QCD sum rules for p-meson

at finite density or temperature

Youngshin Kwon

Heavy Ion Meeting at KNU -
YONSEI
October 9, 2010 UNIVERSITY

contents based on :
YK., Procura & Weise [ Phys. Rev. C78, 055203 (2008) |
YK, Sasaki & Weise [ Phys. Rev. C81, 065203 (2010) |



© Introduction & motivation

©® QCD sum rules for p-meson, in vacuum and in medium
© Finite energy sum rules at finite density

© Finite energy sum rules at finite temperature

©® Summary and outlook



Introduction
i

Goal: reliable framework of in-medium QCD sum rules for vector mesons
= constraints for the in-medium spectral properties J

©® Spontaneous chiral symmetry breaking:

> quark condensate: (gg) # 0

» Goldstone bosons: «, K, etc.
pion decay constant: f; ~ 92.4 MeV

Spectral function

> mass splitting of chiral partners
(e.g. p(770)-a;(1250)) %0

s[Gev?]

©® Chiral symmetry restoration in nuclear medium:

> degenerate chiral partners = modifications of hadron spectrum
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Introduction
NN RN
Restoration scenarios in medium

© Pole mass shift:

» masses of parity partners degenerate in medium.
» moving toward each other or going to zero (Brown-Rho).
Brown & Rho [ PRL 66, 2720 (1991) |

© Width broadening:

> in-medium spectral functions are broadly distributed.
> the continuum merges the broadened spectral distributions.

Melting Resonances ? |

Spectral Function

Spectral Function
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Introduction
1

Dilepton spectroscopy

© Dilepton production in RHIC (y* — [*17):

<dN,,/dm,>/<N,,>(100 MeV/c?)"

> EM probe with pure information of the hot and/or dense region

> dilepton emission < in-medium vector-meson spectroscopy
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General review of QCD sum rules
(in vacuum)



QCD sum rules
LENERRN

General review of QCD sum rules

® Current correlation function:

#(q) = i f d*x 5T jH(x) j¥(0))

> isovector vector- and axialvector-currents:
By =3 (aytu—-dyrd), i =% (aytysu—dy*ysd)
> invariant correlator: TI(¢?) = 1 g,,IT"(q)

© Operator product expansion (quark & gluon d.o.f.) at large Q% = —
12. 2 G
— H(Qz)——coln[Q ]+—2+—24+
0 u? 0 Q0
©® Spectral representation (hadronic d.o.f.) at resonance region:

ImTI(s)

4
2y _ 21 1 -
Tl(g*) = T1(0) + ¢°T1'(0) + — fdssz(s—qz—ie)
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General i

© Borel transformation:

2 —s/M> 2 ) -
127°T1(0) + dsR(s)e =coM” + ¢ + — 4+
k M2 o

» dimensionless spectral function: R(s) = —%”Im T1(s)

©® Coefficients ¢,:

3 a > el o
=3 (1 + 75)+ , ¢, o my : negligibly small

c, = ”72 <"" G2> + 6712 ( my, (i) + mg{dd) )

0.005 + 0.004 GeV* ~ —m2f2 = —(0.11 GeV)*

Toffe [ PPNP 56, 232 (2006) ] [ Gellman-Oaks-Renner ]
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General review of QCD sum rules

© Borel transformation:

0 G c
127°T1(0 +f dsR(s)e™ ™M = e MP + e + 2 4 2 4...
0) s s R(s) Co c AT
> dimensionless spectral function: R(s) = — 12X ImTI(s)

® Coefficients ¢,:

Co= %(1 + 0’75)+ , ¢, o m3 : negligibly small
2 (a2 2 - 3

¢ =% (26?) té6r (mu(uu)+md(dd))

3 o F(( qq)z) uncertain value
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© Borel transformation:

e G c
127°11(0) +j; dsR(s) esIM? _ C0M2 +ep+ 2 3 4

» dimensionless spectral function: R(s) = JZT”Im TI(s)
> expand for s) < M? and compare term by term

® Coefficients ¢,:

3 20 DI . 2.
2(1+7r)+ s ¢y ocmy:

; - negligibly small

€
=2 (2c?) +6ﬂ2(m e <Jd>)
2 2\« = u d

C

]

F((gq)?) uncertain value
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QCD sum rules
Finite energy sum rules

©® Hierarchy of finite energy sum rules for moments of R(s):

50
0" moment : f dsR(s) = sycy +¢; — 127r2H(0)
0
2

st %0 5o
1°" moment : dssR(s) = —cy—¢,
o 2

©® Spectral distribution (resonance + continuum):
R(s)
R(s) = Ry(5) 0(so — ) + Re(s) (s — s0)

> Assumption for vector channel;

V5o = dnfr

So S
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QCD sum rules
Finite energy sum rules

©® Hierarchy of finite energy sum rules for moments of R(s):

50
0" moment : f dsR(s) = sycy +¢; — 127r2H(0)
0
2

st %0 5o
1°" moment : dssR(s) = —cy—¢,
o 2

©® Spectral distribution (resonance + continuum):
R(s)
R(s) = Ry(s5) 0(so — ) + co O(s — s0)

> Assumption for vector channel;

V5o = dnfr

So S
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© Identification of /so with Acsp = 47 fr:

[GeV]

mass

r1.o

r0.5

-0

aj .
1 + Axial

Dipole

p

== ]~ Dipole

Gap
4r £,

= () Goldstone
Boson -

> KSRF relation
Kawarabayashi & Suzuki [ PRL 16, 255 (1966) |
Riazuddin & Fayyazuddin [ PR 147, 1071 (1966) |
> Weinberg sum rules
Weinberg [ PRL 18, 507 (1967) |
> mg = \/imp =4 fr

T temperature



sum rules

Consistency with current algebra

© Identification of /so with Acsp = 47 fr:

R(s) .
> KSRF relation
resonance s o
& 127 my 5 2 Kawarabayashi & Suzuki [ PRL 16, 255 (1966) |
o(5) & (s —my) Riazuddin & Fayyazuddin [ PR 147, 1071 (1966) ]
/ > Weinberg sum rules
i Weinberg [ PRL 18, 507 (1967) |
= my, = \/imp =4r fr
s
.
0th moment: 1st moment:
50 3 50 3
dsR,(s) = = s ds sR,(s) = = s2
o 0 sSRy(s) = =5
fo 2 0 () 470
2 _ 2,2 —
= mg; =2g°f; =g=2r

in Kwon s fo son at fini e e 10 /26



QCD sum rules
e
Vacuum sum rule analysis

© Input: R,(s) from chiral effective field theory + vector mesons (VMD)

50
f dsR,(s) = soco + c1
0

50 §2
0
continuum j(; ds SRP(S) = ECO =@

e
05 10 15 20 25 30
s[Gev?]

Vso = 1.14 £ 0.01 GeV = 4 f; o

 —
|
1]

,/% =0.78 + 0.01 GeV J
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QCD sum rules
(RN

Vacuum sum rule analysis

© Input: R,(s) from chiral effective field theory + vector mesons (VMD)

1.7
_ 16
>
(3 15| S0
= f dsR,(s) = soco + ¢
£ 14 0
. 0 K
13 dssRy(s) = —co— 2
0 2
12
1.08

_ ~ = fdssR(s) _
Vso = 1.14 £ 0.01 GeV = 4nf; J = ‘[W =0.78 £0.01 GeV

shin Kwon
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[NRRNE B
Sensitivity to threshold modeling

©® replace the Heaviside step function with a ramp function:
R(s) = Rp(5) 0(s2 — ) + Re(s) W(s)

with the weight function W(s)

0 for x < s;
X — 8] @
Wkx)={ —— fors;<x<s -4
$2 — 5]
1 for x > s,
continuum
05 10 15 20 25 30
s[Gev?]

© No dependence on details of the threshold modeling
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[NRRNE B
Sensitivity to threshold modeling

©® replace the Heaviside step function with a ramp function:
R(s) = Rp(5) 0(s2 — ) + Re(s) W(s)

with the weight function W(s)

116
so = (s1 + s2)/2
0 for x < sy s
(53
)
X =51 = 114
Wkx)={ —— forsi<x<s \%o /
52751 1.13
1 for x > s,
1.12

1 2 3 4 5 6
Slope of W(s) [GCV’Z]

© No dependence on details of the threshold modeling
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Finite energy sum rules
at finite density



In-medium FESR
i

Medium-modification of the sum rules

© The existence of nuclear matter causes breaking Lorentz invariance:

> two invariant correlator: longitudinal and transverse parts.
» choosing a preferred reference frame of the medium (q = 0), longitudinal and
transverse correlators coincide.

M w,q=0) =TT (w,q = 0) = H(w,q = 0)

©® New operators with spin appear due to the broken Lorentz invariance:

> the first moment of in-medium FESR involves twist-2 operator
(e.9- (gy»Duq)) to be considered.

©® Medium-dependence in the OPE side contributes only to the condensates:

> non-perturbative contributions in OPE appear to be clearly separated into the
condensates.
» medium effects are non-perturbative.
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In-medium FESR

Density-dependence of OPE

Hatsuda & Lee [ Phys. Rev. C 46, R34 (1992) |
© Expectation value: vacuum — ground state of nuclear matter

(010[0) = (0o — (O),, = (NIOIN)

© In-medium coefficients: ¢, — ¢, + dc,

4

_ 2 (0)

0cy = =3m [ ﬁMN ;N - AiMy |py

density dependence of density dependence of first moment of parton
gluon condensate quark condensate distribution from DIS
(M = 0.88GeV) (0N = 45MeV) (A1 ~ 1.24)
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NN RN
Spectral functions at finite density

© p-meson spectral functions in nuclear medium (o, = p, = 0.17 fm=3):

vacuum

nuclear
matter

)
o | kkw

1 PR

= e = — =

0.1
10 12

0.2 04 0.6 0.8
Vs [GeV]
w

> KKW: SU(3) chiral dynamics with vector meson dominance
Klingl, Kaiser & Weise [ Nucl. Phys. A624, 527 (1997) |

> RW: particle-hole excitations (A(1232)-h and N*(1520)-h))

Rapp & Wambach [ Adv. Nucl. Phys. 25, 1 (2000) ]

or temperature
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Results for p-meson at finite density

In vacuum: /5o =~ 1.14 GeV = 4 f; J

e fom ds s R(s)
==
14 fo ds R(s)
13|
=12 In-medium KKW spectrum:
>
gu [ 55 = 1.00 +0.02 GeV
S 10
E oo™ 5" * m*
S _tn ~ - BR-scali
% o8 o ~0.87 = = BR-scaling
07, -
o In-medium RW spectrum:
[ 55 = 1.09 £0.01 GeV
B ™ 096
0 m
V.

Kwon, Procura & Weise [ PRC 78, 055203 (2008) .
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Finite energy sum rules
at finite temperature



In-medium FESR
i

Temperature-dependence of OPE

Hatsuda, Koike & Lee [ Nucl. Phys. B 394, 221 (1993) |
©® Thermal expectation value:

TrO exp(-H/T)

(O)o — (O)r = Tr expH/T)

© In-medium coefficients: ¢, — ¢, + dc,

3( 2 © - (%)
se=—=| = 3 + A 272 f dy Y———~
i ’ [ X + &ulﬁ
T-dependence of T-dependence of first moment of parton
gluon condensate J quark condensate J distribution from DIS
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In-medium FESR
LN

Vector & axialvector mixing with temperature

©® Mixing of vector and axialvector:
Ry, (s,T) = Ry(5,0)(1 — €(T)) + R,(5,0) e (T)
R,(s,T) =R, (s5,0)(1 - €(T)) + R, (5,0) € (T)

Eletsky & Toffe [ PRD 47, 3083 (1993), PRD 51, 2371 (1995) ]

> the mixing parameter €(T') is given by the thermal pion loop:

P a1 3 . 2
\/ oT) = Zf d’k 1 me—0 T

| 2 J w@k? el -1 612
I

2 _ 12 2
T where w” =k~ +m

T

> At critical temperature where € ~ % Ry and R4 become identical.
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In-medium FESR
LN

Mixing of finite-width spectrum

©® Spectral functions with finite decay width:

T=0 T=0
6| p 4 6|
T=160 MeV T=160 MeV
e [
b o4 L L 4
o 4 &
2 4 2
0 0
05 1.0 15 20 05 1.0 15 20
s[Gev?] s[Gev?]
v v
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In-medium FESR
1

Mixing of finite-width spectrum

© Sum rule result for vector channel:

1.15!
110
> Average p-meson mass:

1.05 50
. 100 o fo ds sR,(s)
E 095 ’ fofo ds Ry(s)

090 > Comparison with ChPT:

0.85 1

0.80 fo(T) = fr (1 - EG(T))

0 50 0 ™0
T [MeV]
v
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In-medium FESR
(A

Simple test beyond V-A mixing

© Dropping pole mass in addition to the V-A mixing:

The simplest ansatz (zero width):

L0 ———msso___
o : p-mesn Ry(5,0) = Fi.8(s = )
S N R,(5,0) = F25(s - m2)
(3 095F  ____ 5 wjo dropping mass Rp(S, T)= Rp(S, 0)(1 —€) + Ry(s,0) €
090F —— s)°w/ dropping mass h
085 Brown-Rho scaling hypothesis:
O'ECU 50 100 150\ 2 2 1— 1 T )2
e mj — my (1= (1) J
v

= better agreement : /5o = 47 f-(T)
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In-medium FESR
1

About four-quark condensates

© Sum rules for 0th and 1st moments: RHS quantities are accurately determined
(pQCD and leading condensates)

© Sum rules for 2nd moment: involving four-quark condensates

3

S0 5
f ds szR(s) = ?0 +c3

0

- 2 -
e3 = ~6mar (@yuysd'u = dyysAdY) + 5 Gyl + dy,d’d) Y @' A'e)

q=ud,s

©® Ground state saturation (k = 1)

16
(@yuys 9™ = ~{(Gyu®q)®) = 3f<<qq>2

valid approximation? = Always « > 3 and large uncertainties.
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©® The sum rules for the lowest two moments of the p-meson spectral function involve
perturbative contributions and only leading condensates as small corrections:
accuracy both in vacuum and in medium

©® Chiral gap scale: 4rf, meaningful both in vacuum and in-medium.

©® For broad spectral distributions, “mass shift” vs. “broadening” discussion must be
specified in terms of first moment.

© Brown-Rho scaling as a statement involving the lowest two moments in the window of
low-mass enhancement.

©® Further step: extension to nonvanishing three-momentum.
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Thank you for your attention!
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