

Detectors and Observables in the CBM experiment

Volker Friese GSI Darmstadt

Heavy Ion Meeting, Seoul, 31 October 2009

CBM: experimental setup

STS – The Main Tracker

UrQMD central Au+Au @ 25A GeV

Silicon Tracking System Tasks

- Reconstruction of up to 600 charged particle tracks per event
- Fast response: should resolve 10 MHz interaction rate
- Radiation hardness of sensors and electronics
- Low material budget
- Should enable fast (online) reconstruction algorithms

STS Detector Layout

- 8 stations of micro-strip silicon detectors inside dipole field (1.2 Tm)
- Double-sided sensors with 15 degrees relative stereo angle
- $\circ~$ Strip pitch 60 μm
- Modular design with 4, 6, and 8 cm long strips

Volker Friese

HIM, Seoul, 31 October 2009

Track reconstruction in STS

simulation and reconstruction: central Au+Au @ 25A GeV

- Algorithm: Cellular Automaton + Kalman Filter
- Efficiency for fast primary tracks: 96 %
- Momentum resolution \approx 1.1 %

Hyperon measurements

Identified by decay topology in STS + inv. Mass New and fast rec. Software Clean signals: almost background free for Λ and Ξ No identification of secondaries required

simulation and reconstruction: central Au+Au @ 25A GeV

Volker Friese

HIM, Seoul, 31 October 2009

Multi-strange di-baryons

Started to study $\{\Xi^0, \Lambda\} \rightarrow \Lambda\Lambda$

Assuming:

 $m=m_{\Lambda} + m_{\Xi}$ ct = 3 cm (1–5 cm)

J. Schaffner-Bielich, R. Mattiello and H. Sorge, 1999

Volker Friese

J. Steinheimer, priv. comm.

ΛΛ simulation and analysis

Transport event display

∧ reconstruction

Cut on $\Lambda\Lambda$ vertex

Volker Friese

HIM, Seoul, 31 October 2009

8

Results and sensitivity for $\{\Xi^0, \Lambda\}$

\approx 30 d data taking at 10⁷ MHz

Thermal multiplicity (7 • 10⁻³)

Sensitivity limit: 7 • 10⁻⁶

CBM will see $\{\Xi^0, \Lambda\}$ with thermal yields Evene three OOM below the signal will be visible above BG

STS – R&D

CBM-MPD STS Consortium

First sensor prototypes produced 2008 2nd generation to come spring 2010

Light-weight carbon fibre support

Mechanical design

Volker Friese

STS – In-beam Test August 2009 @ GSI

Successful operation in proton beam (2 GeV, 10⁴ / s) Self-triggered readout via NXYTER chip Beamspot clearly visible

Volker Friese

Time Of Flight for Hadron Identification

- Separation of π , K, p at z = 10 m
- Resolution < 80 ps required
- Large-area coverage (150 m²)
- High rate capability (up to 20 kHz/cm²)
- Realisation: timing RPCs

Hadron identification by TOF

Charged kaon identification track-by-track up to $p \approx 4$ GeV Good global tracking efficiency, large acceptance: essential for EbE fluctuations

Volker Friese

HIM, Seoul, 31 October 2009

Particle ratio fluctuations

Sensitivity to K/ π fluctuations studied with UrQMD input (central Au+Au, 25A GeV)

No large bias compared to MC truth found after full reconstruction and identification

CBM acceptance appears well suited for fluctuation studies

TOF – R&D on Large-Area RPCs

 Several developments ongoing (float glass, SC glass, ceramics)

Reado

5 x 25

5 x 25

- Design goals (resolution, rate capability) seem in reach
- Design choice to be done

The Key to Open Charm - MVD

Extremely rare probe at SIS-300 energies Requires efficienct background suppression Secondary vertex detection with high precision indispensible Requires high-resolution, ultra-thin detector CBM choice: 2 stations of MAPS at z = 10, 20 cm operated in vacuum

Volker Friese

Detection of Open Charm

Simulation of D⁺->K⁻ π - π ⁺ in 25 AGeV central Au+Au @ 25A GeV Seccondary-vertex resolution of \approx 50 µm obtained in full reconstruction D⁺ signal well observable above background

Open Charm : Statistics

Typical runtime 25 d @ 10⁶ events / s

 \approx 16 k D⁺ decays measured

Good rapidity and p_t coverage

Open Charm: Other Channels

Open charm: summary

	$\mathbf{D}^0 + \overline{\mathbf{D}^0}$	D ⁰	D ⁺	D _s ⁺	Λ_{c}^{+}
decay channel	K-π+	$\pi^{-}K^{-}\pi^{+}\pi^{+}$	$K^{-}\pi^{+}\pi^{+}$	$K^{-}K^{+}\pi^{+}$	р К⁻π⁺
M _{HSD}	1.5.10-4	$4.0 \cdot 10^{-5}$	$4.2 \cdot 10^{-5}$	5.4·10 ⁻⁶	
M _{SM}	8.2.10-4	2.0.10-4	8.4.10-5	$1.4 \cdot 10^{-4}$	4.9.10-4
BR(%)	3.8	7.7	9.5	5.3	5.0
geo. acc.(%)	55.7	19.3	39.6	29.6	53.0
s.t. rec. eff.	98	97.7	97.5	97.5	97.6
z-resolution μm	54	82	60	73	70
total eff. (%)	3.25	0.37	4.2	1.0	0.18
$\sigma_{\rm m}({\rm MeV/c^2})$	11	12	11	12	12
$S/B_{2\sigma}$	4.4	7.1	9.0	0.3(7.9)	0.25
yield(K/10 ¹¹ cen)	5 + 17	1	16	0.3(7.2)	11

Open charm trigger

Based on:

impact parameter of daughters geometrical and topological vertex cuts

Rejection factors > 100 in reach

To be implemented in FLES

Open charm: challenges

- High event rates (10⁵ 10⁶) indispensable
- Requires:
 - Online trigger reduction by factor > 100
 - Online track reconstruction and SV detection
 - Fast micro-vertex detector
 - MAPS: Limited by readout, 10 µs frame rate possible
 - Simulations: Event pile-up of 10 20 tolerable
 - Radiation-hard detector: up to 10¹⁴ n_{eq}/cm²/ year
 - R&D on MAPS radiation tolerance ongoing
 - Regular replacement of MAPS stations feasible

MVD: R&D on MAPS

R&D punchlines:

readout speed radiation hardness

Readout frames of 30 μ s in reach (10 μ s with 3-d integration)

MVD demonstrator at IKF

MUCH – No Hadrons Allowed

Muon detection system with "active" absorber (alternating Fe absorber and detector layers)

Enables efficient suppression of hadrons while tracking through the setup still possible

Modular pad layout according to track density

Reconstruction of Muon Pairs

Tracking algorithm (track following from STS) developed Satisfactory efficiency for muons Background: muons from weak decays (π, K) track mismatches J/ψ signal well observable Low-mass vector mesons feasible

Charmonium Trigger

Highest interaction rates (10 MHz) required for charmonium measurement

Online event suppression > 1,000 needed

Simple trigger algorithm (two oppositely charged vertex tracks after absorber) feasible and sufficient

	J/ψ reconstruction efficiency	event suppression factor
without trigger	29.3 %	1
after trigger	15.3 %	~1430

MUCH – R&D on GEM and Micromega

Detector developments at VECC Kolkate and PNPI St. Petersburg

Design choices: GEM / Micromega for high density regions

MWPC / Straw Tubes for outer regions

Volker Friese

GEM – In-beam Test August 2009 @ GSI

Successful operation of two GEM detectors in proton beam

Beam spot nicely observed

Electrons Only – RICH and TRD

Identification of electrons by Cherenkov radiation in RICH and Transition Radiation in TRD

RICH: Gas Radiator (pion threshold 4,6 GeV) TRD: 10 – 12 stations, readout with MWPC

Volker Friese

Electron identification in TRD

10 – 12 independent measurements of energy deposit (dE/dx + transition radiation (for e[±])

Identification by

summed en energy deposit

➤ neural net

- > statistical methods (ω_n^k , likelihood, ...)
- Pion suppression > 200 achievable

DPG-Frühjahrstagung, Bochum, 16 March 2009

Combined electron identification

- The combined RICH+TRD pion suppression is > 1000 at an electron efficiency of ≈70 %
- This satisfies the requirements posed by low-mass vector meson and charmonium measurements
- Improvement at low momenta with TOF, at high momenta with ECAL under investigation

Volker Friese

DPG-Frühjahrstagung, Bochum, 16 March 2009

Performance for di-electrons

Charmonium well visible above background

Good S/B for low-mass vector mesons

Volker Friese

R&D on RICH Components

RICH prototype in Pusan

Hamamatsu MAPD

MAPDs in Beam Test @ GSI

Successful operation in self triggered readout chain

1/4 cherenkov ring clearly visible

Volker Friese

HIM, Seoul, 31 October 2009

New DAQ concept

Extreme event and data rates (up to 1 TB/s from FEE) require new DAQ and FLES strategies

No convential trigger mode, but self-triggered, free-streaming FEE with time tags

FEE and DAQ components under development and testing at GSI; first successful test of free-streaming R/O chain in 2008

Volker Friese

HIM, Seoul, 31 October 2009

Fast event reconstruction

FLES has to reduce the raw data rate (1 TB/s) to the recordable rate (1 GB/s)

Necessity of (partial) event reconstruction online at MHz rates

Novel algorithms and implementations to exploit modern / future computer architectures

Paradigmata: vectorisation and parallelisation

Current event reconstruction time in STS: 50 ms

Stage	Description	$\operatorname{Time}/\operatorname{track}$	Speedup
	Initial scalar version	12 ms	_
1	Approximation of the magnetic field	$240~\mu{\rm s}$	50
2	Optimization of the algorithm	$7.2~\mu{ m s}$	35
3	Vectorization	$1.6~\mu { m s}$	4.5
4	Porting to SPE	$1.1~\mu { m s}$	1.5
5	Parallelization on 16 SPEs	$0.1~\mu{ m s}$	10
	Final simulized version	$0.1~\mu{ m s}$	120000