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Thermalized nuclear system
Medium energy heavy-ion collision

RIB - Asymmetric
Neutron star
Short range repulsive and long range attractive

Saturation, Phase transition
Tow component system: 3-d of           ,          , T

He,    Binary alloy
Phase diagram; surface in 3-d of P, T, y or density
Symmetry energy

Second order transition,  Isospin fractionation
Coulomb energy    

Beta stability line       ,   Asymmetric phase diagram
Finite system

Surface energy
Velocity dependent interaction

Effective mass
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Thermodynamic Variables
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Momentum conservation: 0333 =−=
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Coexistence ;  Gibbs conditions

Spinodal

Critical point

Equal concentration or extremum of
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For mechanical instability:

For chemical instability:

at same T  but not necessarily
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Skyrme Hamiltonian



Single particle energy

2

2

2

2

*3

2

2

)(),(

),(

)()(),()(

)(),()()(

),(





pE
p

pE
TT

EE
TT

prprhrrd

rprhrp

HHpH
prh

q

qq

Fq

q

qq

q
q

qq

Fqqqqqq

qqqq

q
qq

q


















+−=


















=




















−


















+=

==

=




















−


















+


















=

→

→

→

→→→→

→→→→→

→

→→→




















Helmholtz Free Energy
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At low T or high density
(nearly degenerated Fermi gas)
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At high T or low density, small
(nearly nondegenerated Fermi gas)
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Summary

• Surface tension: lower pressure of coexistence binodal 
surface (toward P=0)

• Coulomb interaction: Shrink binodal region and 
mechanical and chemical instability region, move LEC to 
lower     than 0.5, cross of     curves in y for different P, 
asymmetric pair of LG at higher      , two pairs meet 
together with lowest P at    

• Symmetry energy:           for          and          for        , 
larger symmetry energy make higher pressure and 
narrower coexistence loop, loops are closer to    , tend 
to restore symmetry of loops

• Value of     for LEC is somewhat insensitive to nuclear 
force, value of pressure is more sensitive
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• Mechanical instability loop is inside of chemical 
instability boundary and tangent at      - diffusive 
chemical transition occurs even in mechanically 
stable region

• Chemical instability loop is inside of coexistence loop 
and tangent to it at their maxima in P

• At      , all curves coincide in   -T  plot, phase 
transition behaves same as one component system

• For         , neutron diffusion is important, while proton 
diffusion for

• Momentum dependent isoscalar makes pressure 
higher while isovector momentum dependent term 
makes  much lower for given density and y

• Momentum dependent isoscalar makes loops smaller 
while momentum dependent isovector term makes  
loops more larger
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• Momentum dependent isoscalar makes coexistence 
loop closer to     while momentum dependent 
isovector term makes  loop away

• Momentum dependent term lower the height of 
coexistence loop at proton rich side while it remains 
similar at neutron rich side

• Momentum dependent isovector term has opposite 
and larger effect than isoscalar momentum dependent 
term

• Isovector term make symmetry energy smaller and thus 
loops become more asymmetric

• For SLy4 left coexistence loop of lower proton fraction 
is more pronounced than right loop of high proton 
fraction, isoscalar  and isovector have same sign

• SLy4 loop at higher y is narrower in y than loop for 
SKM(m*=m)

• Symmetry energy has important role in coexistence

Ey







• Surface tension; lower pressure of coexistence binodal surface (to P=0)
• Coulomb interaction; shrink binodal loop, cross of chemical potential curves in y 

for different P at near y=0.5, move LEC to smaller yE than 0.5 for symmetric 
system, asymmetric pair of L-G at higher y > yE, two pairs meet together with 
lowest P at yE

• Value of yE is somewhat insensitive to nuclear force, pressure is more sensitive
• Symmetry energy; Larger y in gas and smaller y in liquid for y > yE, opposite for y 

< yE 
• Nonlinear density dependence of symmetry energy
• Coulomb shrink chemical & mechanical instability region
• Mechanical is inside of chemical and tangent at yE, diffusive chemical transition 

occurs even in mechanically stable region, same at yE
• Chemical is inside of coexitence and tangent to it at maxima
• At yE, peak in chemical instability and binodal surface coincide, 
• For y.ne.yE In T vs rho, paks for chemical instability and coexistence coincide, 

but peak of mrchanical or spinodal instability is below of others
• At y = yE, phase transition behaves same as one component system keeping y=yE 

in both phase
• For y < yE, neutron diffusion is important, while proton diffusion for y < yE
• Momentum dependence increase pressure at given density
• Momentum dependence make smaller boundaries
• Reduce height of coexistence loop at proton rich side and remain similar at 

neutron rich side, increase lowest pressure of coexistence curve
• Largest and smallest y in coexitence loops shifted toward yE



• For SLy4 left coexistence loop of lower proton fraction is more 
pronounced than right loop of high proton fraction, isoscalar  and 
isovector have same sighn

• For SKM(m*=m) right loop is more pronounced than left loop, isoscalar 
term raises pressure of loop on neutron rich side while isovector lowers 
due to opposite sighn of force

• SLy4 loop at higher y is narrower in y than loop for SKM(m*=m), SLy4 has 
higher symmetry energy

• Higher left loop means liquid and gas can coexist at higher pressurewith 
more neutron rich gas and lesser rich neutron liquid for left loop

• Narroing of coexistence loop brings yG and yL closer together thereby 
reducing proton fraction differece in gas and liquid phase

• Momentum dependent isovector term has opposite and larger effect than 
isoscalar momentum dependent term

• Isovector tem make symmetry energy smaller and thus loops become 
more adsymmetric

• Pressure for given rho, y, T becomes larger by isoscalar term while it 
becomes smaller by isovectoer term

• Symmetry energy terms tend to restore dymmetry of loops
• Loops for SKM(m*=m) with both isoscalar and isovector terms have 

smallest symmetry energy, has cut at y=0
• Loops for SLy4 with largestsymmetry energy, are closer to its yE than 

SKM(m*=m)





For Skyme Hamiltonian of
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Momentum Independent Interaction



For Consistency
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