Heavy-Ion Meeting Yong Pyong, Korea, February 25-27, 2010

Particle Detectors for Relativistic Heavy-Ion Collisions

Byungsik Hong Korea University

leavy-Ion-Meeting

Outline

- Introduction
 - I will skip the physics motivation!
 - What are the basic ingredients of relativistic heavy-ion collision experiments?
 - How have they been developed?
- Principles of Particle Detection
 - What needs to be measured?
 - How to measure them?
- Some Examples
 - Mostly, RHIC & LHC experiments

Basic Ingredients

February 25-27, 2010

Accelerators

Many generations of accelerators provided higher and higher energy beam particles for experiments

³⁄₄ of century later

LHC at CERN (27 km circumference)

Ernest Lawrence (1901 - 1958)

February 25-27, 2010

Heavy-Ion Meeting

BEVALAC(=Bevatron+SuperHILAC) at LBNL Billions of eV Synchrotron (1971-1993)

Discovery of antiproton in 1955 by E. Segrè & O. Chamberlain (Nobel Prize in Physics 1959)

AGS (Alternating Gradient Synchrotron) at BNL (1986-1996)

Discovery of v_{μ} in 1962 by L. Lederman, M. Schwartz & J. Steinberger (Nobel Prize in Physics 1988)

Discovery of CP violation in 1963 by J. W. Cronin & V. L. Fitch

(Nobel Prize in Physics 1980)

Discovery of $J(/\psi)$ particle and charm quark in 1974 by S. Ting (Nobel Prize in Physics 1976)

SPS (Super Proton Synchrotron) at CERN (1986-Present)

Discovery of W & Z in 1983 by UA1 & UA2 experiments (C. Rubbia & S. Van de Meer: Nobel Prize in Physics in 1984)

February 25-27, 2010

SIS18 (Heavy Ion Synchrotron in German) at GSI (1990-Present)

RHIC (Relativistic Heavy Ion Collider) at BNL (2000-Present)

Comparison of Beam Energy

Accelerator	√s _{NN} (GeV)	Status
SIS18 (GSI, Germany)	2A (A = mass number)	Running
AGS (BNL, USA)	5A	Finished
SIS300 (GSI, Germany)	8A	Plan to run from ~2016
SPS (CERN, Switzerland)	18 A	Finish soon
RHIC (BNL, USA)	200A	Running from 2000
LHC (CERN, Switzerland)	5500A	Plan to start in 2010

Development of Energy

Total center-of-mass energy versus time

Old-Fashioned Detector

Tool to measure something

Eyes

Fluorescent (ZnS) Screen

Old-Fashioned Detector

Bubble Chamber

BEBC: Big European Bubble Chamber

Modern Detector

- There is a clear limitation in accumulating statistics with old-fashioned detectors.
- In these days, we want to measure one particle in several hundred millions or billion collision events.
- We usually use electronics devices to record huge amount of data for a given time.
 - For example, several hundred MB data per second for each LHC experiment
- First multi-channel electronics detector
 - Multi-wire proportional chamber (MWPC)
 - Invented by G. Charpak in 1968
 - Nobel Prize in Physics in 1992

Ionization Detector

Multi-Wire Proportional Chamber

We can get more accurate position information by using the arrival time and drift velocity of electrons

Drift Chamber

February 25-27, 2010

Time Projection Chamber

Time Projection Chamber

Scintillation Detector & PMT

Scintillation Material

	섬광물질	최대광자방출파장 (nm)	용 도
플라스틱	NE102A	423	γ , α , β , fast n
	NE111A	370	ultra-fast timing
	Pilot U	391	ultra-fast timing
액체	NE216	425	α , β (internal counting)
	NE224	425	γ , fast n
	NE226	430	γ , insensitive n
	NE228	385	n
결정	NaI(Tl)	413	γ, X-rays
	BaF2	220(fast)/310(slow)	γ, heavy particles ultra-fast timing
	CsI(Tl)	580	γ , heavy particles ultra-fast timing
	BGO(Bi ₄ Ge ₃ O ₁₂)	480	γ

Semiconductor Detector

Band Structure

Semiconductor Detector

pn-junction

Depletion region = Effective volume for the particle detection Maximum inversed voltage, V_{max} , determined by ρ of semiconductor

CMS Silicon Tracker

CMS Silicon Tracker

CMS Silicon Tracker

Calorimeter

- Apparatus to measure the energy of particles
- Classification by Function
 - Electromagnetic(EM) Calorimeter
 - Hadronic(HD) Calorimeter
- Classification by Structure
 - Homogeneous Calorimeter
 - Sampling Calorimeter

Principles of Particle Detection

Click the above figure

FOPI Detector @ SIS18

PHENIX Detector @ RHIC

29

PHENIX Upgrade

STAR Detector @ RHIC

ATLAS Detector @ LHC

An Excellent Calorimetry A large acceptance Inner Tracker A hermetic Muon Spectrometer

44m

CMS Detector @ LHC

ECAL

CALORIMETERS

76k scintillating

PbWO₄ crystals

Superconducting Coil (4 T)

TRACKER

Pixels (66M Ch.) Silicon Microstrips (9.6M Ch.) 220 m² of silicon sensors

Weight: 12,500 tons Diameter: 15 m Length: 22 m

MUON BARREL

Drift Tube Chambers Resistive Plate Chambers **HCAL** Plastic scintillator/ Brass Sandwich

Steel YOKE

Level-1 Trigger Output Up to 100 kHz Directly feeds HLT

CPU farm

MUON ENDCAPS

Cathode Strip Chambers Resistive Plate Chambers

ATLAS vs. CMS

ATLAS vs. CMS

Different technologies but close acceptances – possibility to cross-check

KRIB Multipurpose Spectrometer

Summary

- Incredible technological advances for the last ~100 years or so
 - Accelerators
 - Detectors
- A lot of applications of the particle detectors
- Many dedicated experts are (and will be) needed.
- Future is extremely bright !