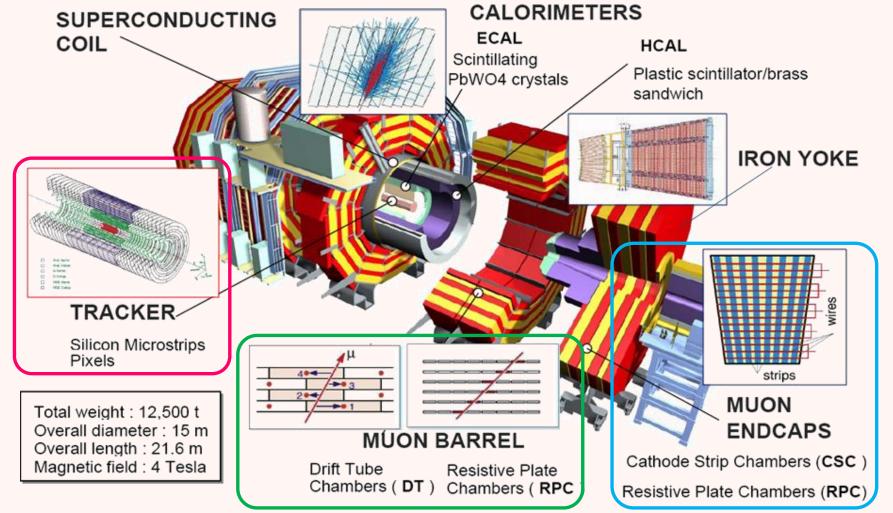
Motivation

- Quarkonia physics in CMS at LHC
 - Pb+Pb collisions will create
 high-density partonic matter
 at very high temperature
 where the phase transition to
 the QGP is expected.
- Heavy quarkonia (J/ψ, Y)
 suppression is an ideal
 signature of the QGP.
- We need p+p data as a reference.


Energy density (GeV/fm³)

 $R_{AA} = \frac{N_{AA}}{N_{coll}N_{pp}}$

LHC2010 - very draft



- Why is the trigger important?
 - No trigger means No data!
 - p+p and heavy-ion trigger menu is different.
 - Identical, or at least similar trigger setting as in HI is needed for p_T spectrum of quarkonia(extended to low- p_T region) in p+p for R_{AA}.
- CMS Trigger Strategy for 2009
 - For 2009 physics data taking in p+p, new compact trigger menu was developed and focus on specific luminosity scenarios(L=8E29, 1E31) by trigger review procedure.

CMS Muon Detectors

CMS Muon Trigger

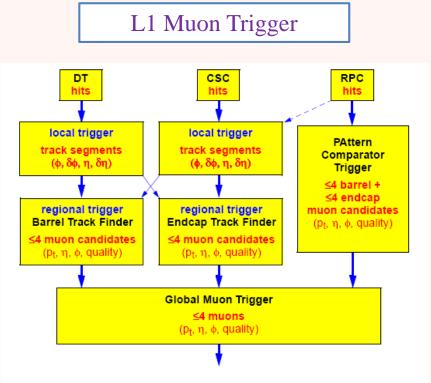


Fig. 8.6: Muon Trigger data flow.

Finally up to 4 highest p_T muons are transmitted to the GT among at most 16 muons candidates.

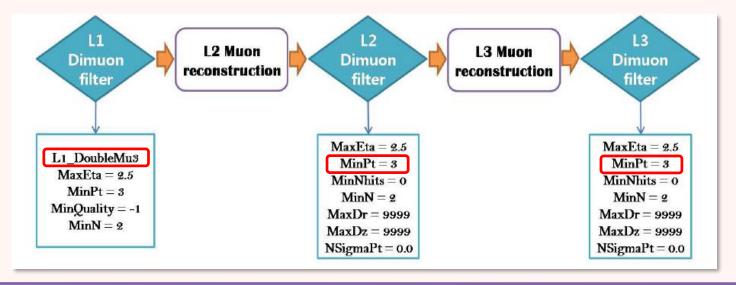
L2 Muon Trigger (StandAloneMuon)

- Seeded by Level-1 muon.
- Kalman filtering technique.
- Fit track with beam constraint.
- Filter : p_T , invariant mass, etc.

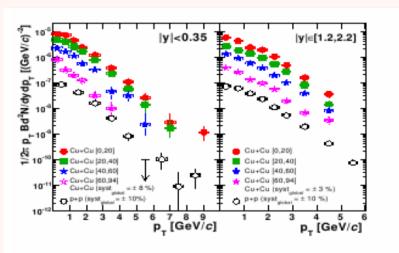
L3 Muon Trigger (GlobalMuon)

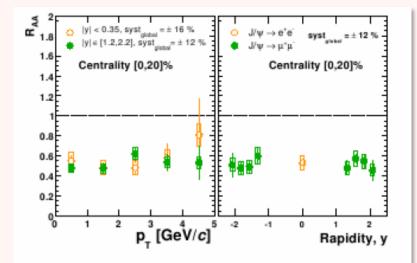
- Track reconstruction and matching with track in muon chamber and inner tracker.
- Finding vertex.
- Filter : p_T , invariant mass, etc.

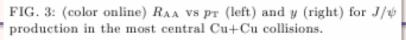
Matched Track

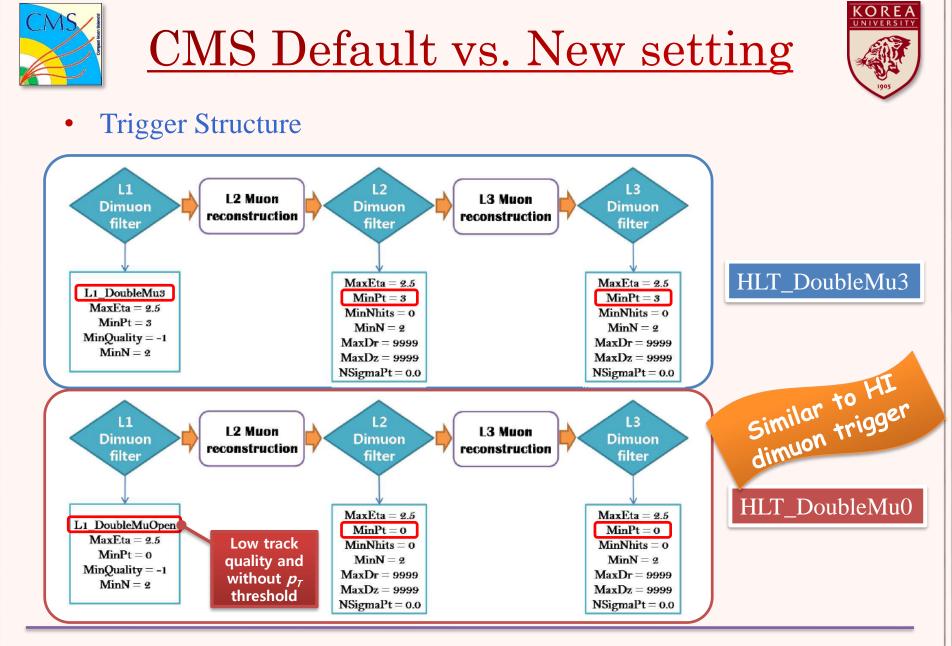


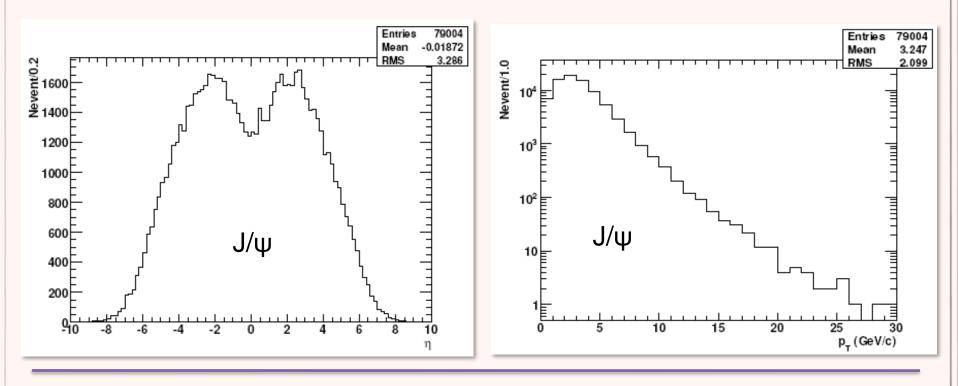
<u>Default Setting of CMS</u> <u>dimuon trigger</u>


- Descriptions of HLT_DoubleMu3 for p+p run
 - A double muon trigger, based on the Level 3 (combined muon system and tracker) HLT muon reconstruction.
 - At least **two L1(L2/L3)** muons with $p_T > 3$ GeV/c are required at corre sponding higher trigger level.



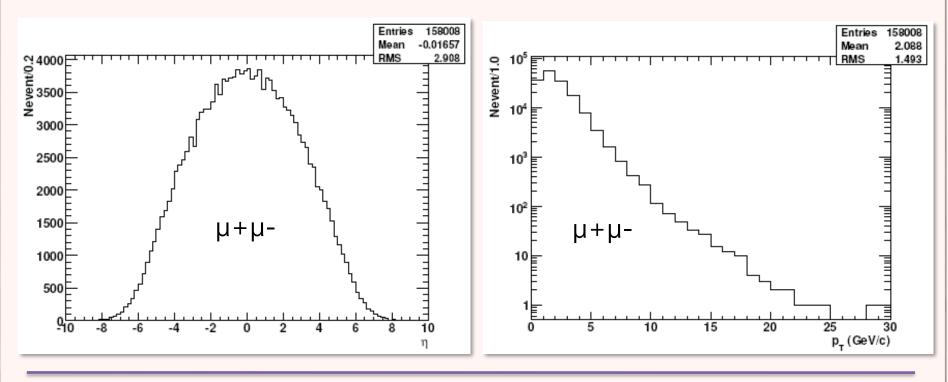



- Several reasons to remove the low-p_T cut in CMS default dimuon trigger
 - All measurements "in-medium"(HI) are in comparison with "vacuum"(pp)
 - CMS detector can measure muons down to \sim 1 GeV/c in the forward region.
 - Shape of p_T distribution is the essential tool to differentiate production models.
 - RHIC measurements are limited at low p_T region.

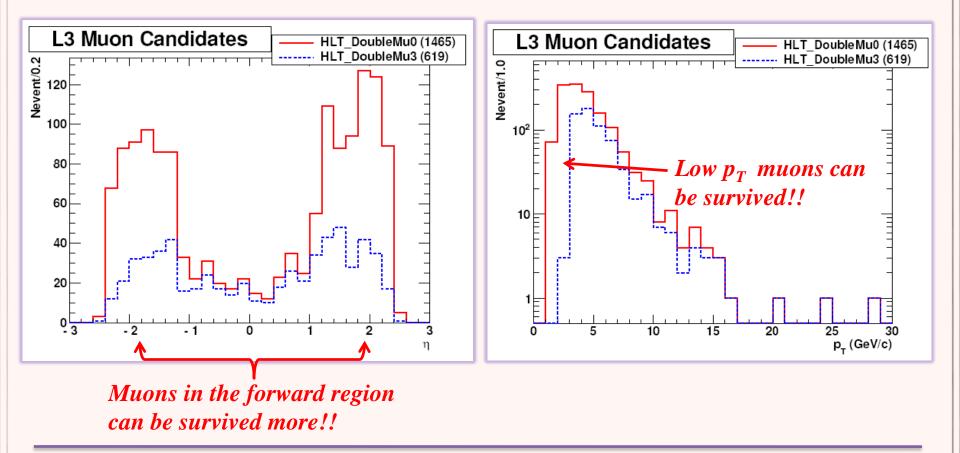


Trigger Study

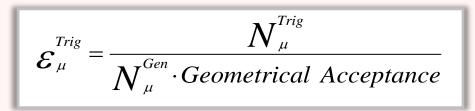
<u>η & p_T Specra : J/ψ</u>

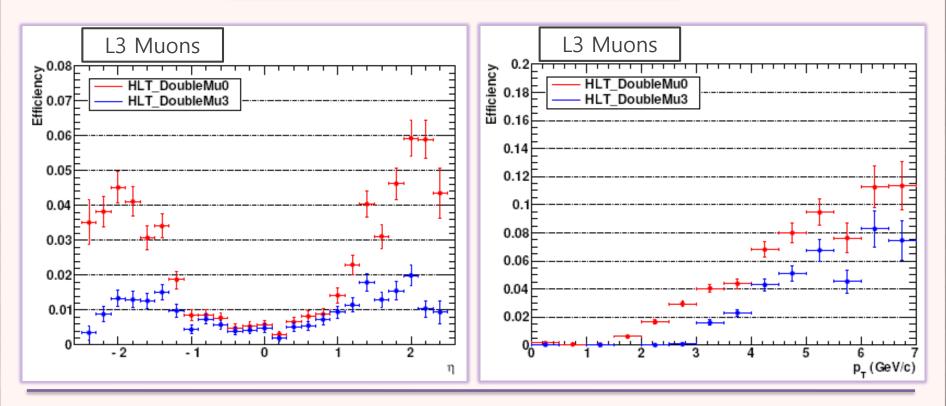

- MC signal sample
 - PYTHIA 6.416, $\sqrt{s} = 10$ TeV
 - 79,004 J/ ψ s which are forced to decay to μ + μ -

- MC signal sample
 - PYTHIA 6.416, $\sqrt{s} = 10 \text{ TeV}$
 - 158,008 muons from J/ ψ decay

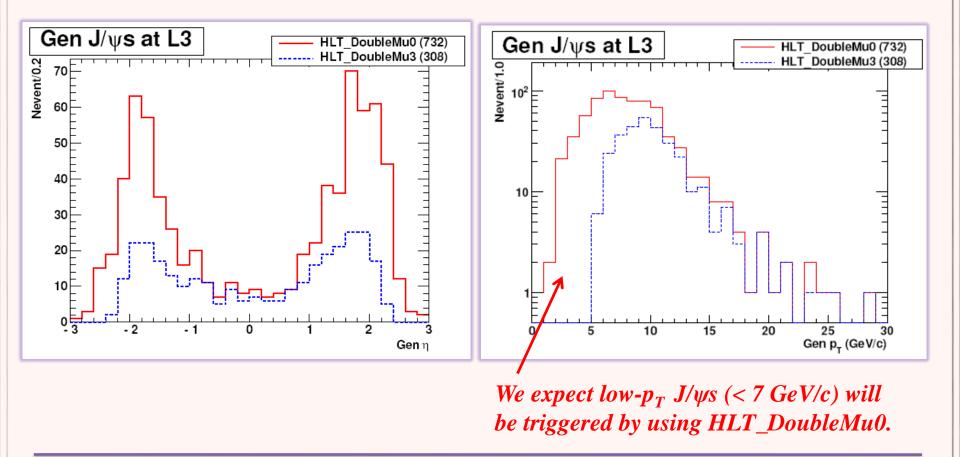


Triggered Muons

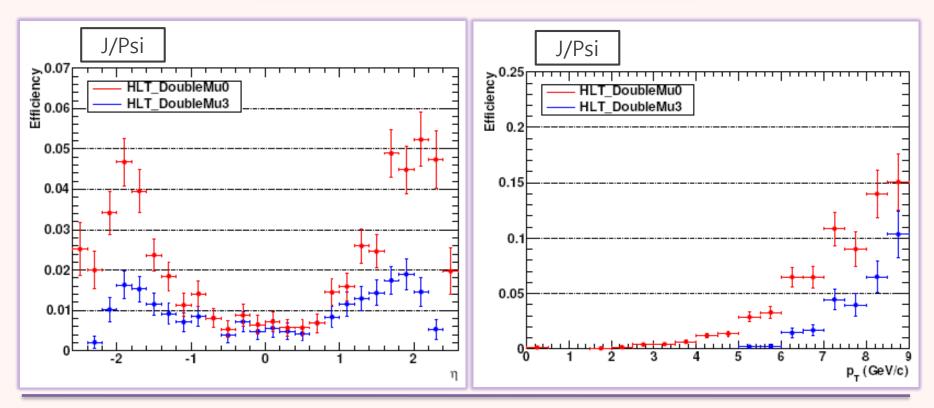

• CMS default (HLT_DoubleMu3) vs. new setting (HLT_DoubleMu0)



Trigger Eff. : Muon




• CMS default (HLT_DoubleMu3) vs. new setting (HLT_DoubleMu0)



<u>Trigger Eff. : J/ψ</u>

Trigger Rates and Statistics

LV1

HLT

sec

μS

Detectors

Digitizers

Front end pipelines

Readout buffers

Switching networks

Processor farms

<u>Pb+Pb vs. p+p Trigger</u>

Level 1 Trigger

- Uses custom hardware
- Muon chamber + calorimeter information

Level-1	Pb+Pb(5 TeV)	p+p(14 TeV)		
Collision rate	3kHz(8kHz peak)	1GHz		
Event rate	3kHz(8kHz peak)	40MHz		
Output bandwidth	100 GByte/sec	100 GByte/sec		
Rejection	none	99.7%		

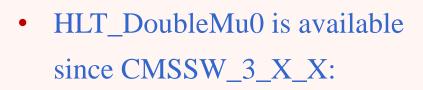
High Level Trigger

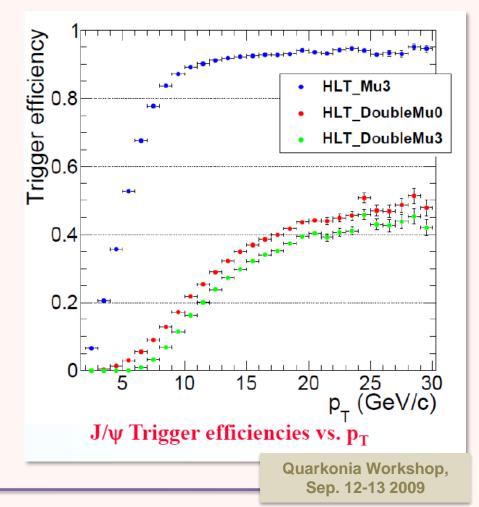
- Full event information available
- Run "offline" algorithms

High Level Trigger	Pb+Pb(5 TeV)	p+p (14 TeV)			
Input event rate	3kHz(8kHz peak)	100kHz			
Output bandwidth	225 MByte/sec	225 MByte/sec			
Output rate	10-100Hz	150Hz			
Rejection	97-99.7%	99.85%			

Muon Trig. Menu (8E29)

Muons triggers	L1 seeds	L1 prescale	HLT prescale	L1 rate	HLT rate	Cum. rate	Cum. BW	Trigger Type
HLT_L1MuOpen	L1_SingleMuOpen OR L1_SingleMu0	1, 1	10	TBD	10.81 ± 0.26 Hz	51.79 Hz	7.77 MB/s	Monitoring
HLT_L1Mu	L1_SingleMu7 OR L1_DoubleMu3	1, 1	5	TBD	2.19 ± 0.12 Hz	53.72 Hz	8.06 MB/s	Monitoring
HLT_L1Mu20	L1_SingleMu20	1	1	1.17 ± 0.08 Hz	1.17 ± 0.08 Hz	54.52 Hz	8.18 MB/s	Physics
HLT_L2Mu9	L1_SingleMu7	1	1	9.27 ± 0.24 Hz	1.37 ± 0.09 Hz	55.15 Hz	8.27 MB/s	Physics
HLT_L2Mu11	L1_SingleMu7	1	1	9.27 ± 0.24 Hz	0.81 ± 0.07 Hz	55.15 Hz	8.27 MB/s	Backup
HLT_Mu3	L1_SingleMuOpen OR L1_SingleMu0 OR L1_SingleMu3	1, 1, 1	1	TBD	22.83 ± 0.37 Hz	73.32 Hz	11.00 MB/s	Physics
HLT_Mu5	L1_SingleMu3	1	1	36.27 ± 0.47 Hz	7.53 ± 0.21 Hz	73.32 Hz	11.00 MB/s	Backup
HLT_Mu9	L1_SingleMu7	1	1	9.27 ± 0.24 Hz	0.95 ± 0.08 Hz	73.32 Hz	11.00 MB/s	Backup
HLT_DoubleMu0	L1_DoubleMuOpen	1	1	2.59 ± 0.13 Hz	0.43 ± 0.05 Hz	73.35 Hz	11.00 MB/s	Physics
HLT_DoubleMu3	L1_DoubleMu3	1	1	2.16 ± 0.11 Hz	0.17 ± 0.03 Hz	73.35 Hz	11.00 MB/s	Physics


Muon Trig. Menu (1E31)


Muons triggers	L1 seeds	L1 prescale	HLT prescale	L1 rate	HLT rate	Cum. rate	Cum. BW	Trigger Type
HLT_L1MuOpen	L1_SingleMuOpen OR L1_SingleMu0	1, 1	400	TBD	3.85 ± 0.57 Hz	29.87 Hz	4.48 MB/s	Monitoring
HLT_L1Mu	L1_SingleMu7_OR L1_DoubleMu3	1, 1	100	TBD	1.17 ± 0.31 Hz	31.04 Hz	4.66 MB/s	Monitoring
HLT_L1Mu20HQ	L1_SingleMu20	1	1	14.73 ± 1.11 Hz	1.42 ± 0.34 Hz	32.38 Hz	4.86 MB/s	Physics
HLT_L1Mu30	L1_SingleMu20	1	1	14.73 ± 1.11 Hz	10.21 ± 0.92 Hz	41.41 Hz	6.21 MB/s	Physics
HLT_L2Mu11	L1_SingleMu7	1	1	115.87 ± 3.11 Hz	10.37 ± 0.93 Hz	47.69 Hz	7.15 MB/s	Physics
HLT_Mu5	L1_SingleMu3	20	1	24.10 ± 1.42 Hz	4.27 ± 0.60 Hz	51.71 Hz	7.76 MB/s	Monitoring
HLT_Mu9	L1_SingleMu7	1	1	115.87 ± 3.11 Hz	11.96 ± 1.00 Hz	56.81 Hz	8.52 MB/s	Physics
HLT_Mu11	L1_SingleMu7	1	1	115.87 ± 3.11 Hz	5.86 ± 0.70 Hz	56.81 Hz	8.52 MB/s	Backup
HLT_Mu15	L1_SingleMu10	1	1	60.07 ± 2.24 Hz	1.76 ± 0.38 Hz	56.81 Hz	8.52 MB/s	Backup
HLT_DoubleMu0	L1_DoubleMuOpen	1	1	32.63 ± 1.65 Hz	5.77 ± 0.69 Hz	61.91 Hz	9.29 MB/s	Physics
HLT_DoubleMu3	L1_DoubleMu3	1	1	27.02 ± 1.50 Hz	2.26 ± 0.43 Hz	61.91 Hz	9.29 MB/s	Physics

<u>J/ψ Triggger Efficiency</u>

- Without p_T requirement on muons.
- Comparing to DoubleMu3,
 DoubleMu0 could highly enlarge the statistics at low-p_T.
- No prescale for 8E29 and 1E31.

25 – 26 Sep. 2009 Heavy Ion Meeting

Month	Comment	Turn around time	Energy [TeV]	Max number bunches	Protons/Bunch	% nom. intensity	Min beta‡	Peak Luminosity cm ⁻² s ⁻¹	Integrated Luminosity
1	Beam commissioning								First collisions
	Pilot physics, partial squeeze, gentle increase in bunch intensity, avaialbility low	Long	3.5	43	3 x 10 ¹⁰		4 m	8.6 x 10 ²⁹	100 - 200 nb ⁻¹
3		5	3.5	43	5 x 10 ¹⁰		4 m	2.4 x 10 ³⁰	~l pb ^{-l}
4		5	3.5	156	5 x 10 ¹⁰	2.5	2 m	1.7 x 10 ³¹	~9 pb ⁻¹
1 32	No crossing angle - could at this stage push intensity see 5b	5	3.5	156	7 x 10 ¹⁰	3.4	2 m	3.4 x 10 ³¹	~18 pb ⁻¹
5b	No crossing angle - squeezing to beta* = 1m at this stage would double these lumi numbers (and the pile-up)		3.5	156	10 x 10 ¹⁰	4.8	2 m	6.9 x 10 ³¹	~36 pb ⁻¹

Expected yields per pb⁻¹ with DoubleMu3 at 10 TeV:

 $\begin{array}{l} \sim 25000 \ J/\psi \\ \sim 6000 \ b \rightarrow J/\psi \\ \sim 10000 \ Upsilon \\ \sim 175 \ B \rightarrow J/\psi K \\ \sim 100 \ B \rightarrow J/\psi K^{*} \end{array}$

Bologna, Sep. 7-11 2009

"With an instantaneous luminosity of just ~1e30, in one month CMS will trigger and reconstruct tens of thousands of quarkonia events and hundreds of exclusive B decays." CMS Physics Week,

Conclusion

- Removing p_T cut certainly shows better performance for triggering low- p_T muons than default dimuon trigger setting.
- New setting of dimuon trigger algorithm was designed for HI collisions, but will be also used in p+p.
- Estimated trigger rate is acceptable level for p+p startup run.

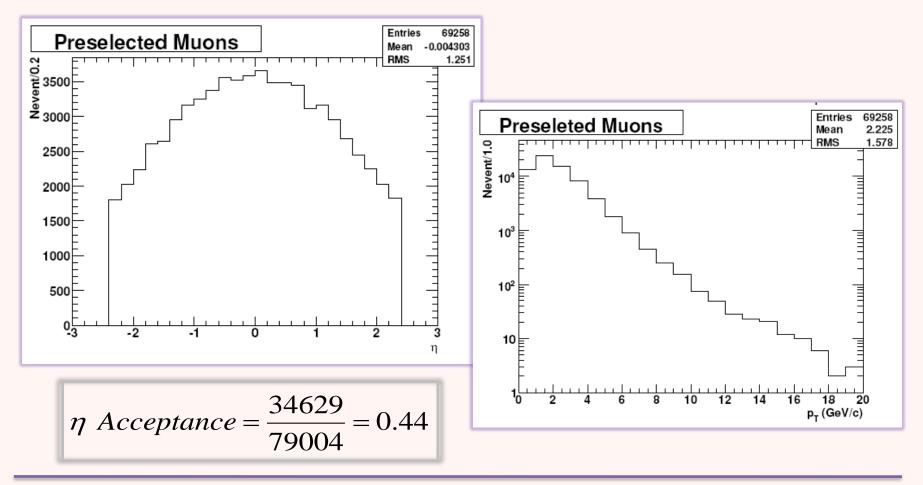
Dimuon triggering for low- p_T muons in p + p collisions at the CMS

Dong Ho Moon and Ji Hyun Kim Department of Physics, Korea University, Seoul 136-701, Korea

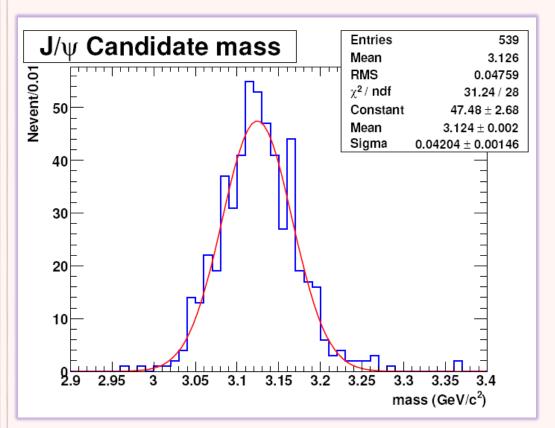
CMS collaboration

Backup Slides

<u>PYTHIA Conditions : J/ψ</u>


- Version : 6.416
- $\sqrt{s} = 10 \text{ TeV}$
- Some essential parameters
 - MSEL = 61 : Quarkonium production via color-singlet and color-octet mechanism of NRQCD
 - MSTP(51) = 10042 : PDF CTEQ6L1
 - MSTP(142) = 2: Quarkonia cross section damping for reweighting
 - PARP(82) = $1.8387 : p_T$ cutoff for multiparton interactions
 - PARP(141) ~ PARP(150) : Tuning NRQCD matrix elements from the CDF data
 - BRAT(859) = 1.000 : J/psi->mu+mu-

• Preselected $\mu + \mu$ - from J/ ψ decay ($|\eta^{\mu}| < 2.4$)



Dimuon Mass Spectrum

•

- By using MuonTrackAssociatorbyHits.
- Matching muon SimTrack and RecTrack with Purity = 1.
- Ensuring 2 reconstructed muons have decayed from the same vertex.

$$Purity = \frac{N_{SharedHitsBetweenSim\&Rec}}{N_{ValidHitsOfRec}}$$