Hadronic rescattering in elliptic flow & Heavy quarks at RHIC

Yongseok Oh Kyungpook National University

Heavy Ion Meeting 2011-02, Muju Resort Feb. 27-Mar. 1, 2011

ntents

- ntroduction
- \blacksquare Hadronic rescattering in elliptic flow
	- Deuteron elliptic flow
		- Coalescence mode
		- Dynamical model
		- Transport model
- Heavy quarks in RHIC
	- Baryon to meson ratio
	- Nuclear modification factor of non-photonic electrons

1. Introduction

Relativistic heavy ion collision

QGP: a new state of matter

Vacuum stability and vacuum excitation in a spin-0 field theory*

T. D. Lee and G. C. Wick Columbia University, New York, New York 10027 (Received 17 January 1974)

The theoretical possibility that in a limited domain in space the expectation value $\langle \phi(x) \rangle$ of a neutral spin-0 field may be abnormal (that is to say quite different from its normal vacuum expectation value) is investigated. It is shown that if the ϕ^3 coupling is sufficiently large, then such a configuration can be metastable, and its physical size may become substantially greater than the usual microscopic dimension in particle physics. Furthermore, independent of the strength of the ϕ^3 coupling, if $\phi(x)$ has sufficiently strong scalar interaction with the nucleon field, the state that has an abnormal $\langle \phi(x) \rangle$ inside a very heavy nucleus can become the minimum-energy state, at least within the tree approximation; in such a state, the "effective" nucleon mass inside the nucleus may be much lower than the normal value. Both possibilities may lead to physical systems that have not yet been observed.

n sQGP (strongly interacting QGP)

2/27/2011- $\frac{2}{3/1/2011}$

Relativistic Heavy Ion Collisions

2/27/2011- P. 4 2011 2011 2012 2013 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2017 2018 2017 2017 2018 2
- 3/1/2011 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 201

- Test of hadron models
	- Large multiplicity
	- Find the physical quantities that are sensitive to hadron models
- ⚫ QGP signals
	- Hadron rescattering effects

sQGP

□ Observed state in relativistic heavy ion collisions @ RHIC

- **Perfect fluid behavior (hydrodynamics)**
- **E** Strong collective behavior (large elliptic flow)
	- \rightarrow Strong coupling nature of Quark-Gluon Plasma

❑ New lattice results

- \Box $c\overline{c}$ bound state could survive at T $>$ Tc
- Even at $T > Tc$, the interaction is still strong
	- Possible existence of quasi bound states of quarks and gluons
		- such as qq, gq, gg Shuryak and Zahed, PRC 70
- ❑ Diquarks in hadron physics
	- ❑ Existence of a diquark in baryons?

 $\Lambda_c / \Sigma_c \sim 7$ in e^+e^- collisions

Lichtenberg, Anselmino, Wilczek & others

HADRON RESCATTERING IN ELLIPTIC FLOW

2/27/2011- P. 7 2/2/2011
3/1/2011

Elliptic Flow

- \blacksquare Elliptic flow v_2 : a measure of the strength of the second Fourier coefficient in the azimuthal angle distribution of particle transverse momentum relative to the reaction plane
	- \Rightarrow azimuthal anisotropy of the momentum distribution of particles

Elliptic flow

 information on the properties of the hot dense matter formed during the initial stage of RHIC

- **Mass ordering: v₂** decreases with increasing hadron mass
- **E** Constituent quark number scaling

Quark number scaling (quark recombination)

Elliptic flow

n Negative elliptic flow at small pT for heavy particles?

deuteron (~1.9 GeV)

 J/ψ (~3 GeV)

경북대학교

2/27/2011-

Elliptic flow (scaling)

E Coalescence model

 $f(\varphi)$: distributi ons of the constituen ts $F(\varphi)$: distributi on of the composite particle

 $(\varphi) \varpropto f(\varphi)^2 \varpropto 1 \! + \! 2 V_{2} \cos 2 \varphi$ $V_{2} = 2v_{2}$ $F(\varphi) \propto f(\varphi)^2 \propto 1 + 2V_2 \cos 2\varphi$

$$
f(\varphi, p_T) \propto 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos n\varphi
$$

- \blacksquare For J/ ψ
	- \blacksquare charm quark + charm anti-quark
	- \bullet v₂ of the charm quark: negative at small p_T ?
- **E** For deuteron
	- **p** proton + neutron
	- \bullet v₂ of the nucleon: positive (by experiments)
- Intriguing questions on the mechanism of particle production and their interactions 2 v_2 for 2 - body particles
 $J(\psi, p_T) \propto 1 + 2 \sum_{n=1}^{T} v_n (p_T) \cos n\psi$

(ψ

arm quark + charm anti-quark

of the charm quark: negative at small p_T ?

auteron

toon + neutron

of the nucleon: positive (by experiments)

2/27/2011-

■ Coalescence model (the simplest version)

The deuteron yield in momentum space is proportional to the product of the proton and neutron densities at half the momentum of produced deuteron

$$
\frac{dN_d}{d\vec{p}_d} \mid \int_p \left(p_d / 2\right) f_n\left(p_d / 2\right)
$$

 \blacksquare The deuteron elliptic flow would satisfy exactly the nucleon number scaling and thus the quark number scaling as well.

$$
f_d(p_d) (1 + 2v_{2,d}(p_d)\cos 2f)
$$

\n
$$
\gg f_p(p_d/2) (1 + 2v_{2,p}(p_d/2)\cos 2f) \left(f_n(p_d/2) (1 + 2v_{2,n}(p_d/2)\cos 2f) \right)
$$

\n
$$
\gg f_p(p_d/2) f_n(p_d/2) \left\{ 1 + 2\frac{6}{5}v_{2,p}(p_d/2) + v_{2,n}(p_d/2)\frac{6}{5}\cos 2f \right\}
$$

$$
\vee \quad v_{2,d}(p_d) = v_{2,p}(p_d/2) + v_{2,n}(p_d/2) = 2v_{2,N}(p_d/2)
$$

Blast-wave model

U. Heinz, K. S. Lee, and E. Schnedermann, Hadronization of a quark-gluon plasma, in Advanced Series on Directions in High Energy Physics, Vol. 6, Quark-Gluon Plasma, edited by R. C. Hwa, pp. 471-517, World Scientific, Singaport, 1990.

$$
E\frac{d^3N}{dp^3} = \frac{g}{(2\rho)^3} \oint_{S_f} f(x, p)p_m dS^m
$$

- *g* : spin-isospin degeneracy
- \mathcal{S}_f : freeze out surface with normal vector $d\mathcal{S}_m$

 $f(x, p)$: local thermal distribution function

 $f(x,p) =$ 1 $\exp\{(E-m)/T\}$ ±1 \triangleright Lorentz boost with the flow velocity $b(x)$

- In cylindrical coordinates
	- **The Transverse flow velocity**

$$
g_T = 1/\sqrt{1 - b_T^2}
$$

- Test of a simple blast-wave model
	- \blacksquare Transverse flow velocity

 $b_T = b_0 \left(1 + e \cos 2f\right)$, $e = a \exp(-p_T/b)$ with free parameters *a*,*b*

Fitted results

Modified coalescence model

 \blacksquare Take into account the momentum spread of the deuteron wave function

$$
\frac{d^3 N_d}{dp_d^3} = \frac{3}{4} \frac{V}{(2p)^3} \hat{\mathbf{0}} d^3 p_1 d^3 p_2 f_p(p_1) f_n(p_2) \Big| Y_d((p_1 - p_2)/2) \Big|^2 d^{(3)} (p_1 + p_2 - p_d)
$$

$$
Y_d(k) = \frac{\sqrt{(a_d + b_d)^3 a_d b_d}}{p(a_d^2 + k^2)(b_d^2 + k^2)}, \qquad a_d = 0.23 \text{ fm}^{-1}, \quad b_d = 1.61 \text{ fm}^{-1} \Bigg[\text{Hulthen WF}
$$

- Gives small deviation from the exact quark number scaling Does not satisfy energy conservation.
	- **Effects of energy conservation?**

Use dynamical processes for deuteron production

- **D** Dominant deuteron production reaction: two-body scattering $NN \rightarrow dD$
- **n** Only the rate can be calculated.

\n- Domain of a
$$
D
$$
 on the D on the

No a priori restriction such a $p_{T,d} = 2p_{T,N}$

Energy is conserved as well as momentum

a 3-body reactions can be added such as $NNN \rightarrow dN$ and $NNp \rightarrow dp$

2/27/2011-

경북대학교

Inputs (Nucleon spectrum)

 $f_N(p_T) = g_N \exp(-m_T / T_{\text{eff}})$ ế1 + 2 $v_{2,N} \cos 2f$ ù with $T_{\text{eff}} = 295 \text{ MeV}, g_N = 0.021$ $v_{2,N}(p_T) = a_N \exp \left\{-\exp \frac{\hat{\theta}}{N} \right/ N$ $\left\{ - \exp \! \hat{ \mathsf{g}} \! \left(\mathsf{Z}_N - p_{\scriptscriptstyle T} \right) / \mathsf{D}_N \! \, \hat{\mathsf{g}} \right\}$ with $a_N = 0.258$, $b_N = 0.683$ GeV, $l_N = 1.128$ GeV

b \Box Inputs (pion) 0^{\prime} æ $f_{\rho}(p_T) = g_{\rho} \frac{d}{\zeta} 1 + \frac{p_T}{r}$ $\hat{e}1 + 2v_{2,\rho} \cos 2\vec{\theta}$ ç ÷ ě. ø *a* with $a = 1.29$ GeV, $b = -12.0$, $g_p = 2.0$ $\left\{ -\exp\left(\frac{\dot{p}}{\rho}-p_{T}\right) /\beta_{\rho}\right\} \right\}$ $v_{2,\rho}(p_T) = a_\rho \exp \left\{-\exp \frac{\dot{\theta}}{p} \right/ \frac{1}{\rho}$ with $a_{p} = 0.184$, $b_{p} = 0.461$ GeV, $l_{p} = 0.547$ GeV 10^4 0.25 (b) (a) $\frac{1}{2}$
 $\frac{1}{2}$

 10^3 0.2 10^2 10^1 0.15 and rann $V_{2,\pi}$ 0.1 10^{-2} 0.05 PHENIX PHENIX 10^{-3} Fit $o_{\overline{O}}^{\mathsf{L}}$ 10^{-4} \overline{z} $\frac{1}{3}$ \mathfrak{p} p_{τ} (GeV) p_{τ} (GeV)

If Input for the production amplitude of $NN \rightarrow d\rho$

O Results

경북대학교

E Results

- **Deuteron spectrum**
	- **E** Radial flow effect is not fully taken into account
- **Deuteron elliptic flow**
	- **E** Consistent with the PHENIX data
	- **E** Cannot explain the negative v_2 of preliminary STAR data
	- \blacksquare Support coalescence model at medium p_{T}
	- **n** Momentum conservation has more important role in this region.
	- **E** Holds also for low momentum region?

Dynamical model vs Coalescence model

- \blacksquare In coalescence model, $p_d/2=p_1=p_2$
- In dynamical model, energy-momentum conservation determines the physical region

ynamical model vs Coalescence model

- \blacksquare At low p_T region
	- **The momenta chosen by the coalescence model is not** physically allowed region.
	- So, the similarities between the dynamical model and coalescence model are accidental,
		- \blacksquare If v_2 of the nucleon at low p_T is negative
			- Coalescence model gives negative deuteron v_2
			- Dynamical model gives positive deuteron v_2

 $f(x, p) \propto \exp\left(-p^{\mu}u_{\mu}/T_c\right)$ u_{μ} : now rour - velocity
 $u_{\mu} = \gamma_T (\cosh \eta, \vec{\beta}, \sinh \eta)$, $\vec{\beta} = \beta(r)[1 + \varepsilon(p_T) \cos(2\varphi)]\hat{n}$ $(r) = \beta_0 \left| \frac{1}{R} \right|, \quad \varepsilon(p_T) = c_1 \exp(-p_T/c_2)$ μ : flow four - velocity p^{μ} : four - momentum of the particle *R r* $\mathcal{F}(r) = \beta_0 \left| \frac{r}{R} \right|, \quad \mathcal{E}(p_T) = c_1 \exp(-p_T)$ \int \backslash $\overline{}$ \setminus $\beta(r) = \beta_0 \left(\frac{r}{r} \right), \quad \varepsilon$ μ

Assume that initial hadrons formed by the QGP are thermalized. (blast-wave model) ⇒

Transport model ART (A Relativistic Transport model)

 \blacksquare includes

mesons $(\pi, \rho, \omega, \eta, K, K^*, \phi)$

and baryons (N, Δ , Λ , Σ and their anti-particles)

In this work, we include the interactions with the deuteron

\Box Inputs

n The parameters for the initial state are determined to reproduce the measured pion/nucleon data

경북대학교 3/1/2011 P. 26

D Output

경북대학교

Oh et al., **PRC80**

 \blacksquare Deuteron spectrum p_{T} spectrum and elliptic flow

Deviation from the scaling

tlook

2/27/2011- P. 30
3/1/2011

HEAVY QUARKS IN RHIC

Hadron models @ RHIC

The most attractive diquark channel: scalar diqaurk 3_c How to distinguish diquark model from the three-quark model

- Λ_c : diquark + heavy-quark or three-quark Σ_c^+ : three-quark
- \Rightarrow use the production df_c and in relativistic heavy ion collisions

L_c / D⁰ ratio will be enhanced by a factor of 4-8: S.H. Lee et al., PRL100
 \vert / ς (**Patilo**) will be enhanced by a factor of 80: Sateesh, PRD45 (1992) L*c* / S*^c*

pp & AA collisions

D PYTHIA model (pp)

Oh et al., **PRC79**, 044905 067902

$$
\left(\frac{D^0}{D^+}\right)_{pp} \cong 3.1, \quad \left(\frac{\Lambda_c}{D^0}\right)_{pp} \cong 0.13, \quad \left(\frac{\Lambda_b}{B^0}\right)_{pp} \cong 0.7
$$

Mostly due to D^{*} decay: $D^{*0} \rightarrow D^+\pi^$ is prohibited by energy conservation

Thermal model (AA)

 $N \mu g m^2 K_2(m/T)$, *g*: degeneracy, K_2 : modified Bessel function L_c D^0 æ l ě. ç ö ø ÷ @ 0.27, L_b B^0 æ I ě. ç ö ø ÷ @ 0.86

Thermal model (AA)

Role of resonance decays

$$
\frac{D^0}{D^+} = 1 \text{ without resonances}
$$

At $T_c = 175 \text{ MeV}$, $\frac{D^{*0}}{D^0} \text{ @ } 1.47$
Considering D^* decays,

$$
\frac{D^0}{D^+} = \frac{1 + (1 + 0.68)^{-1}1.47}{1 + 0.32^{-1}1.47} = 2.36
$$

Likewise,

$$
\frac{L_c}{D^0} = \frac{L_c \{1 + S_c (2455) / L_c + S_c^* (2520) / L_c\}}{D^0 \left(1 + 1.68 D^* / D\right)} = 0.28
$$

including $D_1 (2420)$ gives

$$
\frac{L_c}{D^0} = 0.27
$$

경북대학교

BR(*D* $f^{*0} \rightarrow D^0 \rho^0$) = 100%, BR(D) $^{*0} \rightarrow D^+ \rho^-)$ = 0% BR(*D* $f^* \to D^+ \rho^0$) = 32%, BR(D^* ⁰ $\to D^+ \rho^-$) = 68%

> Cf. In bottom sector, the B^{*} meson cannot decay into the B meson.

Coalescence model (A

D Coalescence model

Production of a particle is proportional to the overlap integral of the wave functions of the constituents (parameters: fitted by the rms radii of the particles)

$$
\frac{dN_M}{dp_M} \propto \int dp_1 dp_2 \frac{dN_1}{dp_1} \frac{dN_2}{dp_2} \exp(-k^2 \sigma^2) \delta(p_M - p_1 - p_2)
$$
\n
$$
k = \frac{1}{m_1 + m_2} (m_2 p_1' - m_1 p_2')
$$
\n
$$
\frac{dN_B}{dp_B} \propto \int dp_1 dp_2 dp_3 \frac{dN_1}{dp_1} \frac{dN_2}{dp_2} \frac{dN_3}{dp_3} \exp(-k_1^2 \sigma_1^2 - k_2^2 \sigma_2^2) \delta(p_B - p_1 - p_2 - p_3)
$$

n Thermal distributions for light quarks and diquarks **Heavy quark distributions: from pQCD**

Results: Coalescence model (AA)

Larger than the thermal model

Three-quark model

diquark model

Meson/baryon ratio

경북대학교

2/27/2011-

Nuclear modification factor

\blacksquare Non-photonic electron R_{AA}

The R_{AA} puzzle.

▒ 경북대학교

The electron R_{AA} shows that the production of heavy-flavor hadrons

is suppressed as much as that of pions.

 \Rightarrow pQCD: the energy loss of heavy quark is smaller.

2/27/2011- $BR(D \rightarrow eX)$ is larger than $BR(\square_c \rightarrow eX)$. Does enhanced L*c* $\frac{C_c}{D^0}$ can reduce R_{AA} ?

Nuclear modification factor

\blacksquare Non-photonic electron R_{AA}

The enhancement of L*c* $\frac{C_c}{D^0}$ occurs in the low p_T . So it cannot solve the puzzle unless we assume the enhancement at large $p_{\scriptscriptstyle T}^{}$.

