

Probing Nuclear Spin Structure with Radioactive Ion Beams and Polarized Target

May 28, 2010

Wooyoung Kim

Overview

• **Electron Scattering-Kinematics, Spin Structure Function** $p(\vec{e}, e'\pi^+)n$

• **GPDs & DVCS**

- **Polarized Targets with RIB:**
	- \vec{p} ^{6}He , ^{8}He
	- $\cdot \, \frac{3}{4}$ \vec{H} θ

Ground State Charge Density; Saclay

Energy Transfer Dependence of Cross-Section: *(e,e')*

Cross sections and Beam Asymmetries

$$
p(\vec{e}, e\pi^+)n
$$

 $Q^2 = 1.7 - 4.5$ GeV² $W = 1.15 - 1.7$ GeV

PRC 77, 0152081 (2008) K. Park, W. Kim et al.

- Over 31,000 Cross-Sections Measured
- Over 4,000 Asymmetries Measured

$$
\frac{\partial^5 \sigma}{\partial E_f \partial \Omega_e \partial \Omega^*_\pi} = \Gamma_v \times \frac{d^2 \sigma}{d \Omega^*_\pi},
$$

where

$$
\Gamma_v = \frac{\alpha}{2\pi^2 Q^2} \frac{(W^2 - M_p^2) E_f}{2M_p E_e} \frac{1}{1 - \epsilon}
$$

\n
$$
\epsilon = \left[1 + 2\left(1 + \frac{v^2}{Q^2}\right) \tan^2 \frac{\theta_e}{2}\right]^{-1}
$$

\n
$$
\frac{d^2 \sigma}{d\Omega_\pi^*} = \sigma_T + \epsilon \sigma_L + \epsilon \sigma_{TT} \cos 2\phi_\pi^* + \sqrt{2\epsilon (1 + \epsilon)} \sigma_{LT} \cos \phi_\pi^*
$$

\n
$$
+ h\sqrt{2\epsilon (1 - \epsilon)} \sigma_{LT'} \sin \phi_\pi^*.
$$

Structure Functions

 $\sigma_T + \epsilon \sigma_L$

Structure Functions

 σ_{LT}

Electroexcitation of the Roper resonance for 1.7<Q²<4.5 GeV²

G. Aznauiy, K. Park, W.Kim PRC 78 (2008), PRC 80 (2009).

Dispersion Relation Unitary Isobar Model.

Helicity Amplitude for:
 $\gamma^* p \to N(1440)P_{11}$ Transition: A first Radial Excitation of

the 3g Ground State

Additional Nuclear Structure Information

$$
A = \frac{\cos \theta^* v_T R_T + 2 \sin \theta^* \cos \phi^* v_{TL} R_{TL}}{v_L R_L + v_T R_T}
$$

Super-Rosenbluth Separation

Simultaneous Measurements of T' and TL' asymmetries

Symmetric Detector

Generalized Parton Distributions

- Formalism for the QCD description of deeply exclusive leptoproduction reactions introduces Generalized Parton Distribution (GPDs)
- Carry new Information about the dynamical degrees of freedom inside the Nucleon
- In the Bjorken scaling regime($Q^2 \rightarrow \infty$, x_B finite), the amplitude for exclusive scattering reaction can be factorized into
- A hard scattering part (exactly calcluable in pQCD)
- A nucleon structure part (parameterized via GPDs – handbag approximations)

From Inclusive to Exclusive Scattering

Inclusive Scattering **Inclusive Scattering**

Deeply Virtual Compton Scattering (DVCS)

GPDs depend on 3 variables, e.g. *H(x, ξ, t).* **They probe the quark structure at the amplitude level.**

Deeply Virtual Compton Scattering

- Virtual Compton Scattering in the Bjorken regime
- Virtual Compton Scattering : Electroproduction of photons from nucleons
- The cleanest way of gathering information on nucleon structure
- The simplest experiment for studying GPDs

(W > 2GeV, Q^2 > 1 (GeV/c)²)

Kinematics

Accessing GPDs through DVCS

$d^4\sigma^*$	$d^4\sigma^*$	$\frac{d^4\sigma^*}{dQ^2 dx_p dtd\phi}$	$\frac{$																							
---------------	---------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----------

GPDs & PDs

DVCS and GPDs

 H^q : Probability amplitude for P to emit a parton q with $x+\xi$ and P' to absorb it with $x-\xi$.

Measuring GPDs through polarization

$$
A = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{\Delta \sigma}{2\sigma}
$$

Polarized beam, unpolarized target:

LU ~ sin{F1*H* + (F1+F²)*H* +kF2*E*}d **~** Kinematically suppressed ~ x^B

$$
\mathbf{H}(\xi,t)
$$

$$
\xi \approx x_{\rm B}/(2-x_{\rm B})
$$

$$
k = t/4M^2
$$

 $H(\xi,t)$, $E(\xi,t)$

Unpolarized beam, longitudinal target:

$$
\Delta \sigma_{UL} \sim \frac{\sin \phi \{F_1 \tilde{H} + \xi (F_1 + F_2)(H + \xi/(1 + \xi)E) - \ldots \} d\phi}{\phi} \qquad \qquad \widetilde{H}(\xi, t)
$$

Kinematically suppressed

Unpolarized beam, transverse target:

$$
\Delta \sigma_{UT} \sim \frac{\sin \phi \{ k(F_2H - F_1E) + \dots \} d\phi}{\phi}
$$

Kinematically suppressed

First DVCS measurement with spin-aligned target

S. Stepanyan et al., PRL 87, 182002 (2001)

• **Longitudinal Target-Spin Asymmetry A_{uL} measured for ep** →**e'pϒ with 5.72 GeV electron beams**

Unpolarized beam, longitudinally spin-aligned target

S. Chen et al., PRL 97, 072002 (2006)

- **Theoretical calculations in good agreement with the magnitude and kinematic dependence of target-spin asymmetry, which is sensitive to GPDs** \tilde{H} and H
- Leading term A_{ul} ^{sin} **increases with f increasing ξ in agreement with model prediction**

Polarized Targets in Radioactive Ion Beams

Polarized Proton Beams

❑Extensively used in nuclear physics experiments.

❑Polarization observables provided us with rich information on spin-dependences of nuclear interactions, nuclear structure, and reaction mechanism.

Polarized Proton in RIB Experiments

❑will bring stiffer understanding of structure of unstable nuclei

Polarized d and 3He Target with RIB

❑will bring us similar contribution in spin physics

Why do we need polarized proton target? (I)

Spin-dependent Interactions

❑ Origin of fundamental properties of nuclei – Saturation, Shell, Cluster structure

Spin-orbit Couplings

❑ Phenomenologically modelled by spin-orbit potential.

Spin-orbit potential

Localized at the nuclear surface

$$
V_{LS} \sim \frac{1}{r} \frac{d\rho(r)}{dr}
$$
 where $\rho(r)$: density distribution

- Will be modified in neutron rich nuclei.
- ❑ Should be composed of two parts localized at different positions if p and n have different distributions.
- ❑ Would have extended shape correspondingly if n have extended distribution in skin or halo nuclei.

Measurement of Spin-dependent Asymmetry, Vector Analyzing Power: Direct approach to investigate modifications of spin-orbit potential in neutron rich nuclei.

❑**Ex 1** : Determination of a spin-orbit term in optical potential from vector analyzing power for p elastic scattering from a nucleus.

❑**Ex 2** : Spin-orbit splitting, energy difference between single particle states determined from vector analyzing power for transfer or p induced nuclear-knockout reactions. $\mathbf 2$ 1 j $=$ s $\overline{\mathsf{d}}$ in

Polarized Proton Target with RIB

- ❑ Need Solid Hydrogen target with high density for low RIB current
- □ Use single crystal of Naphthalene $(C_{10}H_8)$ doped with a small amount of Pentacene $(C_{22}H_{14})$
- ❑ Proton polarization produced at high temperature of 100K and in low magnetic field of 0.1 T allowing a detection of low-energy recoiled proton
- ❑ Use an electron alignment on the photo-excited triplet state of aromatic molecules
- ❑ A pulsed laser light with a wavelength of 532 nm from Ar-ion laser are used to induce an electron alignment in the triplet state of pentacene.
- ❑ The population difference in Zeeman sublevels of the triplet state is transferred to proton polarization by means of a cross polarization method.
- ❑ Proton polarization of about 20 % has been achieved.

Excitation Scheme of Pentacene Molecules

- (1) Optical Excitation Electron Alignment
- (2) Cross Polarization Polarization Transfer
- (3) Decay to the Ground State
- (4) Diffuse the Polarization to Protons in Host Molecules by Dipolar Interaction

Protons are polarized

Complete Target System of RIKEN Polzrized p

Present status: RIKEN

Radial dependence of spin-orbit potentials between a proton and helium isotopes.

⁶He-p Cross-section & Analyzing Power Results

p – ⁶**He , p –** ⁸**He Elastic Scattering in 71 MeV/A**

S. Sakaguchi Ph.D. Thesis Univesity of Tokyo(2008)

t-matrix folding calculation. S. P. Weppner et al., PRC 61, 044601 (2000)

Non-local g-matrix folding calculation. K. Amos et al., Adv. in N. P. A 25, 275 (2000)

g-matrix as an Effective Interaction

- t-matrix : Effective Two-body Interaction in free space
- g-matrix : Complicated Medium Effects are taken into account.
- Full treatment of Exchange Amplitudes is important to describe the proton elastic scattering.
- As an effective interaction the Melbourne gmatrix was used.
- Contains Density-dependent Spin-orbit Interaction

A-dependence & Correlation between point proton radius and LS

- 1. Di-neutron structure
- \rightarrow Large recoil motion of α -core
- \rightarrow Large charge radius (2.068 fm)
- 2. Two valence neutrons
- \rightarrow Small matter radius (2.45 fm)

- 1. Isotropically distributed neutrons
- \rightarrow Small recoil motion of α -core
- \rightarrow Small charge radius (1.929 fm)
- 2. Four valence neutrons
- \rightarrow Large matter radius (2.53 fm)
- •Microscopic $\alpha + 2n$ calculation was carried out
- •Reduction of the spin-orbit potential in 6He was found to be due to the diffuseness of the density.
- •The spin-orbit potential in 6He is dominated by the contribution of the α core.

Measurement of Spin Observables Using a Storage Ring with Polarized Beam and Polarized Internal Gas Target

 $\overrightarrow{^3He}$ (\vec{p}, p') **IUCF K. Lee et al., PRL 70, 738 (1993)**

Polarization Correlation Coefficient

 ${}^3\vec{H}e(\vec{d},p)\; {}^4He$ T. Uesaka et al., PL B 467 (1999)

Physics Motivation with Polarized ³He and RIB

Study of unstable nuclei by performing (³He, α) scattering experiments with RI beams

Analyzing Power A_y in (³He, α) Reaction becomes in PWIA

$$
A_{Y} = \begin{cases} +1 & (J = l - s) \\ -\frac{1}{l + 1} & (J = l + s) \end{cases}
$$

Measure A_v and assign J^{π}

Ex. Perform $34Si(3He, Alpha)$ 33Si and study the excited state of ³³Si

Optical Pumping and Spin Exchange

Polarized 3He Setup with Electron Beams

Experimental Setup

Optics system

Ion pump and gas panel ⁵⁰⁰⁰C Oven to

bake cell assembly

Oven, coils and heaters

Results : Polarized ³He

25 time [hours]

60
time [hours]

2007.9.5 Polarized 3He achieved in Korea for the first time

Summary

- ❑ RIB Accelerator will provide us with world's forefront Physics in unstable nuclei
- ❑ Demonstrated the effectiveness of polarized p, d, ³He in exploring new aspects of nuclei far from the stability line
- \Box RI beam experiment with polarized p, d, ³He targets will be a powerful tool to shed a light on the spin-orbit coupling in unstable nuclei