QCD sum rules for ρ -meson
at finite density or temperature

Youngshin Kwon

Heavy Ion Meeting at KNU October 9, 2010

K □ → K @ → K 로 → K 로 → 트 로 → 9 Q @

contents based on :

YK., Procura & Weise [Phys. Rev. C78, 055203 (2008)] YK, Sasaki & Weise [Phys. Rev. C81, 065203 (2010)]

Outline

- ◎ Introduction & motivation
- \circ QCD sum rules for ρ -meson, in vacuum and in medium

(ロ) (@) (E) (E) = E → 9 Q (^

- \circ Finite energy sum rules at finite density
- \circ Finite energy sum rules at finite temperature
- [®] Summary and outlook

8

Goal: reliable framework of in-medium QCD sum rules for vector mesons \Rightarrow constraints for the in-medium spectral properties

Motivation

- Spontaneous chiral symmetry breaking:
	- **•** quark condensate: $\langle \bar{q}q \rangle \neq 0$
	- **Goldstone bosons:** π , K , etc. pion decay constant: $f_{\pi} \approx 92.4$ MeV
	- \cdot mass splitting of chiral partners $(e.g. \rho(770)-a_1(1250))$
- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 $_{0}$ 2 F 4 6þ s [GeV²] Spectral function Ρ *a*¹
- \circ Chiral symmetry restoration in nuclear medium:
	- ► degenerate chiral partners ⇒ modifications of hadron spectrum

Restoration scenarios in medium

- Pole mass shift:
	- \triangleright masses of parity partners degenerate in medium.
	- F moving toward each other or going to zero (Brown-Rho).
Για το κατά (Sam (Sam (Sam (Sam (Sam (Sam)).

Brown & Rho [PRL 66, 2720 (1991)]

⊘ Width broadening: \circ

> "a¹ "

- \blacktriangleright in-medium spectral functions are broadly distributed. \dots 9 · (2π+₁₎π να τ erc
_{ho []}
spe
- \blacktriangleright the continuum merges the broadened spectral distributions.

by perturbative continuation ℓ

メロトメ部 トメミトメ

Dilepton spectroscopy

- \circ Dilepton production in RHIC ($γ^*$ → l^+l^-):
	- \blacktriangleright EM probe with pure information of the hot and/or dense region
	- ► dilepton emission ⇔ in-medium vector-meson spectroscopy

 299

イロトメタトメ ミトメモ

General review of QCD sum rules (in vacuum)

K ロ ▶ K @ ▶ K 평 ▶ K 평 ▶ │ 평

 $2QQ$

[Introduction](#page-1-0) **International COD sum rules [In-medium FESR](#page-19-0)** [Summary](#page-30-0) Summary

General review of QCD sum rules

 \circ Current correlation function:

$$
\Pi^{\mu\nu}(q) = i \int d^4x \ e^{iq \cdot x} \langle \mathcal{T} j^{\mu}(x) j^{\nu}(0) \rangle
$$

 \triangleright isovector vector- and axialvector-currents:

$$
j_{\rho}^{\mu} = \frac{1}{2} \left(\bar{u} \gamma^{\mu} u - \bar{d} \gamma^{\mu} d \right), \qquad j_{A}^{\mu} = \frac{1}{2} \left(\bar{u} \gamma^{\mu} \gamma_5 u - \bar{d} \gamma^{\mu} \gamma_5 d \right)
$$

- \blacktriangleright invariant correlator: $\Pi(q^2) = \frac{1}{3} g_{\mu\nu} \Pi^{\mu\nu}(q)$
- ⊚ Operator product expansion (quark & gluon d.o.f.) at large $Q^2 = -q^2$:

$$
\frac{12\pi^2}{Q^2}\Pi(Q^2) = -c_0 \ln\left(\frac{Q^2}{\mu^2}\right) + \frac{c_1}{Q^2} + \frac{c_2}{Q^4} + \cdots
$$

◎ Spectral representation (hadronic d.o.f.) at resonance region:

$$
\Pi(q^2) = \Pi(0) + q^2 \Pi'(0) + \frac{q^4}{\pi} \int ds \frac{\operatorname{Im} \Pi(s)}{s^2(s - q^2 - i\epsilon)}
$$

 299

イロトス部 トメミトメミト

◎ Borel transformation:

$$
12\pi^2 \Pi(0) + \int_0^\infty ds \, R(s) \, e^{-s/M^2} = c_0 M^2 + c_1 + \frac{c_2}{M^2} + \frac{c_3}{2M^4} + \cdots
$$

- \blacktriangleright dimensionless spectral function: *R*(*s*) ≡ $-\frac{12π}{s}$ Im Π(*s*)
- } Coefficients *cn*:

 \circledcirc Borel transformation:

$$
12\pi^2 \Pi(0) + \int_0^\infty ds \, R(s) \, e^{-s/M^2} = c_0 M^2 + c_1 + \frac{c_2}{M^2} + \frac{c_3}{2M^4} + \cdots
$$

- \blacktriangleright dimensionless spectral function: *R*(*s*) ≡ $-\frac{12π}{s}$ Im Π(*s*)
- \circledcirc Coefficients c_n :

$$
c_0 = \frac{3}{2} \left(1 + \frac{\alpha_s}{\pi} \right) + \cdots, \qquad c_1 \propto m_q^2 \text{ : negligibly small}
$$
\n
$$
c_2 = \frac{\pi^2}{2} \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle \pm 6\pi^2 \left(m_u \langle \bar{u}u \rangle + m_d \langle \bar{d}d \rangle \right)
$$
\n
$$
c_3 \propto \mp \langle (\bar{q}q)^2 \rangle \text{ uncertain value}
$$

 299

イロトス部 トメミトメミト

Borel transformation:

$$
12\pi^2 \Pi(0) + \int_0^\infty ds \, R(s) \, e^{-s/M^2} = c_0 M^2 + c_1 + \frac{c_2}{M^2} + \frac{c_3}{2M^4} + \cdots
$$

- \triangleright dimensionless spectral function: *R*(*s*) ≡ $-\frac{12π}{s}$ Im Π(*s*)
- **Expand for** $s_0 \ll M^2$ and compare term by term
- ◎ Coefficients c_n :

$$
c_0 = \frac{3}{2} \left(1 + \frac{\alpha_s}{\pi} \right) + \cdots, \qquad c_1 \propto m_q^2 : \text{negligibly small}
$$
\n
$$
c_2 = \frac{\pi^2}{2} \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle \pm 6\pi^2 \left(m_u \langle \bar{u}u \rangle + m_d \langle \bar{d}d \rangle \right)
$$
\n
$$
c_3 \propto \mp \langle (\bar{q}q)^2 \rangle \text{ uncertain value}
$$

 \rightarrow

 299

イロトメタトメ ミトメモ

[Introduction](#page-1-0) **International COD sum rules [In-medium FESR](#page-19-0)** [Summary](#page-30-0) Summary

Finite energy sum rules

 \circledcirc Hierarchy of finite energy sum rules for moments of $R(s)$:

$$
0^{th} \text{ moment}: \int_0^{s_0} ds R(s) = s_0 c_0 + c_1 - 12\pi^2 \Pi(0)
$$

$$
1^{st} \text{ moment}: \int_0^{s_0} ds s R(s) = \frac{s_0^2}{2} c_0 - c_2
$$

 \circ Spectral distribution (resonance + continuum):

$$
R(s) = R_{\rho}(s)\theta(s_0 - s) + R_c(s)\theta(s - s_0)
$$

イロトス部 トメミトメミト

$$
\sqrt{s_0} \simeq 4\pi f_\pi
$$

[Introduction](#page-1-0) **International COD sum rules [In-medium FESR](#page-19-0)** [Summary](#page-30-0) Summary

Finite energy sum rules

 \circledcirc Hierarchy of finite energy sum rules for moments of $R(s)$:

$$
0^{th} \text{ moment}: \int_0^{s_0} ds R(s) = s_0 c_0 + c_1 - 12\pi^2 \Pi(0)
$$

$$
1^{st} \text{ moment}: \int_0^{s_0} ds s R(s) = \frac{s_0^2}{2} c_0 - c_2
$$

 \circ Spectral distribution (resonance + continuum):

$$
R(s) = R_{\rho}(s)\theta(s_0 - s) + c_0\theta(s - s_0)
$$

イロトス部 トメミトメミト

$$
\sqrt{s_0} \simeq 4\pi f_\pi
$$

Consistency with current algebra

 \circ Identification of $\sqrt{s_0}$ with $\Lambda_{\text{CSB}} \simeq 4\pi f_\pi$:

\triangleright KSRF relation

Kawarabayashi & Suzuki [PRL 16, 255 (1966)] Riazuddin & Fayyazuddin [PR 147, 1071 (1966)]

 \blacktriangleright Weinberg sum rules

Weinberg [PRL 18, 507 (1967)]

$$
\Rightarrow m_{a_1} = \sqrt{2} m_\rho = 4\pi f_\pi
$$

イロトメタトメ ミトメモ

MOMENTS of **SPECTRAL FUNCTIONS** (contd.)

MOMENTS of **SPECTRAL FUNCTIONS** (contd.)

Introduction **International COD sum rules In-medium FESR** [Summary](#page-30-0) Summary **CCD sum rules CCD sum rules In-medium FESR**

MOMENTS OFFICIAL SYMMETRIC SYMMETRIC SOFFICIAL SYMMETRIC SCALE √s0 4πfππetric symmetric sy

QCD SUM RULES for

 \circledcirc Identification of $\sqrt{s_0}$ with $\Lambda_{\text{CSB}} \simeq 4\pi f_\pi$:

\triangleright KSRF relation

Aswarabayasin & Suzuki [PR 147, 1071 (1966)]
 Riazuddin & Fayyazuddin [PR 147, 1071 (1966)] Kawarabayashi & Suzuki [PRL 16, 255 (1966)]

► Weinberg sum rules

Weinberg [PRL 18, 507 (1967)]

Other number:

\n
$$
\int_0^{s_0} ds \, R_{\rho}(s) = \frac{3}{2} s_0
$$
\n
$$
\Rightarrow m_{\rho}^2 = 2g^2 f_{\pi}^2
$$
\nSubstituting the values of the following matrices:

\n
$$
\int_0^{s_0} ds \, sR_{\rho}(s) = \frac{3}{2} s_0
$$
\n
$$
\Rightarrow g = 2\pi
$$

disk moment: $(s) = \frac{1}{4}s_0$ \mathcal{C}^{s_0} \int ds \int^{s_0} $\int_0^{s_0} ds \, sR_\rho(s) = \frac{3}{4}$ $\frac{3}{4} s_0^2$ \Rightarrow $g = 2\pi$

イロトメタトメ ミトメモ

 \blacksquare

Vacuum sum rule analysis

 \circ Input: $R_{\rho}(s)$ from chiral effective field theory + vector mesons (VMD)

Vacuum sum rule analysis

 \circ Input: $R_{\rho}(s)$ from chiral effective field theory + vector mesons (VMD)

[Introduction](#page-1-0) **International COD sum rules [In-medium FESR](#page-19-0)** [Summary](#page-30-0) Summary

within an error band determined by the uncertainties of the uncertainties of the input summarized in Table 4.1 and Eq. (4.21). This test turns out to be successful. The detailed analysis of \mathcal{A} to of uncertainties performed with Eq. (4.32) for the first moment is shown in Fig. 4.3.

using the physical value f^π = 92.[4 Me](#page-15-0)V of the p[ion d](#page-16-0)ecay const[ant.](#page-18-0) [T](#page-19-0)[he](#page-5-0) [post](#page-6-0)ulate,

s⁰ = 1.14±0.01 GeV is w[ithin](#page-17-0) [2%](#page-15-0) o[f th](#page-17-0)[e em](#page-18-0)[pir](#page-5-0)[ical](#page-6-0) 4πf^π ' 1.[16](#page-18-0) [GeV](#page-19-0)

Sensitivity to threshold modeling

◎ replace the Heaviside step function with a ramp function:

$$
R(s) = R_{\rho}(s)\theta(s_2 - s) + R_c(s)W(s)
$$

with the weight function *W*(*s*)

© No dependence on details of the threshold modeling

[Introduction](#page-1-0) **International COD sum rules In-medium FESR** Summary Summary [between](#page-19-0) resonance and conti[nuum re](#page-30-0)gion, as follows: as follows: as follows: $\sum_{n=1}^{\infty}$ tion (11). A test can be performed replacing the step f[u](#page-19-0)[n](#page-26-0)[c](#page-21-0)[t](#page-22-0)[i](#page-23-0)[o](#page-29-0)n by a ramp function [t](#page-28-0)ransition to \mathcal{A} smooth transition to \mathcal{A}

with the weight function \mathcal{L}_c

respect to variations in the slope (s² [−] ^s1)−¹ of the ramp function W(s), thus confirming that the step function

function has ^s² [−] ^s¹ " 1 GeV² (see Fig.1). It can be

R(s)= Rρ(s) Θ(s² − s)+ Rc(s) W(s) , (27)

for s¹ ≤ x ≤ s²

 S et intervals (s \mathbb{R}) are the determi[ne](#page-18-0)[d](#page-19-0) [so](#page-5-0) as \mathbb{R}) are then determined so as

Sensitivity to threshold modeling where the weight function, \mathcal{L}_{S}

"

 \circledast replace the Heaviside step function with a ramp function: 0 for x ≤ s¹ of α the the narrow (less than 1 %) under narrow (less than 1 %) under narrow (less than 1 %) under narrow (

$$
R(s) = R_{\rho}(s)\,\theta(s_2 - s) + R_c(s)\,W(s)
$$

with the weight function $W(s)$ $\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$

!

© No dependence on details of the threshold modeling
○ No dependence on details of the threshold modeling − energy extensive possible po
December 2009 energy extensive possible possible possible possible possible possible possible possible possib

Sets of intervals and intervals \bigcirc

The analysis is performed at the baryon density of normal nuclear
Eti ∞

The step function behavior is recovered for W(x)in the

in comparison in Fig.4.

Finite energy sum rules at finite density

K ロ ▶ K 레 ▶ K 회 ▶ K 회 ▶ / 회 ▶ 이 회 ↑ 9 Q Q ↑

Medium-modification of the sum rules

- The existence of nuclear matter causes breaking Lorentz invariance:
	- \triangleright two invariant correlator: longitudinal and transverse parts.
	- choosing a preferred reference frame of the medium ($q = 0$), longitudinal and transverse correlators coincide.

$$
\Pi^{L}(\omega, q = 0) = \Pi^{T}(\omega, q = 0) \equiv \Pi(\omega, q = 0)
$$

- New operators with spin appear due to the broken Lorentz invariance:
	- \cdot the first moment of in-medium FESR involves twist-2 operator (e.g. $\langle \bar{q}\gamma_{\nu}D_{\mu}q\rangle$) to be considered.
- Medium-dependence in the OPE side contributes only to the condensates:
	- \triangleright non-perturbative contributions in OPE appear to be clearly separated into the condensates.
	- \blacktriangleright medium effects are non-perturbative.

 Ω

K ロ ト K 何 ト K ヨ ト K

Density-dependence of OPE

Hatsuda & Lee [Phys. Rev. C 46, R34 (1992)]

 \circledcirc Expectation value: vacuum \rightarrow ground state of nuclear matter

$$
\langle 0 | O | 0 \rangle \equiv \langle O \rangle_0 \rightarrow \langle O \rangle_{\rho_N} = \langle N | O | N \rangle
$$

 \circledcirc In-medium coefficients: $c_n \to c_n + \delta c_n$

イロトメタトメ ミトメモ

[Introduction](#page-1-0) **[In-medium FESR](#page-19-0)** [Summary](#page-30-0) COD sum rules **In-medium FESR** Summary Summary

Spectral functions at finite density

 \circ *ρ*-meson spectral functions in nuclear medium ($\rho_N = \rho_0 = 0.17$ fm^{−3}):

- \triangleright KKW: SU(3) chiral dynamics with vector meson dominance Klingl, Kaiser & Weise [Nucl. Phys. A624, 527 (1997)]
- ^I RW: particle-hole excitations (∆(1232)-*h* and *N* ∗ (1520)-*h*)) Rapp & Wambach [Adv. Nucl. Phys. 25, 1 (2000)]

 299

イロトメタトメ ミトメモ

[Introduction](#page-1-0) **[In-medium FESR](#page-19-0)** [Summary](#page-30-0) COD sum rules **In-medium FESR** Summary Summary

Results for ρ -meson at finite density

0.95 1.00 1.05 1.10 0.6 0.7 0.8 θ . 1.0 1.1 $1.2₁$ 1.3 1.4_F $s_0^{1/2}$ [GeV] 1.2
 1.1
 1.0 l.h.s ^HRW^L $l.h.s$ (KKN) \mathcal{S} $\rho_N = \rho_0$

In vacuum:
$$
\sqrt{s_0} \approx 1.14 \,\text{GeV} \approx 4\pi f_\pi
$$

$$
\bar{m}^2 \equiv \frac{\int_0^{s_0} \mathrm{d}s \ s R(s)}{\int_0^{s_0} \mathrm{d}s \ R(s)}
$$

In-medium RW spectrum: $\sqrt{s_0^*} \approx 1.09 \pm 0.01 \,\text{GeV}$ $\sqrt{\frac{s_0^*}{s_0}} \simeq \frac{\bar{m}^*}{\bar{m}}$ $\frac{m}{\bar{m}} \approx 0.96$

Kwon, Procura & Weise [PRC 78, 055203 (2008)]

イロトス部 トスミドスミド

Finite energy sum rules at finite temperature

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆) Q (V

Temperature-dependence of OPE

Hatsuda, Koike & Lee [Nucl. Phys. B 394, 221 (1993)]

 \circ Thermal expectation value:

$$
\langle O \rangle_0 \to \langle O \rangle_T = \frac{\text{Tr}\, O\, \exp(-H/T)}{\text{Tr}\, \exp(-H/T)}
$$

 \circledcirc In-medium coefficients: $c_n \to c_n + \delta c_n$

イロトメタトメ ミトメモ

[Introduction](#page-1-0) **[In-medium FESR](#page-19-0)** [Summary](#page-30-0) COD sum rules **In-medium FESR** Summary Summary

Vector & axialvector mixing with temperature

 \circ Mixing of vector and axialvector:

$$
R_V(s, T) = R_V(s, 0) (1 - \epsilon(T)) + R_A(s, 0) \epsilon(T)
$$

\n
$$
R_A(s, T) = R_A(s, 0) (1 - \epsilon(T)) + R_V(s, 0) \epsilon(T)
$$

\nEletsky & lefte [PRO 47, 3083 (1993). PRO 51, 2371 (1995)]

If the mixing parameter $\epsilon(T)$ is given by the thermal pion loop:

$$
\epsilon(T) = \frac{2}{f_{\pi}^2} \int \frac{d^3k}{\omega(2k)^3} \frac{1}{e^{\omega/T} - 1} \xrightarrow{m_{\pi} \to 0} \frac{T^2}{6 f_{\pi}^2}
$$

where $\omega^2 = k^2 + m_{\pi}^2$.

At critical temperature where $\epsilon \simeq \frac{1}{2}$, R_V and R_A become identical.

 $2Q$

イロトメ 伊 トメ ミトメ 毛

Mixing of finite-width spectrum

◎ Spectral functions with finite decay width:

Mixing of finite-width spectrum

 \circ Sum rule result for vector channel:

Average ρ **-meson mass:**

$$
\bar{m}_{\rho}^{2} = \frac{\int_{0}^{s_{0}} \mathrm{d}s \ s R_{\rho}(s)}{\int_{0}^{s_{0}} \mathrm{d}s \ R_{\rho}(s)}
$$

 \blacktriangleright Comparison with ChPT:

$$
f_{\pi}(T) = f_{\pi}\left(1 - \frac{1}{2}\epsilon(T)\right)
$$

イロトメタトメ ミトメモ

Simple test beyond *V*-*A* mixing

} Dropping pole mass in addition to the *V*-*A* mixing:

The simplest ansatz (zero width):

$$
R_{\rho}(s,0) = F_{\rho}^{2} \delta\left(s - m_{\rho}^{2}\right)
$$

$$
R_{a}(s,0) = F_{a}^{2} \delta\left(s - m_{a}^{2}\right)
$$

$$
R_{\rho}(s,T) = R_{\rho}(s,0) \left(1 - \epsilon\right) + R_{a}(s,0) \epsilon
$$

Brown-Rho scaling hypothesis:

$$
m_{\rho}^2 \to m_{\rho}^2 \left(1 - \frac{1}{2} \epsilon(T)\right)^2
$$

 \Rightarrow better agreement : $\sqrt{s_0} = 4\pi f_\pi(T)$

About four-quark condensates

- ◎ Sum rules for 0th and 1st moments: RHS quantities are accurately determined (pQCD and leading condensates)
- ◎ Sum rules for 2nd moment: involving four-quark condensates

$$
\int_0^{s_0} ds s^2 R(s) = \frac{s_0^3}{3} + c_3
$$

$$
c_3 = -6\pi^3 \alpha_s \left[\langle (\bar{u}\gamma_\mu \gamma_5 \lambda^a u - \bar{d}\gamma_\mu \gamma_5 \lambda^a d)^2 \rangle + \frac{2}{9} \langle (\bar{u}\gamma_\mu \lambda^a u + \bar{d}\gamma_\mu \lambda^a d) \sum_{q=u,d,s} \bar{q} \gamma^\mu \lambda^q q \rangle \right]
$$

 \circ Ground state saturation ($\kappa = 1$)

$$
\langle (\bar{q}\gamma_\mu\gamma_5 \lambda^a q)^2 \rangle = -\langle (\bar{q}\gamma_\mu \lambda^a q)^2 \rangle = \frac{16}{9} \kappa \, \langle \bar{q}q \rangle^2
$$

valid approximation? \Rightarrow Always $\kappa > 3$ and large uncertainties.

 290

イロトメ 伊 トメ ミトメ 毛

Summary

- The sum rules for the lowest two moments of the ρ -meson spectral function involve perturbative contributions and only leading condensates as small corrections: accuracy both in vacuum and in medium
- \circ Chiral gap scale: $4\pi f_\pi$ meaningful both in vacuum and in-medium.
- ◎ For broad spectral distributions, "mass shift" vs. "broadening" discussion must be specified in terms of first moment.
- \circ Brown-Rho scaling as a statement involving the lowest two moments in the window of low-mass enhancement.
- Further step: extension to nonvanishing three-momentum.

Thank you for your attention!

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q @