R_{AA} of J/ψ near mid-rapidity in RHIC at √s_{NN}=200 GeV and in LHC

Taesoo Song, Woosung Park, and Su Houng Lee (Yonsei Univ.)

QCD phase diagram

There are many probes to investigate the properties of hot nuclear matter. One of them is J/ψ

Brief history of J/ψ in ultrarelativistic heavy ion collision

 J/ψ suppression due to the Debye screening of color charge between c and anti-c pair was first suggested as a signature of quark-gluon plasma (QGP) formation in relativistic heavy ion collision by T. Matsui, H. Satz in 1986.

T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986)

FIG. 1: Spectral functions for J/ψ (a) for $T/T_c = 0.78, 1.38$, and 1.62 (b) for $T/T_c = 1.87$ and 2.33.

 Recently, lattice calculations support that J/ψ survives above Tc

M. Asakawa, T. Hatsuda, PRL 92, 012001 (2004), ...

However, J/ψ is still a good
probe to investigate the
property of hot nuclear matter
created from ultrarelativistic
heavy ion collision, because its
melting point is believed to
exist between Tc and the initial
temperature of hot nuclear
matter created through the
relativistic heavy ion collisions
in RHIC.

Phenomenological models to describe J/ψ production in relativistic heavy ion collision

1. Thermal model (P. Braun-Munzinger et al.)

Initially produced J/ Ψ does not survive. All J/ Ψ s are formed at hadronization stage by recombination of charm and anti-charm.

- Two component model (R. Rapp et al.)
 Observed J/Ψ comes from at initial collisions or at hadronization stage.
- 3. Simultaneous dissociation and recombination of J/ Ψ during the fireball expansion (P. Zhuang et al.)

Two-component model

Glauber model

1. Woods - Saxon distributi on

$$\rho(\mathbf{r}) = \frac{\rho_0}{1 + e^{(\mathbf{r} - \mathbf{r}_0)/C}}$$

2. Number of participants (wounded nucleons) $N_{part}(\vec{b}) = A \int T_A(\vec{s}) \left\{ 1 - \left[1 - T_B(\vec{b} - \vec{s})\sigma_{in} \right]^B \right\} d^2s$ $+ B \int T_B(\vec{b} - \vec{s}) \left\{ 1 - \left[1 - T_A(\vec{s})\sigma_{in} \right]^A \right\} d^2s$

, where $T_{A,B}(\vec{b}) \equiv \int \rho_{A,B}(\vec{b}, x) dx$; thickness function.

The quantity of bulk matter is proportional to # of participants

3. Nuclear overlap function of two colliding nuclei

$$T_{AB}(\vec{b}) = \int d^2s dz dz' \,\rho_A(\vec{s}, z) \,\rho_B(\vec{b} - \vec{s}, z')$$

As an example, the number of J/ψ produced in two nuclei collision with impact parameter b is $\sigma_{J/\psi}T_{AB}(\vec{b})$.

The quantity of hard particles such as J/ψ is proportional to # of binary collisions

of participants vs. # of binary collisions with σ_{in} =42 mb

What is R_{AA} ?

$$R_{AA}^{J/\Psi} = \frac{1}{N_{coll}} \times \frac{N_{A+A}^{J/\Psi}}{N_{n+n}^{J/\Psi}}$$

If R_{AA} is below 1, it is called that J/Ψ is suppressed. If R_{AA} is above 1, it is called that J/Ψ is enhenced.

From RHIC with $\sqrt{s} = 200 \, GeV$ at mid - rapidity,

Comparison with experimental data of RHIC (√s=200 GeV at midrapidity)

2. Thermal decay in fireball

QGP phase

Mixed phase (Assuming 1st order phase transition)

HG phase

2.1. Thermal model

A.Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel NPA 772, 167 (2006) Thermal model successfully describes particle ratios n_i/n_j at chemical freeze-out stage ,where $n_j (\mu_b, \mu_{13}, \mu_S, \mu_C, T_{cfo})$ is particle number density in grand canonical ensemble

$$n_{j} = \frac{d_{j}}{2\pi^{2}} \int dp p^{2} \left[\exp\left(\frac{E_{j} - \mu_{j}}{T_{cfo}}\right) \pm 1 \right]^{-1}$$
$$\mu_{j} = \mu_{B}B_{j} + \mu_{I3}I_{3} + \mu_{s}S_{j} + \mu_{C}C_{j}$$

The latest result for RHIC data at mid-rapidity ($\sqrt{s}=200 \text{ GeV}$) : T_{cfo}=161 MeV, $\mu_b=22.4 \text{ MeV}$ A.Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel NPA 789, 334 (2007)

Z, N and other quantities μ_{I3} , μ_S , μ_C , at chemical freeze-out are obtained from below constraints.

Baryon number conservation $V \sum_{j} n_{j} B_{j} = Z + N$ Isospin conservation $V \sum_{j} n_{j} I_{3j} = \frac{Z - N}{2}$ Strangeness conservation $V \sum_{j} n_{j} S_{j} = 0$ Charm conservation $V \sum_{i} n_{j} C_{j} = 0$

,where Z is the net number of wounded protons and N is that of wounded neutrons in the fireball at mid-rapidity

Absolute hadron yields can also be reproduced in thermal model

Fig. 23. Hadron yields with best fit at $\sqrt{s_{NN}} = 130$ GeV. The dashed lines are for the best fit excluding the Ξ hyperons. The Ω yield includes both Ω and $\overline{\Omega}$.

At midrapidity (|y|<1) with \sqrt{s} =200 GeV & N_{part}=350, V_{cf}≈2400 fm³

Here we parameterize total entropy as the combination of N_{part} and N_{coll}

$$S = 21.5 \left\{ (1-x) \frac{N_{part}}{2} + x N_{coll} \right\},$$

where x = 0.11 at $\sqrt{s_{NN}} = 200$ GeV, and 0.09 at $\sqrt{s_{NN}} = 130$ GeV

Local entropy density at initial stage is assumed to be

$$s = \frac{S}{V} = 21.5 \left\{ (1 - x) \frac{n_{part}}{2} + x n_{coll} \right\},$$

where $n_{part} = N_{part} / V$, $n_{coll} = N_{coll} / V$

Multiplicities of charged particles vs. # of participants

The latest result for RHIC data at mid-rapidity ($\sqrt{s}=200 \text{ GeV}$) : T_{cfo}=161 MeV, $\mu_b=22.4 \text{ MeV}$ A.Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel NPA 789, 334 (2007)

Z, N and other quantities μ_{I3} , μ_S , μ_C , at chemical freeze-out are obtained from below constraints.

Baryon number conservation $V \sum_{j} n_{j} B_{j} = Z + N$ set at about Npart/20 in |y|<0.35</th>Isospin conservation $V \sum_{j} n_{j} I_{3j} = \frac{Z - N}{2}$ Strangeness conservation $V \sum_{j} n_{j} S_{j} = 0$ Charm conservation $V \sum_{j} n_{j} C_{j} = 0$

,where Z is the net number of wounded protons and N is that of wounded neutrons in the fireball at mid-rapidity

Ratios of proton and anti-proton vs. # of participants

Thermal mass of partons in QGP Peter Levai & Ulrich Heinz PRC 57, 1879 (1998)

Strongly interacting massless partons → Noninteracting massive partons, reproducing well thermal quantities obtained from LQCD

$$m_g^2 = \frac{g^2(T)T^2}{2} \left(\frac{N_c}{3} + \frac{N_f}{6} \right), \qquad m_q^2 = \frac{g^2(T)T}{3}$$
, where $g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f)\ln F^2(T, T_c, \Lambda)}$
$$F(T, T_c, \Lambda) = \frac{18}{18.4e^{-0.5(T/T_c)^2} + 1} \frac{T}{T_c} \frac{T_c}{\Lambda}$$

2

$$N_{f} = 0, \ T_{c} = 260 MeV, \ T_{c} / \Lambda = 1.03$$

 $N_{f} = 2, \ T_{c} = 140 MeV, \ T_{c} / \Lambda = 1.03$
 $N_{f} = 4, \ T_{c} = 170 MeV, \ T_{c} / \Lambda = 1.05$

Entropy density in QGP & in HG

in HG, $s = -\frac{1}{V} \frac{\partial \Phi}{\partial T} \bigg|_{V,\mu} = \frac{1}{6\pi^2} \sum_{i=0}^{\infty} dk \frac{k^4 (E_i - \mu_i)}{E_i T^2} \frac{e^{(E_i - \mu_i)/T}}{\left(e^{(E_i - \mu_i)/T} \pm 1\right)^2}$ All mesons below 1.5 GeV, & All baryons below 2.0 GeV in QGP, $s = -\frac{1}{V} \frac{\partial \Phi}{\partial T} \bigg|_{V,\mu} = \frac{1}{6\pi^2} \sum_{i} \int_{0}^{\infty} dk \bigg| \frac{k^4 (E_i - \mu_i)}{E_i T^2} \frac{e^{(E_i - \mu_i)/T}}{\left(e^{(E_i - \mu_i)/T} \pm 1\right)^2}$ $-\left(\frac{\partial m_{i}^{2}}{\partial T}\right)\left(\frac{1}{2E_{i}^{3}}\frac{1}{e^{(E_{i}-\mu_{i})/T}\pm 1}+\frac{1}{2E_{i}^{2}T}\frac{e^{(E_{i}-\mu_{i})/T}}{\left(e^{(E_{i}-\mu_{i})/T}\pm 1\right)^{2}}\right)\right)$ Thermal quark/anti-quark & gluon

Entropy density vs. temperature

Temperature distribution on transverse plane at formation time

Temperature profiles with various impact parameters

y (fm)

Assuming isentropic expansion of fireball, with the below timedependent volume

$$V_{FB}(\tau) = 2 \times y(\tau_0 + \tau) \times \pi \left(r_0 + \frac{1}{2}a_{\perp}\tau^2\right)^2,$$

"we can deduce temperatures and chemical potentials at midrapidity before reaching chemical freeze-out stage."

From hydrodynamics simulation, 1. τ_0 is the thermalization time of fireball ≈ 0.6 fm/c

- 2. a_{\perp} is transverse acceleration , which was set at 0.1 c²/fm X. Zhao, R. Rapp, PLB664, 253 (2008) terminal transverse velocity was set at 0.6 c
- 3. r₀ is initial transverse radius of QGP

Fireball expansion (b=0 fm)

2.2. survival rate from the thermal decay

Considering feed-down from χ_c , Ψ' to J/ ψ , survival rate of J/ ψ from the thermal decay is

 $S_{QGP+HG} = 0.67 \, S_{QGP+HG}^{J/\Psi} + 0.25 \, S_{QGP+HG}^{\chi_c} + 0.08 \, S_{QGP+HG}^{\Psi'}$

,where

$$S_{QGP+HG}^{j} = \exp\left\{-\int_{0}^{\tau}\Gamma^{j}(\tau')d\tau'\right\}$$

and $\Gamma^{j}(\tau)$ is thermal width of charmonia j

 $\begin{array}{ll} \Gamma^{j}\left(\tau\right)=\ \Gamma_{QGP}{}^{j}\left(\tau\right) & (T>Tc) & \text{in QGP phase} \\ \Gamma^{j}\left(\tau\right)=\ f\ \Gamma_{QGP}{}^{j}\left(\tau\right) + (1-f)\ \Gamma_{HG}{}^{j}\left(\tau\right) & (T=Tc) & \text{in mixed phase} \\ \Gamma^{j}\left(\tau\right)=\ \Gamma_{HG}{}^{j}\left(\tau\right) & (T<Tc) & \text{in HG phase} \end{array}$

Thermal decay widths in QGP & HG

Thermal width

$$\Gamma = \sum_{j} g_{j} \int \frac{d^{3}k}{(2\pi)^{3}} n_{j}(T,\mu) v_{rel}(T) \sigma_{diss}(T)$$

$$n_{j} : \text{density of parton or hardon dissociati ng J/\psi}$$

$$v_{rel} : \text{relative velocity between j and J/\psi}$$

$$\sigma_{diss} : \text{dissociati on cross section of J/\psi}$$

(in QGP, j=quark, antiquark, gluon in hadronic matter, j=pion, kaon, ...)

In order to calculate thermal width Γ , we must know

- 1) Thermodynamic quantities such as T, µ
- 2) Dissociation cross section σ_{diss}

Dissociation cross section σ_{diss}

Dissociation cross section σ_{diss} is a crucial quantity to calculate thermal width.

Most studies use two different models for QGP dissociation and hadronic dissociation.

(As an example,

for the decay in QGP, quasi-free particle approximation, and for that in HG, meson exchange model,...)

Here we use the same approach, pQCD, in QGP and in HG.

Bethe-Salpeter amplitude to describe the bound state of heavy quarkonia

$$\Gamma_{\mu}(p_{1}, -p_{2}) = -ig^{2}C_{F} \int \frac{d^{4}K}{(2\pi)^{4}} \gamma^{\alpha} i\Delta(K+p_{1}+p_{2})\Gamma_{\mu} \\ \times (K+p_{1}+p_{2}, K)i\Delta(K)\gamma_{\alpha}V(K+p_{2}),$$

Solution is NR limit;

$$\Gamma_{\mu}\left(\frac{q}{2}+p,-\frac{q}{2}+p\right) = \left(\epsilon_{o}+\frac{\vec{p}^{2}}{m}\right)\psi(|\vec{p}|)$$
$$\times \sqrt{\frac{m_{\Phi}}{N_{c}}\frac{1+\gamma^{0}}{2}}\gamma_{i}g_{\mu}^{i}\frac{1-\gamma^{0}}{2}}$$

quark-induced Next to Leading Order (qNLO)

gluon-induced Next to Leading Order (gNLO)

< 15 >

k17

ģ

-p2

Leading Order (LO)

$$\overline{|\mathcal{M}|}^{2} = \frac{2g^{2}m_{c}^{2}m_{\Phi}\left(2k_{0}^{2}+m_{k_{1}}^{2}\right)}{3N_{c}}\left|\frac{\partial\psi(\mathbf{p})}{\partial\mathbf{p}}\right|^{2},$$

quark-induced Next to Leading Order (qNLO)

$$\overline{|\mathcal{M}|}^2 = \frac{4}{3}g^4m_c^2m_\Phi \left|\frac{\partial\psi(\mathbf{p})}{\partial\mathbf{p}}\right|^2 \left(-\frac{1}{2} + \frac{k_{10}^2 + k_{20}^2}{2k_1 \cdot k_2}\right).$$

gluon-induced Next to Leading Order (gNLO)

$$\overline{|\mathcal{M}|}^{2} = \frac{4}{3}g^{4}m_{c}^{2}m_{\Phi} \left| \frac{\partial\psi(\mathbf{p})}{\partial\mathbf{p}} \right|^{2} \left\{ -4 + \frac{k_{1} \cdot k_{2}}{k_{10}k_{20}} + \frac{2k_{10}}{k_{20}} + \frac{2k_{20}}{k_{10}} - \frac{k_{20}^{2}}{k_{10}^{2}} - \frac{k_{10}^{2}}{k_{20}^{2}} + \frac{2}{k_{1} \cdot k_{2}} \right. \\ \left. \times \left[\frac{\left(k_{10}^{2} + k_{20}^{2}\right)^{2}}{k_{10}k_{20}} - 2k_{10}^{2} - 2k_{20}^{2} + k_{10}k_{20} \right] \right\}$$

Wavefunctions of charmonia at finite T

Modified Cornell potential

F. Karsch, M.T. Mehr, H. Satz, Z phys. C. 37, 617 (1988)

$$V(r,T) = \frac{\sigma}{\mu(T)} \left(1 - e^{-\mu(T)r} \right)$$
$$-\frac{\alpha}{r} e^{-\mu(T)r}$$

σ=0.192 GeV² : string tension
 α=0.471 : Coulomb-like potential constant

 $\mu(T)$ ~gT is the screening mass

In the limit $\mu(T) \rightarrow 0$,

$$V(r,T) \to \sigma r - \frac{\alpha}{r}$$

Binding energies & radii of charmonia

In QGP

 $\sigma_{diss} = \sigma_{pQCD}$

- 1. partons with thermal mass ~gT,
- 2. temperature-dependent wavefunction is used.

In hadronic matter

 $\sigma_{diss}(p) = \int dx \sigma_{pQCD}(xp)D(x)$: factorization formula

D(x) is parton distribution Ft. of hadrons(pion, here) interacting with charmonia

- 1. Massless partons
- 2. (mass factorization, loop diagrams, and renormalization are required to remove collinear divergence, infrared divergence, and ultraviolet divergence)
- 2. Coulomb wavefunction is used.

The role of coupling constant 'g'

1. 'g' determines the thermal width of J/ ψ (in LO, Γ ~g², and in NLO, Γ ~g⁴)

- 2. 'g' determines the screening mass, that is, the melting temperature of charmonia (screening mass μ =gT)
 - $T_{J/\psi}{=}377$ MeV, $T_{\chi c}{=}221$ MeV, $T_{\psi'}{=}179$ MeV

Comparison with experimental data of RHIC (√s=200 GeV at midrapidity)

3. Recombination of J/ψ at hadronization

If the number of cc pair is completely thermalized,

$$N_{c\bar{c}}^{AB} = \left(\frac{1}{2}n_{openC} + n_{hiddenC}\right)V$$

However, the cross section for 'cc pair \rightarrow others' or 'others \rightarrow cc pair' is very small. The life time of fireball is insufficient for the thermalization of the number of cc pair. \rightarrow corrected with fugacity γ 1

$$N_{c\bar{c}}^{AB} = \frac{1}{2} \gamma n_{openC} V + \gamma^2 n_{hiddenC} V$$

If produced cc pairs are very few, GCE must turn to CE

 \rightarrow canonical ensemble suppression

$$N_{c\bar{c}}^{AB} = \frac{1}{2} \gamma n_{openC} V \frac{I_1(\gamma n_{openC} V)}{I_0(\gamma n_{hiddenC} V)} + \gamma^2 n_{hiddenC} V$$

If the number of cc pair initially produced in AB collision is conserved, it scales with the number of binary collision between nucleons in colliding nuclei.

$$N_{c\bar{c}}^{AB}(\vec{b}) = \sigma_{c\bar{c}}^{NN} AB \int d^2s \int dz_A \rho_A(\vec{s}, z_A) \int dz_B \rho_B(\vec{b} - \vec{s}, z_B)$$

, where d σ_{cc}^{NN} /dy=63.7(µb) from pQCD.

fugacity

canonical suppression

Relaxation factor for kinematical equilibrium

$$R = 1 - \exp\left(-\int_{\tau_0}^{\tau_H} \frac{d\tau}{\tau_{eq}}\right)$$

, where a thermaliz ation time $\tau_{eq} = 1/(n\sigma)$

n: the total density of quark/gluo n in the system σ : the elastic scattering cross section of charm/anti - charm τ_{H} : the time at hadronizat ion

- Finally, the number of recombined J/ψ is
 VRγ² {n_{J/ψ}+Br(χ_c)*n_{xc}+ Br(ψ') *n_{ψ'}}
- < Reference for R_{AA} >
- J/ψ production in pp collisions at √s=200 GeV PHENIX Collaboration, PRL 98, 232002 (2007)

The role of coupling constant 'g'

3. 'g' determines relaxation factor of charm/anti-charm quarks (relaxation time \sim g²)

Comparison with experimental data of RHIC (√s=200 GeV at midrapidity)

If there is no initial melting of J/ψ

Cu+Cu in RHIC at √snn=200 GeV

For LHC prediction

• By extrapolation,

Entropy S= $21.5\{(1-x)N_{part}/2+xN_{coll}\}$ to $55.7\{(1-x)N_{part}/2+xN_{coll}\}$, where x=0.11

J/ ψ production cross section in p+p collision per rapidity d $\sigma_{J/\psi}^{pp}/dy=0.774 \ \mu b$ to 6.4 μb

• By pQCD,

cc production cross section in p+p collision per rapidity $d\sigma_{cc}^{pp}/dy=63.7 \ \mu b$ to 639 μb

Pb+Pb in LHC at √snn=5.5 TeV

Summary

- R_{AA} of J/ ψ near midrapidity in Au+Au collision at $\sqrt{s_{NN}}=200$ GeV is well reproduced with almost no free parameter.
- Something new different from other models are followings:
- 1. It is assumed that the sudden drop of RAA around N_{part}=190 is caused by that the maximum temperature of the fireball begins to be over the melting temperature of J/ψ there.
- 2. Thermal masses of partons extracted from LQCD are used to obtain thermal quantities of expanding fireball and to calculate dissociation cross sections of charmonia
- 3. From this, g is determined, because the screening mass is assumed to be gT.

- The same method was applied to Cu+Cu collision at the same energy, and the result is not bad.
- With some modified parameters, RAA of J/ψ in LHC was calculated. Different from RHIC, recombination effect is dominant, because most charmonia produced at initial stage are melt and much larger number of charm quark are produced in LHC.
- The future plan is to reproduce or predict
- 1. R_{AA} at forward rapidity
- 2. The dependence of R_{AA} on transverse momentum of J/ψ
- 3. R_{AA} of heavier system such as Upsilon

4. ...