Photon Measurements at PHENIX and ALICE

Ju Hwan Kang (Yonsei University)

Heavy Ion Meeting 2010-12 Dec. 10 - 11, 2010, Yonsei Univ., Seoul, Korea

- RHIC and PHENIX photon mesurement
- Thermal photons from PHENIX
- Photon/electron measurement at ALICE
- π^0 and η mesons by measuring γ and e⁺e⁻ (P+P)
- Very recent results of Pb+Pb at LHC even though these are not related to photon measurements

RHIC's Experiments

Electron pair measurement in PHENIX

Direct Photons in Au+Au

Direct photon is measured as "excess" above hadron decay photons: background photons are based on the decays from measured π^0 and η spectra, also other hadrons (η ', ω , Ks⁰) assuming m_T scaling.

$$R_{\gamma} = \frac{(\gamma/\pi^0)_{\text{Measured}}}{(\gamma/\pi^0)_{\text{Background}}} \approx \frac{\gamma_{\text{Measured}}}{\gamma_{\text{Background}}}$$

Input hadron spectra for cocktail

Fitting with a modified Hagedorn function for pion, for all other mesons assume m_T scaling by replacing p_T by $\sqrt{m^2 - m_\pi^2 + (p_T/c)^2}$

Electromagentic probes (photon and lepton pairs)

- Photons and lepton pairs are cleanest probes of the dense matter formed at RHIC
 - These probes have little interaction with the matter so they carry information deep inside of the matter
 - Temperature of QGP by measuring p_T spectrum of direct photons
 - Thermal photons from QGP is the dominant source of direct photons for 1<p_T<3 GeV/c

Photons in nucleus-nucleus collisions

Initial hard parton-parton scatterings (hard γ) Thermalized medium (QGP!?), $T_0 > T_c$, $T_c \approx 170 - 190 \text{ MeV}$ (QGP thermal γ)

Freeze-out (hadron decay γ)

Many sources of photons

pQCD direct photons from initial *hard scattering* of quarks and gluons

Thermal photons from hot *quark gluon plasma*

Thermal photons from *hadron gas* after hadronization

Thermal photons (theory prediction)

- High p_T (p_T>3 GeV/c) pQCD
 photon
- Low p_T (p_T<1 GeV/c) photons from hadronic gas
- Themal photons from QGP is the dominant source of direct photons for 1<p_T<3 GeV/c
- Measurement is difficult since the expected signal is only 1/10 of photons from hadron decays

Lower p_T photon measurement

Blue line: N_{coll} scaled p+p cross-section

Direct photon is measured as "excess" above hadron decay photons Measurement at low p_T difficult since the yield of thermal photons is only 1/10 of that of hadron decay photons

Virtual photons to improve S/B

- Source of real photon should also be able to emit virtual photon
- At $m \rightarrow 0$, the yield of virtual photons is the same as real photon
- → Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs
- Advantage: hadron decay background can be substantially reduced since we can remove π^0 decay photons (~80% of background) by requiring m>m_{π}
- \rightarrow S/B is improved by a factor of five

Virtual Photon Measurement

Any source of real γ can emit γ^* with very low mass. Relation between the γ^* yield and real photon yield is known. $\frac{d^2 N}{dM_{ee}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_e^2}{M_{ee}^2} \left(1 + \frac{2m_e^2}{M_{ee}^2}\right) \frac{1}{M_{ee}} S(M_{ee}, p_t) dN_{\gamma}}$ Process dependent factor $S(M_{ee}, p_t) \equiv \frac{dN_{\gamma^*}}{dN_{\gamma}}$ 10³ π⁰ Dalitz **Case of hadrons** (π^0, η) (Kroll-Wada) 10² η Dalitz $S = \left| F\left(M_{ee}^{2}\right) \right|^{2} \left(1 - \frac{M_{ee}^{2}}{M_{hadron}^{2}} \right)^{3} \qquad \pi^{0} \text{ Dalitz decay}$ direct y internal conversion 10 **Direct** γ S = 0 at $M_{ee} > M_{hadron}$ **Case of direct** γ^* π^0 10-1 n If $p_T^2 >> M_{ee}^2$ S = 1 10-2 **I** For m>m_{π}, π^0 background (~80% of 10⁻³ 5 0.6 M_{ee} (GeV) 0.1 0.2 0.3 0.4 0.5 background) is removed \rightarrow S/B is improved by a factor of five

Enhancement of almost real photon

Extraction of the direct γ signal

 $f(m_{ee}) = (1 - r) \cdot f_{\text{cocktail}}(m_{ee}) + r \cdot f_{\text{direct}}(m_{ee})$ $r = \text{direct } \gamma^*/\text{inclusive } \gamma^* \qquad f_{\text{direct}} : \text{direct photon shape with } S = 1$

- Interpret deviation from hadronic cocktail (π, η, ω, η', φ) as signal from virtual direct photons
- Fit in 120-300MeV/c² (insensitive to π⁰ yield)

Fraction of direct photons

NLO pQCD calculation with 3 different scales by Werner Vogelsang

Direct photon spectra

- Direct photon measurements
 - real (p_T>4GeV)
 - virtual (1<p_T<5GeV)
- pQCD consistent with p+p down to p_T=1GeV/c

$$f_{Au+Au}(p_T) = \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}} \times f_{p+p}(p_T) + \mathbf{B} \times e^{-\frac{p_T}{T}}$$

TABLE I: Summary of the fits. The first and second errors are statistical and systematic, respectively.

centrality	$dN/dy(p_T > 1 \text{GeV}/c)$	$T({\rm MeV})$	χ^2/DOF
0-20%	$1.50 \pm 0.23 \pm 0.35$	$221 \pm 19 \pm 19$	4.7/4
20-40%	$0.65 \pm 0.08 \pm 0.15$	$217 \pm 18 \pm 16$	5.0/3
Min. Bias	$0.49 \pm 0.05 \pm 0.11$	$233 \pm 14 \pm 19$	3.2/4

The inverse slope $T_{AuAu} > T_{c} \sim 170 \text{ MeV}$

Theory comparison

Hydrodynamical models are compared with the data D.d'Enterria & D. Peressounko T=590MeV, τ₀=0.15fm/c S. Rasanen et al. T=580MeV, τ_0 =0.17fm/c D. K. Srivastava T=450-600MeV, τ₀=0.2fm/c S. Turbide et al. T=370MeV, τ₀=0.33fm/c J. Alam et al. T=300MeV, τ₀=0.5fm/c F.M. Liu et al. T=370MeV, τ_0 =0.6 fm/c Hydrodynamical models are in qualitative agreement with the data

Comparison with models

- Direct photon yield in p+p is consistent with pQCD, but direct photon yield in Au+Au is much larger.
- If direct photons in Au+Au are of thermal origin, the inverse slope is related to the initial temperature T_{init} .
- Hydrodynamical models with T_{init} =300-600MeV at the plasma formation time t_0 =0.6-0.15 fm/c are in qualitative agreement with the data. T_{init} is about 1.5 to 3.0 time T_{avg} due to the space time evolution.
- Lattice QCD predicts a phase transition to quark gluon plasma at $T_c \sim 170$ MeV

On the Map

To study even hotter QCD matter...

ALICE (A Large Ion Collider Experiment) at LHC

ALICE: The dedicated HI Experiment

Photon and electron PID

Electrons (or virtual photons):

ITS (dE/dx) TPC (dE/dx) TOF (β) TRD (Transition Radiation) EMCAL(EM shower) PHOS(EM shower)

Photons:

EMCAL(Pb/Sc Shashlik) PHOS (lead-tungstate crystals, PbWO₄): High granularity and resolution to focus on low and moderate p_T

Low p_T electron PID

- ITS (dE/dx)
- TPC (dE/dx)
- TOF(β to reject non-electron tracks)

TRD for high p_T electron PID

- Transition radiation (TR) is produced if a highly relativistic (γ>900) particle traverses many boundaries between materials
- 7 TRD modules currently installed
- Due to limited acceptance currently not included in PID for dielectrons

PID in ALICE

ALICE setup for 2010

Neutral meson measurement in ALICE

• ALICE provides 3 independent ways to identify π^0 and η mesons, through invariant mass analysis of photon pairs and external conversion electrons:

• Performance plots, p+p at 7 TeV, coming next

PHOS h-> $\gamma + \gamma$

- 175 million minimum bias events.
- Cluster selection (better tuning under study).
 - E_{cl}>0.3 GeV
 - N_{cell}≥3
- π^0 plots lines:
 - Red line: fit to combinatorial.
 - Blue points: histogram minus combinatorial fit.
 - Blue line: fit of blue points.

EMCAL h-> $\gamma + \gamma$

- 6.2<p_<7.0 GeV/c 3<p_<8 GeV/c π^0 χ^2 / ndf 215.6 / 12 χ^2 / ndf 12.04 / 13 η A 2.269e+04 ± 1.405e+02 Α 64.83 ± 20.58 m mo 0.1352 ± 0.0001 0.5423 ± 0.0082 MeV/c² 00005 20 MeV/c² 1400 0.01295 ± 0.00009 σ 0.02418 ± 0.01071 + -744.5 ± 251.4 a, a, 382.5 ± 185.8 a, 1.075e+05 ± 3.865e+03 656.6 ± 686.6 a, -2.64e+05 ± 1.26e+04 1200 a -1018 ± 603.1 0 ł Events per a25000 1000 study 20000 ALICE ALICE performance ALICE performance 800 pp @ √s=7 TeV pp @ √s=7 TeV EMCAL EMCAL 30/08/2010 15000 600 10000 400 5000 200 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.7 0.1 0.8 0.9 0.8 0.9 M_u, GeV/c² M., GeV/c² 6<p₇<8 GeV/c 7.0<p_<8.1 GeV/c χ^2 / ndf 24.04 / 12 8.052 / 13 χ^2 / ndf 890.4 ± 28.3 73.82 ± 17.43 А m_o 0.1377 ± 0.0004 m, 0.5507 ± 0.0066 Events per 10 MeV/c² Events per 20 MeV/c² 0.01188 ± 0.00039 0.02363 ± 0.00786 σ 1200 -468.1 ± 46.2 a 339.3 ± 150.2 a. a 8730 ± 737.3 18.63 ± 556.89 500 -2.036e+04 ± 2.426e+03 a, -226.9 ± 490.8 1000 400 ALICE 800 ALICE performance ALICE performance pp @√s=7 TeV pp @√s=7 TeV 300 EMCAL EMCAL 600 200 400 100 200 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 M_{yy}, GeV/c² M_{vv}, GeV/c²
- 188 million minimum bias events.
- Cluster selection (better tuning under study)
 - E_{cl}>0.3 GeV
 - $N_{cell} \ge 2$

$CTS \ h {\rightarrow} \gamma {+} \gamma {\rightarrow} e^+ e^- e^+ e^-$

- For $p_T > 1$ GeV
 - Photon conversion probability of about 8%
 - Photon reconstruction efficiency is of 70% with close to 100% purity

PHOS-CTS $h \rightarrow \gamma + \gamma \rightarrow e^+e^-\gamma$

140 million p+p events at 7 TeV π^{0} can be identified with p_T>0.5 GeV/c

 η is visible with p_T>2 GeV/c

Summary and outlook

- ALICE has identified π^0 and η neutral mesons with its calorimeters and central tracking system.
- The agreement between the analysis seems to converge, but work is needed, specially on calibration and non linearity effects in the calorimeters.
- We expect to measure π^0 in the range 0.3 < p_T <30 GeV and η in the range 0.6 < p_T < 10 GeV in very near future.
- Direct photon measurement can be followed after understanding the photon backgrounds from hadron decays, so needs measured hadron spectra for the cocktail method.

"Possible" HI plan at LHC

Studying QGP Era (MB) 2010 (official)- $\sqrt{s_{NN}} = 2.76$ TeVPb+ Pb(4 weeks) L~1025cm⁻²s⁻¹ 2011 (anticipated)- $\sqrt{s_{NN}} = 2.76$ TeVPb+ Pb(4 weeks) L ~ few 1026cm⁻²s⁻¹

2012 (official)–Shutdown for maintenance, installation & repair

 $2013 - \sqrt{s_{NN}} = 5.5 \text{ TeV Pb} + \text{Pb}, L \sim 1027 \text{ cm}^{-2} \text{s}^{-1}$

 $2014 - \sqrt{s_{NN}} = 5.5 \text{ TeV Pb} + Pb, L \sim 1027 \text{ cm}^{-2}\text{s}^{-1}$

Control experiments

2015– $\sqrt{s_{NN}} = 8.8 \text{ TeV } p + Pb \& Pb+ p \text{ or lighter } A + A$ 2016–Shutdown –LINAC4 /Collimation/RF & detector upgrade 2017– $\sqrt{s_{NN}} = 5.5 \text{ TeV lighter } A + A \text{ or } \sqrt{s_{NN}} = 8.8 \text{TeV } p+Pb/Pb+p$

Detail Studying Era (rare probes)

2018– $\sqrt{s_{NN}} = 5.5$ TeV high L Pb+ Pb for hard probe physics 2019– $\sqrt{s_{NN}} = 5.5$ TeV high L Pb+ Pb for hard probe physics 2020–Shutdown–.... upgrades

'Little Bang'

1) What's the Difference ?

- Multiplicity and Energy density ε:
 - $dN_{ch}/d\eta \sim 1600 \pm 76 \text{ (syst)}$
 - somewhat on high side of expectations
 - growth with \sqrt{s} faster in AA than pp (\sqrt{s} dependent, 'Auclear, =0, s = 200 AGeV amplification')

 $HIJ1NG \ (dN_{ch}/d\eta, \, b{<}3fm)$

- **Energy density** \approx **3 x RHIC** (fixed τ)

Centrality dependence

The ratio of scales on left and right = 2.1.

Non-single-diffractive (elastic and singlediffractive events removed) and inelastic pp value by interpolating between data at 2.36 and 7 TeV. Point-to-point, uncorrelated uncertainties (error bars), correlated uncertainties grey band. Statistical errors are negligible.

8 Dec: arXiv:sub/0159822, sub. PRL

- Two broad categories of models:
 - Models combining pQCD processes (e.g. jets and mini-jets) with soft interactions.
 - Saturation models with various parametrizations for the energy and centrality dependence of the saturation scale.

First Elliptic Flow Measurement at LHC

- v₂ as function of p_t
 - practically no change with energy !
 - extends towards larger centrality/higher p_t ?
- v_2 integrated over pt
 - **30% increase from RHIC**
 - <p_t> increases with \sqrt{s}
 - pQCD powerlaw tail ?
 - Hydro predicts increased 'radial flow'
 - very characteristic
 p_t and mass dependence;
 to be confirmed !

'Jet Quenching' as seen by pt spectra

Dijet event candidates in CMS

- First hours of LHC running
 - We see dijet events
 - We see dijets with unbalanced energy: is this real?

Dijet energy imbalance

A significant dijet imbalance, well beyond that expected from unquenched MC, appears with increasing collision centrality

Similar results from ATLAS

di-jet asymmetry (A_J), acoplanarity ($\Delta \phi$)

Backups

e⁺e⁻ pairs from the cocktail

LMR II : dilepton production is expected to be dominated by the hadronic gas phase (mass modification?)

PHOton Spectrometer: PHOS

- <u>High granularity and resolution spectrometer</u>:
 - 10,752 (17,920) lead-tungstate crystals (PbWO₄),
 3(5) modules (56×64 crystals per module)
 - crystal size: $22 \times 22 \times 180 \text{ mm}^3$
 - depth in radiation length: 20
 - Distance to IP: 4.4 m
 - Acceptance:
 - pseudo-rapidity [-0.12,0.12]
 - azimuthal angle 60°(100°)
 - For E > 10 GeV,
 - $\Delta E/E < 1.5\%$ and $~\sigma_x = [0.5, 2.5]~mm$
 - Focus on low and moderate p_T
 - High resolution π^0 and η
 - Thermal photons

Di-jet Calorimeter

60% extension of EMCal acceptance Incorporate PHOS and DCAL modules to produce a single, large EM calorimeter patch back-to-back with EMCAL. Δηx Δφ= 1.4 x 0.7

TOF

ITS

6 different layers
2xSPD: inner radius 3.9 cm, 9.8 M channels, 0.2 m2
2xSDD: 133k channels, 1.3 m2
2xSSD: 2.6M channels, 4.75 m2