J/ w suppression and QGP

Su Houng Lee

Thanks to Dr. Kenji Morita(GSI), Dr. Taesoo Song(Texas) and present group members 김경일, 박우성, 정기상, 박효진, 김혜진,+ Dr. 조성태

S H Lee: HIM10-02

Superconductivity

Order parameter in QCD?

Lattice results for phase transition in QCD (from Karsch's review)

Heavy quark V(r) F1 [MeV] 1000 500 0.961 0 1.23T, .50 .98 4 01 r [fm] -500 0 0.5 1.5 2 2.5 3 1

Susceptibility $\chi_{mq} \chi_L$

S H Lee: HIM10-02

QCD phase transition, heavy quark system and nuclear matter

K.Morita, SHL: PRL 100, 022301 (08)

K.Morita, SHL: PRC 77, 064904 (08)

SHL, K. Morita: PRD 79, 011501 (09)

Y.Song, SHL, K.Morita: PRC 79, 014907 (09)

Early work on J/ ψ at finite T (Hashimoto, Miyamura, Hirose, Kanki)

J/ψ in Quark-gluon plasma

- Matsui and Satz: J/ψ will dissolve at Tc due to color screening
- Lattice MEM : Asakawa, Hatsuda, Karsch, Petreczky J/ ψ will survive Tc and dissolve at 2 Tc
- Potential models (Wong ...) :

Consistent with MEM Wong.

- Refined Potential models with lattice (Mocsy, Petreczky...)
 : J/ψ will dissolve slightly above Tc
- Perturbative approaches: Blaizot et al... Imaginary potential
- pNRQCD: N. Brambial et al.
- Lattice after zero mode subtraction (WHOT-QCD) : J/ ψ wave function hardly changes at 2.3 Tc
- AdS/QCD (Kim, Lee, Fukushima ..)
 - : J/ψ mass change by Y. Kim, J. Lee, SHLee

• Wiki page ...https://wiki.bnl.gov/qpg/index.php/Quarkonia. S H Lee: HIM10-02 Lattice result on singlet potential

• What should one use? F(T,r) = V(T,r) - TS(T,r)

Kaczmarek , Zantow hep-lat/0510094

J/ψ from potential models

• F(T,r) = V(T,r) - TS(T,r)

Kaczmarek , Zantow hep-lat/0510094

• Quarkonium dissociation temperature for different potentials

state	J/ψ	χ_c	ψ'	r	χь	Υ'	χ_b'	Υ"	
$E_s^i[GeV]$	0.64	0.20	0.005	1.10	0.67	0.54	0.31	0.20	
T_d/T_c	1.1	0.74	0.1-0.2	2.31	1.13	1.1	0.83	0.75	Using F(T,r)
T_d/T_c	~ 1.42	~ 1.05	unbound	~ 3.3	~ 1.22	~ 1.18	-	-	Wong 04
T_d/T_c	1.78-1.92	1.14-1.15	1.11-1.12	≳4.4	1.60-1.65	1.4-1.5	~ 1.2	~ 1.2	Using V(T,r)

Another model independent approach ?

Few things to note about J/ψ near Tc

S H Lee: HIM10-02

Comparison with experimental data of RHIC ($\sqrt{s}=200$ GeV at midrapidity)

T. Song (preliminary)

Lattice data on (ε, p)

Lattice result for purge gauge (Boyd et al 96)

Rescaled pressure (Karsch 01)

Karsch hep-lat/0106019

Local operator related to confinement? Gluon Operators near Tc

• Two independent operators

 $\begin{cases} Gluon \ condensate \ \left\langle \frac{\alpha}{\pi} G^2 \right\rangle = G_0 \\ Twist-2 \ Gluon \ \left\langle \frac{\alpha_s}{\pi} G^{\alpha\mu} G^{\beta\mu} \right\rangle = \left(u^{\alpha} u^{\beta} - \frac{1}{4} g^{\alpha\beta} \right) G_2 \end{cases}$ or $\begin{pmatrix} \left\langle \frac{\alpha_s}{\pi} E^2 \right\rangle \\ \left\langle \frac{\alpha_s}{\pi} B^2 \right\rangle \\ \left\langle \frac{\alpha_s}{\pi} B^2 \right\rangle \end{cases}$

• <u>At finite temperature: from</u> $G_0 = -\frac{8}{9}(\varepsilon - 3p), \quad G_2 = \frac{\alpha}{\pi}(\varepsilon + p)$

<E²>, <B²> vs confinement potential

Local vs non local behavior

OPE for Wilson lines: Shifman NPB73 (80)

W(S-T) = 1- $\langle \alpha / \pi E^2 \rangle$ (ST)² +... W(S-S) = 1- $\langle \alpha / \pi B^2 \rangle$ (SS)² +...

• Behavior at T>Tc

 $W(SS) = exp(-\sigma SS)$

W(ST) = exp(-g(1/S) S)

Local operators in Nuclear Medium

• Linear density approximation

$$\langle \mathbf{Op} \rangle_{\rho} = \langle \mathbf{Op} \rangle_0 + \frac{\rho_N}{2m_N} \langle \mathbf{N} | \mathbf{Op} | \mathbf{N} \rangle,$$

$$\Delta G_0 \propto \left\langle \mathbf{N} \mid \mathbf{T}^{\mu}_{\mu}(\text{Chiral}) \mid \mathbf{N} \right\rangle = m_N^0 \rightarrow 750 \text{ MeV}$$

$$G_2 \propto 2m_N \int dx x G(x, \mu^2) \rightarrow 0.9 m_N$$

$$\Delta \left\langle \overline{\psi} \psi \right\rangle \propto \Sigma_{\pi N} \rightarrow 45 \text{ MeV}$$

• Condensate at finite density

$$\begin{bmatrix} G_0(\rho) = G_0 - \frac{8}{9} m_N^0 \rho = G_0 \left(1 - 0.061 \frac{\rho}{\rho_{n.m}} \right) \\ G_2(\rho) = -\frac{\alpha_s}{\pi} 0.9 \rho \\ \langle \overline{\psi} \psi \rangle_\rho = \langle \overline{\psi} \psi \rangle_0 \left(1 - 0.2 \frac{\rho}{\rho_{n.m}} \right) \end{bmatrix}$$

$$\begin{pmatrix} \Delta \left\langle \frac{\alpha}{\pi} E^2 \right\rangle_{\rho} = (\alpha_s \times 0.2 + 0.167)\rho \\ \Delta \left\langle \frac{\alpha}{\pi} B^2 \right\rangle_{\rho} = (\alpha_s \times 0.2 - 0.167)\rho$$

• At
$$\rho = 5 \times \rho_{n.m.}$$

$$\left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{5\rho_{n.m.}} = 0.7 \times \left\langle \frac{\alpha}{\pi} G^2 \right\rangle_0 \approx \left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{Tc}$$
$$\left\langle \overline{\psi} \psi \right\rangle_{5\rho_{n.m.}} \approx 0 \qquad = \left\langle \overline{\psi} \psi \right\rangle_{Tc}$$

Approach based on OPE (K. Morita and S. H. Lee)

• Vacuum

 $\left\langle \frac{\alpha}{\pi}G^{2}\right\rangle$, $\left\langle \frac{\alpha}{\pi}GDDG\right\rangle$

Medium corrections

 $|n\rangle \times \rho_n$

QCD vacuum

$$\left\langle \frac{\alpha}{\pi} G^2 \right\rangle_0 = 2 \left\langle \frac{\alpha}{\pi} B^2 \right\rangle_0 = 2 \left\langle \frac{\alpha}{\pi} E^2 \right\rangle_0 = (0.35 \,\text{GeV})^4$$

QCD at
$$T_{c} \quad \left\langle \frac{\alpha}{\pi} G^{2} \right\rangle_{T_{c}} = 0.75 \times \left\langle \frac{\alpha}{\pi} G^{2} \right\rangle_{0} \qquad \left\langle \frac{\alpha}{\pi} E^{2} \right\rangle_{T_{c}} = 0.5 \times \left\langle \frac{\alpha}{\pi} E^{2} \right\rangle_{0}$$
$$\left\langle \frac{\alpha}{\pi} B^{2} \right\rangle_{T_{c}} = \left\langle \frac{\alpha}{\pi} B^{2} \right\rangle_{0}$$

Nuclear medium: 20% deconfinement

Approaches to Heavy quark system in medium

OPE, QCD Stark Effect, and QCD sum rules

• Separation of scale in this approach

- 1. J/ ψ mass shift (Δ m) near Tc: QCD 2nd order Stark effect
- 2. J/ ψ width (Γ) near Tc : perturbative QCD + lattice
- 3. check consistency of Δm , Γ at Tc :QCD sum rules
- 4. Application to nuclear matter

Mass shift: QCD 2^{nd} order Stark Effect : Peskin 79 $\varepsilon > \Lambda_{acd}$

> OPE for bound state: $m \rightarrow$ infinity

$$\varepsilon_0 = m \left(N_c g^2 / 16\pi \right)^2 \rightarrow O(mg^4), \qquad |\vec{k}| \rightarrow O(mg^2)$$

$$g^{2} \frac{mg^{4}(mg^{2})^{3}}{(mg^{4})(mg^{4})(mg^{2})^{2}} \rightarrow O(1)$$

 $\Delta M_{i} = \sum_{n} \frac{|\langle i|zE|n\rangle|^{2}}{E_{i} - E_{n}}$ $\Delta m_{J/\psi} = -\frac{128}{9\pi^{2}} \frac{a_{0}^{2}}{\varepsilon_{0}} \int dx \frac{x^{3/2}}{(1+x)^{6}} \frac{1}{x + a_{0}^{2} \varepsilon m} \times \left\langle \frac{\alpha}{\pi} E^{2} \right\rangle_{\text{Medium}}$

2nd order Stark effect from pNRQCD

LO Singlet potential from pNRQCD : Brambilla et al.

 $1/r > Binding > \Lambda_{QCD}$,

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \sum_{i=1}^{n_{f}} \bar{q}_{i} i \not D q_{i} + \int d^{3}r \operatorname{Tr} \left\{ \operatorname{S}^{\dagger} \left[i \partial_{0} + C_{F} \frac{\alpha_{V_{s}}}{r} \right] \operatorname{S} + \operatorname{O}^{\dagger} \left[i D_{0} - \frac{1}{2N_{c}} \frac{\alpha_{V_{o}}}{r} \right] \operatorname{O} \right\} + V_{A} \operatorname{Tr} \left\{ \operatorname{O}^{\dagger} \vec{r} \cdot g \vec{E} \operatorname{S} + \operatorname{S}^{\dagger} \vec{r} \cdot g \vec{E} \operatorname{O} \right\} + \frac{V_{B}}{2} \operatorname{Tr} \left\{ \operatorname{O}^{\dagger} \vec{r} \cdot g \vec{E} \operatorname{O} + \operatorname{O}^{\dagger} \operatorname{O} \vec{r} \cdot g \vec{E} \right\} + \dots$$
(55)

$$[\delta V_{S}(r)]_{11} = -ig^{2} \frac{T_{F}}{N_{c}} \frac{r^{2}}{d-1} \int_{0}^{\infty} dt \, e^{-it\Delta V} \left[\left\langle \vec{E}^{a}(t)\phi(t,0)_{ab}\vec{E}^{b}(0) \right\rangle_{T} \right]_{11}, \qquad \underbrace{S \qquad O}_{S}$$

Derivation

• Take expectation value
$$\delta E_{J/\psi} = -ig^2 \frac{T_F}{N_c} \frac{-i}{d-1} \int \frac{d^3p}{(2\pi)^3} \frac{r^2}{E_O - E_{J/\psi}} |\psi(p)|^2 \left[\left\langle \vec{E}^a(t)\phi(t,0)_{ab}\vec{E}^b(0) \right\rangle_T \right]_{11} dt dt$$

$$\Delta V = \frac{1}{r} \left(\frac{\alpha_{V_O}}{2N_c} + C_F \alpha_{V_S} \right) \approx \frac{N_c \alpha_s}{2r}$$

- Static condensate $\left[\left\langle \vec{E}^{a}(t)\phi(t,0)_{ab}\vec{E}^{b}(0)\right\rangle_{T}\right]_{11} \rightarrow \left[\left\langle \vec{E}^{a}(0)\vec{E}^{a}(0)\right\rangle_{T}\right]_{11}$
- Energy $E_{J/\psi} = 2m_c \epsilon$ $E_O = 2m_c + p^2/m_c,$ $\bullet \rightarrow \qquad = -\frac{1}{18} \int_0^\infty dk^2 \left| \frac{\partial \psi(k)}{\partial k} \right|^2 \frac{k}{k^2/m_h + \epsilon_0} \left\langle \frac{\alpha_s}{\pi} \Delta E^2 \right\rangle_T$

S H Lee: HIM10-02

Thermal width from NLO QCD + confinement model

• Elementary $\sigma_{J/\psi}$ in pert QCD, LO (Peskin + others) and NLO (Song, Lee 05)

• Thermal width: $\sigma_{J/\psi} \otimes$ thermal gluon (Park, Song, Lee, Wong 08,09)

$$\Gamma^{eff} = d_p \int \frac{d^3 p}{(2\pi)^3} n(p) v_{rel} \sigma_{J/\psi}$$

Mass and width of J/ψ near Tc (Morita, Lee 08, M, L & Song 09)

Constraints from QCD sum rules for Heavy quark system

> sum rule at T=0 : can take any Q² >=0, $4m^2 + Q^2 >> \langle G \rangle_{uncomm} = \Lambda^2_{OCD}$

$$M_{n} = \left(\frac{d}{dQ^{2}}\right)^{n} < J(Q), J(0) > = \int ds \frac{\rho(s)}{(s+Q^{2})^{n}}$$

S H Lee: HIM10-02

QCD sum rule constraint (Morita, Lee 08)

Can also use Borel sum rule

 $B(M) = \int ds \rho(s) \exp(-s/M^2)$

Mass and width of J/ψ near Tc (Morita, Lee 08, M, L & Song 09)

Γ in NLO QCD + confinement model

• Non perturbative part at Tc: confinement model $(m_q(T) C(T))$

From Tc to 1.05 Tc mass and width seems to rapidly change by 50 MeV ; to probe higher temperature within this region,

- 1. For mass, need higher dimensional operators
- 2. For width, Need higher twist contribution

Three places to look

Reconstruction of Imaginary Correlator and R_{AA} from RHIC and Mass shift at Nuclear matter

Reconstruction of Imaginary correlator

Imaginary correlator

$$G(\tau,T) = \int dw K(w,\tau,T)\rho(w,T)$$
$$K(w,\tau,T) = \frac{\cosh[w(\tau-T/2)]}{\sinh(w/2T)}$$

Reconstructed correlator

2-comp model (Rapp) Comparison with experimental data of RHIC $(\sqrt{s}=200 \text{ GeV} \text{ at midrapidity})$

T. Song, SHLee (preliminary)

0.1

ion &

S H Lee: HIM10-02

sum rule in medium

$$4m^2 + Q^2 >> \langle \mathbf{G} \rangle_0 + \Delta \langle \mathbf{G} \rangle_{\text{Medium}}$$

Phenomenological side

Matching M_{n-1}/M_n from Phen to OPE \rightarrow Obtain constraint for $\Delta m_{J/\psi}$ and Γ

n

Mass and width of J/ ψ in nuclear Matter (Morita, Lee 08)

• QCD sum rule constraint

Other approaches for mass shift in nuclear matter

	Quantum numbers	QCD 2 nd Stark eff.	Potential model	QCD sum rules	Effects of DD loop
η _c	0-+	−8 MeV		-5 MeV (Klingl, SHL ,Weise, Morita)	No effect
J/ψ	1	-8 MeV (Peskin, Luke)	-10 MeV (Brodsky et al).	-7 MeV (Klingl, SHL ,Weise, Morita)	<2 MeV (SHL, Ко)
χ _c	0,1,2++	-20 MeV		-15 MeV (Morita, Lee)	No effect on _{χc1}
ψ(3686)	1	-100 MeV			< 30 MeV
ψ(3770)	1	-140 MeV			< 30 MeV

Observation of Δm through \overline{p} -A reaction

Can be done at J-PARC

Table 2: Summary of parameters and resultant cross sections.

		J/ψ	η_c	χ_{c0}	χ_{c1}	χ_{c2}
	m[MeV]	3097	2980	3415	3511	3556
	$\delta m [MeV]$	-7	-4	-15	-15	-15
	$\Gamma_{\rm tot} [{\rm MeV}]$	0.0934	25.5	10.4	0.89	2.05
	Final State	e^+e^-	$\gamma\gamma$	$J/\psi \gamma$	$J/\psi \gamma$	$J/\psi \gamma$
	$\langle \sigma_{\rm BW} \rangle_{\rm peak} [\rm pb]$	0.435	10.7	17.0	4.25	18.8
Expected luminosity at GSI 2x 10 ³² cm ⁻² s ⁻¹	Events/day	7.5	184	294	74	326

References

- 1. Finite temperature lattice: Karsch: arXiv:0711.0661, 0711.0656, 0710.0354, Kaczmarek et al. PRD 70, 074505
- 2. Sum rule method at finite T: <u>https://wiki.bnl.gov/qpg/index.php/Sum_rule_approach</u>
- J/psi formal: Hashimoto et al. PRL 57,2123 (1986), Matsui and Satz, PLB 178, 416 (1986), Asakawa, Hatsuda PRL 92, 012001 (2004), Morita, Lee, PRL 100,022301, Mocsy, Petreczky, PRL, 99, 211602 (2007)
- J/Psi Phenomenology: Gazszicki, Gorenstein, PRL 83, 4009 (1999),
 PBM, J. Stachel, PLB490, 196 (2000), Andronic et al. arXiv::nucl-th/0611023, Grandchamp and Rapp, NPA 709, 415 (2002), Yan, Zhuang, Xu, PRL,97,232301 (2006), Song, Park, Lee arXiv: 1002.1884
- 5. J/psi in medium, Brodsky et al. PRL 64,1011 (1990), Lee, nuclth/0310080,