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1. Introduction 

 Relativistic heavy ion collision

 QGP: a new state of matter 

 sQGP (strongly interacting QGP)
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Relativistic Heavy Ion Collisions
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RHIC
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⚫ Test of hadron models
- Large multiplicity
- Find the physical quantities that are sensitive to hadron models

⚫ QGP signals
- Hadron rescattering effects

QGP Expansion Freeze-out

Hadronization Hadron 
rescattering

detector



sQGP

❑ Observed state in relativistic heavy ion collisions @ RHIC

 Perfect fluid behavior (hydrodynamics)

 Strong collective behavior (large elliptic flow)

→ Strong coupling nature of Quark-Gluon Plasma

❑ New lattice results

❑ bound state could survive at T > Tc

❑ Even at T > Tc, the interaction is still strong

 Possible existence of quasi bound states of quarks and gluons
such as qq, gq, gg

❑ Diquarks in hadron physics

❑ Existence of a diquark in baryons?
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Shuryak and Zahed, PRC 70

Lichtenberg, Anselmino, Wilczek & others



HADRON RESCATTERING IN 

ELLIPTIC FLOW
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Elliptic Flow

 Elliptic flow     : a measure of the strength of the second Fourier 

coefficient in the azimuthal angle distribution of particle 

transverse momentum relative to the reaction plane

a azimuthal anisotropy of the momentum distribution of particles
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Elliptic flow
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 information on the properties of the hot dense matter formed 

during the initial stage of RHIC

 Mass ordering: v2 decreases with increasing hadron mass

 Constituent quark number scaling

Mass ordering
(hydrodynamics)

Quark number scaling
(quark recombination)

EKT or pT scaling
Negative v2 for
heavy mass?

Fisher-Tippet 
(Gumbel) distr.



Elliptic flow

 Negative elliptic flow at small pT for heavy particles?  

 deuteron (~1.9 GeV)

 J/y (~3 GeV)
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Elliptic flow (scaling)

 Coalescence model

 For J/y

 charm quark + charm anti-quark

 v2 of the charm quark: negative at small pT?

 For deuteron

 proton + neutron

 v2 of the nucleon: positive (by experiments)

 Intriguing questions on the mechanism of particle production and their 
interactions
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2. Deuteron elliptic flow

 Coalescence model (the simplest version)

 The deuteron yield in momentum space is proportional to the 

product of the proton and neutron densities at half the momentum 

of produced deuteron

 The deuteron elliptic flow would satisfy exactly the nucleon number scaling 

and thus the quark number scaling as well. 
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dNd

dpd
µ fp pd / 2( ) fn pd / 2( )

fd (pd ) 1+ 2v2,d (pd )cos2f( )

» fp(pd / 2) 1+ 2v2,p(pd / 2)cos2f( ) ´ fn(pd / 2) 1+ 2v2,n(pd / 2)cos2f( )

» fp(pd / 2) fn(pd / 2)´ 1+ 2 v2,p(pd / 2)+ v2,n (pd / 2)éë ùûcos2f{ }

\   v2,d (pd ) = v2,p(pd / 2)+ v2,n (pd / 2) = 2v2,N (pd / 2)



Elliptic flow: blast-wave model

 Blast-wave model

 In cylindrical coordinates

 Transverse flow velocity
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g :  spin- isospin degeneracy

s f : freeze - out surface with normal vector ds m

f (x, p) : local thermal distribution function

f (x, p) =
1

exp{(E - m) /T}±1
 Þ  Lorentz boost with the flow velocity b(x)

gT =1/ 1- bT
2



 Test of a simple blast-wave model

 Transverse flow velocity 
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bT = b0 1+ecos2f( ),       e = aexp(-pT / b) with free parameters a,b

Fitted results

Fitted for mesons Fitted for baryons

Requires different parameter sets!



Modified coalescence model

 Take into account the momentum spread of the deuteron 

wave function

 Gives small deviation from the exact quark number scaling

 Does not satisfy energy conservation.

 Effects of energy conservation?
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Dynamical model

 Use dynamical processes for deuteron production

 Dominant deuteron production reaction: two-body scattering

 Only the rate can be calculated.

 3-body reactions can be added such as 
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Dynamical model

 Inputs (Nucleon spectrum)

2/27/2011-
3/1/2011P. 17

fN (pT ) =gN exp(-mT /Teff ) 1+ 2v2,N cos2féë ùû

with  Teff = 295 MeV,   gN = 0.021

v2,N (pT ) =aN exp -exp lN - pT( ) / bNéë ùû{ }
with   aN = 0.258,   bN = 0.683 GeV,  lN =1.128 GeV



Dynamical model

 Inputs (pion)
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with  a =1.29 GeV, b = -12.0,   gp = 2.0

v2,p (pT ) =ap exp -exp lp - pT( ) / bp
éë ùû{ }

with   ap = 0.184,   bp = 0.461 GeV,  lp = 0.547 GeV



Dynamical model

 Input for the production amplitude of  
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Dynamical model

 Results 
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Negative
v2

Oh and Ko, PRC76



Dynamical model

 Results

 Deuteron spectrum

 Radial flow effect is not fully taken into account

 Deuteron elliptic flow

 Consistent with the PHENIX data

 Cannot explain the negative v2 of preliminary STAR data

 Support coalescence model at medium pT

 Momentum conservation has more important role in this region.

 Holds also for low momentum region?
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Dynamical model vs Coalescence model

 In coalescence model, pd/2=p1=p2

 In dynamical model, energy-momentum conservation

determines the physical region
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, 0.1T dp = G eV

, 4.0T dp = G eV

Allowed by the coalescenc
e

model



Dynamical model vs Coalescence model

 At low pT region

 The momenta chosen by the coalescence model is not 

physically allowed region.

 So, the similarities between the dynamical model and coalescence 

model are accidental,

 If v2 of the nucleon at low pT is negative

 Coalescence model gives negative deuteron v2

 Dynamical model gives positive deuteron v2
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Transport model

2/27/2011-
3/1/2011P. 24

Assume that initial hadrons formed 
by 
the QGP are thermalized. 
(blast-wave model)
⇒ 
and, then, hadronic rescattering
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Transport model

 Transport model ART (A Relativistic Transport model)

 includes 

mesons (p, r, w, , K, K*, f)

and baryons (N, D, ,  and their anti-particles)

 In this work, we include the interactions with the deuteron
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Transport model

 Inputs 

 The parameters for the initial state are determined

to reproduce the measured pion/nucleon data
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Large rescattering effects 
in the elliptic flow



Transport model

 Output 

 Deuteron spectrum pT spectrum and elliptic flow
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Oh et al., PRC80



Transport model
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Deviation from the scaling 
behavior



Outlook
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QGP Expansion Freeze-out

Hadronization Hadron 
rescattering

Measurements

Modify Quark 
recombination Modify hadronic rescattering

Use improved hadron models: structure & interactions

For more complete
simulation of RHIC



HEAVY QUARKS IN RHIC
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Hadron models @ RHIC
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Three-quark model Diquark model

)(udQQ =

Test of diquark model for baryons at RHIC

The most attractive diquark channel: scalar diqaurk
How to distinguish diquark model from the three-quark model

: diquark + heavy-quark or three-quark
: three-quark

c use the production of     and     in relativistic heavy ion collisions

c3

c

c

Lc c

S.H. Lee et al., PRL100 (2008)
Sateesh, PRD45 (1992)

ratio will be enhanced by a factor of 4-8:  S.H. Lee et al., PRL100
(2008)

Lc /D0

Lc / Sc
ratio will be enhanced by a factor of 80:  Sateesh, PRD45 (1992)

collisionsin   7~/ −+ eecc

Wilczek



pp & AA collisions

 PYTHIA model (pp)

 Thermal model (AA)
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Oh et al., PRC79, 044905
067902
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Thermal model (AA)

 Role of resonance decays
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D0

D+
=1  without resonances

At Tc =175 MeV, 
D*0

D0
@1.47

Considering D*  decays,

D0

D+
=

1+ (1+ 0.68)´1.47

1+ 0.32 ´1.47
= 2.36

BR(D*0 ®D0p 0 ) =100%,       BR(D*0 ®D+p -) = 0%

BR(D*+ ®D+p 0 ) = 32%,        BR(D*0 ®D+p -) = 68%

Likewise,

Lc

D0
=

Lc 1+ Sc(2455) / Lc + Sc
*(2520) / Lc{ }

D0 1+1.68D* /D( )
= 0.28

Including D1(2420) gives

Lc

D0
= 0.27

Cf. In bottom sector,
the B* meson cannot 

decay into the B meson.



Coalescence model (AA)

 Coalescence model

 Production of a particle is proportional to the overlap integral of the 

wave functions of the constituents

(parameters: fitted by the rms radii of the particles)

 Thermal distributions for light quarks and diquarks

 Heavy quark distributions: from pQCD
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Results: Coalescence model (AA)

 Results
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Nuclear modification factor

 Non-photonic electron RAA
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T

e

pp

AA

coll

T

e

AA
AA

dpdNN

dpdN
R =

BR(D® eX) is larger than BR(Lc ® eX).

Does enhanced 
Lc

D0
 can reduce RAA ?

The RAA  puzzle.

The electron RAA  shows that the production of heavy-flavor hadrons

is suppressed as much as that of pions.

          pQCD: the energy loss of heavy quark is smaller.



Nuclear modification factor

 Non-photonic electron RAA

2/27/2011-
3/1/2011P. 37

The enhancement of 
Lc

D0
 occurs in the low pT .

So it cannot solve the puzzle unless we assume the enhancement at large pT .


