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QCD phase diagram

There are many probes to investigate the properties of hot nuclear matter.
One of them is J/ψ



Brief history of J/ψ
in ultrarelativistic heavy ion collision

• J/ψ suppression due to the Debye screening of color 

charge between c and anti-c pair was first suggested as 

a signature of quark-gluon plasma (QGP) formation in 

relativistic heavy ion collision by T. Matsui, H. Satz in 

1986.

T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986)



• Recently, lattice calculations 

support that J/ψ survives 

above Tc 

M. Asakawa, T. Hatsuda, PRL 

92, 012001 (2004), …

• However, J/ψ is still a good 

probe to investigate the 

property of hot nuclear matter 

created from ultrarelativistic 

heavy ion collision, because its 

melting point is believed to 

exist between Tc and the initial 

temperature of hot nuclear 

matter created through the 

relativistic heavy ion collisions 

in RHIC.



Phenomenological models 
to describe J/ψ production 

in relativistic heavy ion collision

1. Thermal model (P. Braun-Munzinger et al.)

Initially produced J/Ψ does not survive. All J/Ψs are 

formed at hadronization stage by recombination of 

charm and anti-charm. 

2. Two component model (R. Rapp et al.)

Observed J/Ψ comes from at initial collisions or at 

hadronization stage.

3. Simultaneous dissociation and recombination of J/Ψ

during the fireball expansion (P. Zhuang et al.)



Two-component model

Initially 

produced 
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collisions
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Glauber model
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The quantity of bulk matter is proportional to # of participants

The quantity of hard particles such as J/ψ is proportional to # of binary collisions



# of participants vs. # of binary collisions
with σin=42 mb
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What is RAA?
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1. Nuclear absorption
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Primordial J/ψ is 
produced

Nucleus A

Nucleus B

Nuclear absorption 
cross section is 

obtained from pA
collision

σdiss=1.5mb



Comparison with experimental data of RHIC 
(√s=200 GeV at midrapidity) 
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2. Thermal decay in fireball

J/ψ

QGP phase

Mixed phase
(Assuming 1st order 

phase transition)

HG phase

J/ψ

J/ψ



2.1. Thermal model
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Thermal model successfully 
describes particle ratios ni/nj at 
chemical freeze-out stage

,where nj (μb , μI3 , μS , μC , Tcfo )
is particle number density in 
grand canonical ensemble
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A.Andronic, P. Braun-Munzinger, K. 
Redlich, J. Stachel
NPA 772, 167 (2006)



The latest result  for RHIC data at mid-rapidity (√s=200 GeV) : 
Tcfo=161 MeV, μb=22.4 MeV 

A.Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel

NPA 789, 334 (2007)

Z, N and other quantities μI3 , μS , μC, at chemical freeze-out are obtained from 

below constraints. 

Baryon number conservation                                 

Isospin conservation

Strangeness conservation

Charm conservation

,where Z is the net number of wounded protons and N is that of wounded 

neutrons in the fireball at mid-rapidity
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Absolute hadron yields can also be 
reproduced in thermal model

At midrapidity (|y|<1) with √s=200 GeV & Npart=350, Vcf≈2400 fm3
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Multiplicities of charged particles 
vs. # of participants
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The latest result  for RHIC data at mid-rapidity (√s=200 GeV) : 
Tcfo=161 MeV, μb=22.4 MeV 

A.Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel

NPA 789, 334 (2007)

Z, N and other quantities μI3 , μS , μC, at chemical freeze-out are obtained from 

below constraints. 

Baryon number conservation                                 set at about Npart/20 in |y|<0.35

Isospin conservation

Strangeness conservation

Charm conservation

,where Z is the net number of wounded protons and N is that of wounded 

neutrons in the fireball at mid-rapidity
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Ratios of proton and anti-proton 
vs. # of participants
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Thermal mass of partons in QGP
Peter Levai & Ulrich Heinz PRC 57, 1879 (1998)
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Strongly interacting massless partons
→ Noninteracting massive partons, reproducing well 
thermal quantities obtained from LQCD



Nf=2

Nf=4
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Thermal quark/anti-quark & gluon

Entropy density in QGP & in HG
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QGP,in 

HG,in 

All mesons below 1.5 GeV, &
All baryons below 2.0 GeV



Entropy density vs. temperature
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Temperature distribution on 
transverse plane at formation time
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Temperature profiles with various impact 
parameters
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Assuming isentropic expansion of fireball, with the below time-

dependent volume

“we can deduce  temperatures and chemical potentials at

midrapidity before reaching chemical freeze-out stage.”

From hydrodynamics simulation,

1.τ0 is the thermalization time of fireball ≈ 0.6 fm/c

2. a⊥ is transverse acceleration , which was set at 0.1 c2/fm  

X. Zhao, R. Rapp, PLB664, 253 (2008)

terminal transverse velocity was set at 0.6 c

3. r0 is initial transverse radius of QGP
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Considering feed-down from χc , Ψ’ to J/ψ, 
survival rate of J/ψ from the thermal decay is 

,where 

and Γj (τ) is thermal width of charmonia j

Γj (τ)= ΓQGP
j (τ)                        (T>Tc)   in QGP phase

Γj (τ)= f ΓQGP
j (τ) +(1-f) ΓHG

j (τ)    (T=Tc)   in mixed phase
Γj (τ)= ΓHG

j (τ)                         (T<Tc)   in HG phase
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2.2. survival rate from the thermal decay



Thermal width

(in QGP, j=quark, antiquark, gluon

in hadronic matter, j=pion, kaon, …)

In order to calculate thermal width Γ, we must know

1) Thermodynamic quantities such as T, μ
2) Dissociation cross section σdiss

Thermal decay widths in QGP & HG 
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Dissociation cross section σdiss is a crucial quantity to calculate 

thermal width.

Most studies use two different models for QGP dissociation and 

hadronic dissociation.

(As an example, 

for the decay in QGP, quasi-free particle approximation, 

and for that in HG, meson exchange model,…)

Here we use the same approach, pQCD, in QGP and in HG.

Dissociation cross section σdiss



Bethe-Salpeter amplitude to describe the 
bound state of heavy quarkonia

Definition ;

Solution is NR limit ;



Leading Order (LO)

quark-induced 
Next to Leading Order (qNLO)



gluon-induced 
Next to Leading Order (gNLO)



Leading Order (LO)

quark-induced 
Next to Leading Order (qNLO)

gluon-induced 
Next to Leading Order (gNLO)



Wavefunctions of charmonia at finite T

Modified Cornell potential
F. Karsch, M.T. Mehr, H. Satz, Z phys. C. 37, 617 (1988)

σ=0.192 GeV2 : string tension

α=0.471 : Coulomb-like potential 

constant

μ(T) ~gT is the screening mass

In the limit μ(T)→0,
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Binding energies & radii of charmonia
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In QGP
σdiss= σpQCD

1. partons with thermal mass ~gT,

2. temperature-dependent 

wavefunction is used.

In hadronic matter
σdiss(p)= ∫dx σpQCD (xp)D(x)

: factorization formula

D(x) is parton distribution Ft. of 

hadrons(pion, here) interacting with 

charmonia

1. Massless partons

2. (mass factorization, loop diagrams, 

and renormalization are required 

to remove collinear divergence, 

infrared divergence, and ultraviolet 

divergence)

2. Coulomb wavefunction is used.



The role of coupling constant ‘g’

1. ‘g’ determines the thermal width of J/ψ

(in LO, Г∼g2, and in NLO, Г∼g4)

2. ‘g’ determines the screening mass, that is, the melting 

temperature of charmonia (screening mass μ=gT)

TJ/ψ=377 MeV, Tχc =221 MeV, TΨ’=179 MeV



Comparison with experimental data of RHIC 
(√s=200 GeV at midrapidity)
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3. Recombination of J/ψ at hadronization
If the number of cc pair is completely thermalized,

However, the cross section for ‘cc pair → others’ or ‘others → cc pair’ is very small. 

The life time of fireball is insufficient for the thermalization of the number of cc pair. 

→ corrected with fugacity γ

If  produced cc pairs are very few, GCE must turn to CE 

→ canonical ensemble suppression

If the number of cc pair initially produced in AB collision is conserved, it scales with 

the number of binary collision between nucleons in colliding nuclei. 

, where dσcc
NN/dy=63.7(μb) from pQCD.
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Relaxation factor for kinematical 
equilibrium

ionhadronizatat   time the: 

charm-charm/anti ofsection  cross scattering elastic  the: 
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• Finally, the number of 

recombined J/ψ is 
VRγ2 {nJ/ψ+Br(χc)*nχc+ Br(ψ’) *nψ’}

< Reference for RAA>

• J/ψ production in pp 
collisions at √s=200 GeV 
PHENIX Collaboration, PRL 98, 
232002 (2007) 



The role of coupling constant ‘g’

3. ‘g’ determines relaxation factor of charm/anti-charm 

quarks (relaxation time∼g2)



Comparison with experimental data of RHIC 
(√s=200 GeV at midrapidity)
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If there is no initial melting of J/ψ
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Cu+Cu in RHIC at √sNN=200 GeV 

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

0 20 40 60 80 100 120
No. of participants

R AA

sum

nuclear absorption & 
thermal decayrecombination



For LHC prediction

• By extrapolation,

Entropy S= 21.5{(1-x)Npart/2+xNcoll}

to 55.7{(1-x)Npart/2+xNcoll}, where x=0.11

J/ψ production cross section in p+p collision per rapidity

dσJ/ψ
pp/dy= 0.774 μb to 6.4 μb

• By pQCD,

cc production cross section in p+p collision per rapidity

dσcc
pp/dy= 63.7 μb to 639 μb
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Summary

• RAA of J/ψ near midrapidity in Au+Au collision at √sNN=200 

GeV is well reproduced with almost no free parameter. 

• Something new different from other models are followings:

1. It is assumed that the sudden drop of RAA around Npart=190 

is caused by that the maximum temperature of the fireball 

begins to be over the melting temperature of J/ψ there. 

2. Thermal masses of partons extracted from LQCD are used 

to obtain thermal quantities of expanding fireball and to 

calculate dissociation cross sections of charmonia

3. From this, g is determined, because the screening mass is 

assumed to be gT.



• The same method was applied to Cu+Cu collision at the same 
energy, and the result is not bad. 

• With some modified parameters, RAA of J/ψ in LHC was 
calculated. Different from RHIC, recombination effect is 
dominant, because most charmonia produced at initial stage 
are melt and much larger number of charm quark are 
produced in LHC.

• The future plan is to reproduce or predict 

1. RAA at forward rapidity

2. The dependence of RAA on transverse momentum of J/ψ

3. RAA of heavier system such as Upsilon 

4. …


