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Neutron Stars 

M = 1.5 solar mass 

R < 15km 

A = 10^57 nucleons 

composed of p, n, e, hyperons, quarks, … 
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Motivations 1: why Neutron Stars ? 

Ultimate Testing place for physics of dense matter 

 Chiral symmetry restoration 

 Color superconductivity 

 Color-flavor locking 

 Quark-Gluon-Plasma ? 

 AdS/QCD? 
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Motivations 2: why Neutron Stars ? 

Gravitational waves from  

NS-NS and NS-BH Binaries 

Cosmological Heavy Ion Collisions 

LIGO, VIRGO, .. 
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 Gravitation Wave from Binary Neutron Star 

Effect of Gravitational 

Wave Radiation  

1993 Nobel Prize 

Hulse & Taylor 

B1913+16  

Hulse & Taylor (1975) 

LIGO was based on 

the merger of DNS  



NS (radio pulsar) which coalesce within Hubble time 

(1975) 

(1990) 

(2003) 
(2004) 

(2004) 

(1990) 
(2000) 

Globular Cluster : no binary evolution 

White Dwarf companion 

Not important 
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Laser Interferometer Gravitational Wave Observatory  

LIGO I : in operation 

            (since 2004) 

LIGO II: in progress 

             (2014 ?) 



Network of Interferometers 

LIGO GEO Virgo 

LCGT 

AIGO 

LIGO Louisiana 

4km 
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Motivations 3: why Neutron Stars ? 

Origin of gamma-ray bursts (GRBs) 
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Gamma-ray bursts (GRBs) 

Duration: milli sec - min 

1970s : Vela Satellite 

1990s: CGRO,   

           Beppo-SAX 

2000s: HETE-II, Swift 
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Galactic or Extra-Galactic ? 
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 Gamma-Ray Bursts are the brightest events in the 

Universe.  

 During their peak, they emit more energy than all 

the stars and galaxies in the Universe combined ! 
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Two groups of GRBs 

 Long-duration Gamma-ray Bursts: 

=> HMBH Binaries 

 Short Hard Gamma-ray Bursts: 

Duration time < 2 sec 

=> NS-NS, NS-BH Binaries 



2011/2/26 16 

Short-hard GRBs 

hard 

soft 

short long 

1000 1 0.01 

No optical counterpart (?) 

 

Origin 

 Neutron star merger? 

 Magnetar flare? 

 Supernova? 

 
 

BATSE sample 
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Science 308 (2005) 939 

Short-Hard Gamma-ray Burst : Colliding NS binaries 
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 NS : higher density, low T, long lifetime 

HIC : high density, high T, very short lifetime 

 main difficulties for NS : cannot design experiment 

one can design detectors only, 

then, wait !!! 

Motivations 4 :  Possible Connection to Heavy Ion Collisions 
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 Ultimate Testing place for physics of dense matter. 

 Sources for gravitational wave detector; LIGO. 

  - testing place of dynamical general relativity 

 Sources for gamma ray bursts 

 Possible connection to Heavy Ion Collisions 

Summary of Motivations 
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How to treat dense matter inside NS ? 

 Construct Lagrangian (symmetry) 

 Obtain pressure & energy density vs number density 

 Solve TOV equation 

kF 

Fermi Sea 

0 

Fermi surface 

# of nucleons = O(10^57) 
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 All known symmetries 

 

energy-momentum conservation,  

special relativity, parity, time-reversal,  

charge-conjugation, G-parity, … 

 

 put all known (relevant) fields (particles) 

 

proton, neutron, pion, kaon, hyperons, electron,  

muon, … 

 

 Perturbative approach is unavoidable 

How to construct Lagrangian ? 
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Dense Matter : Conventional Approach [Serot & Walecka]  

holes inside  

Fermi sea 

Baryon propagator above  

the Fermi surface 

anti-baryon  

propagator 
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Free propagator of  

baryons & antibaryons 

Effect of finite density  

(Pauli exclusion principle)  

Propagator 
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Scalar-Vector Theory 
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Q) How to treat quantum effects in dense matter ? 

 Mean field Approach: 

Quantum effects are absorbed in the coupling 

constants in the effective Lagrangian 

=> fixed by experiments 

 Hartree-Fock Approach: 

Explicit calculation with wave functions 

summing all diagrams (with density dependent 

propagator) 
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Mean Field Approach (scalar & vector fields) 
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Mean Field Approach 
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Constraints 
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Nucleon Effective Mass 
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There are many more realistic models for dense 

nucleonic matter 

 Two-body potential (fitted to NN scattering) 

 Three-body term (suggested by theory, fitted by few 

body-nuclei & nuclear matter saturation property) 

But, those terms are uncertain at high density. 

Especially symmetry energy is very uncertain 
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C.M.Ko (A&M) Symmetry Energy 
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C.M.Ko (A&M) 
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C.M.Ko (A&M) 
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Kaon condensation in dense matter 
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 There are many equation of states (EoS) for NS 

 In this talk, kaon condensation will be introduced as 

an example of “soft EoS” 

 Astrophysical approaches in NS masses in this 

lecture are rather independent of the details of EoS 

as long as they are “soft” 

A few remarks 
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 proton, neutron: u, d quarks 

 By introducing strange quark 

- we have one more degrees of freedom 

- energy of the system can be reduced! 

  In what form ?  

 kaon, hyperons … … 

Why strange quarks in neutron stars ? 

Kaon is the lighest particle with strange quark ! 
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 without electrons 

Neutral kaon (d-bar,s) condensation 

 with electrons 

K- (u-bar, s) condensation 

neutron (udd)  

proton (uud) 

quark – anti-quark attraction 
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Meson Exchange Model 

Kaon is interacting with baryons through 

the exchange of sigma & omega mesons 

K- 
Scalar & vector : both attractive 
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kaon effective chemical potential 

  Can we test “Dropping K- Mass” on earth ? 

 q-q repulsion 

 q-q attraction 



Kaon Production in Heavy Ion Collision 

supports Dropping K- mass !  

Li,Lee,Brown,PRL(1997) 
41 



Neutron Star vs Nuclear Star 

Chemical Potential 

Neutron Star  Nuclear Star 

   n -> p + e- 
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 Kaons in Nuclear Star 

Kaon Condensation in NS 

 n, p, e => n, p, K- 

  n, p, e 

Nuclear Star 

Attraction between 

quark & anti-quark 
 K- ( u s) : N (uud,udd) 
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Kaon Condensation in Dense Matter 
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Neutrinos 

Formation of low mass Black Hole 

Neutron Star 

Reduce Pressure 

Soft EoS 

Astrophysical Implications 
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Neutron/Strange/Quark Star ? 
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How to describe kaon condensation ? 

 Meson exchange model in mean field level is not sufficient 

 Multiple-meson interactions has to be included 

 Chiral Perturbation Approach is one of the systematic 

approaches with given symmetries! 
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SU(3) Chiral Perturbation Theory 
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Baryon-Meson Interaction 
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How to obtain EOS (equation of state) ? 

• Construct Lagrangian based on symmetries 

• Mean field approximation (locally uniform matter) 

• momentum-eigenstates are good quantum states.  

- particles are not local 

- collective excitations (e.g. superconductivity) 

• Obtain pressure/energy-density vs density: p(r),e(r) 

• TOV equation : with given central density 



51 

Condensed Kaon Fields 

Y : baryon hyper-charge 

q : baryon e-charge 
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Charge Neutrality (Theomodynamic Potential) 
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Comparison of EOS with/without kaon 
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TOV equation 
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Cold neutron star : an example 
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Black Holes 

Neutron Stars 

Role of kaon condensation 



Kaonic Nuclear Bound States 

Is kaon-nuclear attraction is strong enough to trigger 

 kaon condensation ? 

Yamazaki et al. 
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Total binding energy : 194 MeV from K-ppn 

Mass = 3117 MeV,  width < 21 MeV 
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  Dote et al. 

Kaonic Nuclei  -  Mini Strange Star 

p n K 

3He 3He + K- 
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Kaonic Nuclei  -  Mini Strange Star 

 deep discrete bound states:  
with binding energy ~ 100 MeV 

 Strong in-medium KN interactions. 

 Precursor to kaon condensation.  

Very strong K--p attraction 
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Kaon Condensation `a la Vector Manifestation 
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 Conventional approach (bottom-up): 

- from zero density to higher density 

 Top-down approaches : 

- from fixed point (high density) to lower density 

- possibility in AdS/CFT 

What is critical density for kaon condensation ? 



Problems in bottom-up approach 

 Problem in K-p Scattering amplitude: 

experiment : - 0.67 + i 0.63 fm  (repulsive)  

chiral symmetry : + ( attractive  ! ) 

 Problem of L(1405) 

pole position of L(1405)  

 only 30 MeV below KN threshold 

Perturbation breaks down in bottom-up approach ! 
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Far below L(1405) pole, L(1405) is irrelevant ! 

One has to start  

below L(1405) pole ! 
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Essense of KN scattering & kaon condensation puzzle 

Near w=MK/2, L(1405) is irrelevant ! 
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Kaon Condensation `a la HY Vector Manifestation 

An example of Top-down approaches 

 All irrelevant terms are out in the analysis  

      from the beginning! 

Q) Is there a proper way to treat kaon condensation 

which doesn’t have problems with the irrelevant terms, 

e.g., L(1405), etc, from the beginning ? 
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Kaon condensation from fixed point 

density 

Vector 

Manifestation 

me 

mK 

nc 

Lots of problems  

due to irrelevant terms 

? 

chiral symmetry 

restoration 
66 



A Hybrid-Approach:  Weinberg-Tomozawa term 

  most relevant from the point of view of RGE `a la VM 

  w, r exchange between kaon & nucleon 

|VN(w)| = 171 MeV at n0 is well below  

experimental 270 MeV 

BR scaling is needed ! 
67 



Deeply bound pionic atoms [Suzuki et al.] 

fixed point of VM a*=1 

Enhancement at fixed point due to BR & VM 

(Harada et al.) 
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Fixed point of chiral symmetry restoration 

NChiralSR = 4 n0 

Brown/Rho [PR 396 (2004) 1] 

r-mass drops to zero around 4 n0 
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Kaon potential at critical density without BR & VM 

Kaon potential at fixed point ( 4n0) with BR + VM 

At fixed point, kaon effective mass goes to zero ! 

Enough attraction to bring kaon 

effective mass to zero  

at VM fixed point ! 

10% p, nc=3.1 n0 

BR scaling  

& HM-VM 
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a* (3n0)= 4/3 a* (4n0)= 1 

Simple extrapolation from fixed point (maybe too simple) 

mK*(3n0) = a* mK/4 = 165 MeV 

Essence of kaon condensation 

Value at the matching scale 

LM=1.1 GeV 

Fixed-point approach gives 

the essential part of kaon condensation 
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Kaon condensation from fixed point approach 

density 

Chiral 

symmetry 

restoration 

me 

mK 

rc 

? 

Only EOS which gives rc < rcSB is acceptable ! 
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Vector 

Manifestation 
me 

mK 

nc 

After kaon condensation, the system will follow the 

line guided by fixed-point analysis 

Kaon-condensed 

system 

73 

All the arguments against kaon condensation  

(which is based on bottom-up approach)  

is irrelevant  at densities near VM fixed point ! 



Open Question: 

Given the theoretical uncertainties, 

which one is the right one ? 
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 Nature 467, 1081 (Oct. 28, 2010)  

 PSR J1614-2230  

(Millisecond Pulsas & White Dwarf Binary)  

 1.97 ± 0.04 Msun 

(measurement based on Shapiro delay) 
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http://www.nrao.edu/pr/2010/bigns/ 

Why do they claim that  

this is the most massive NS yet known ? 

Announcement in NRAO homepage 



Lattimer & Prakash (2007) 
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 What happened to 

other NS’s whose 

masses were estimated 

to be bigger than 2 

solar mass?  

 What’s wrong with 

them? 
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What’s wrong with these observations? 



Q) Higher (than 1.5 Msun) neutron star masses ? 

1. X-ray Binaries 

2. Millisecond Pulsar J1903+0327 

3. Radio pulsars with white dwarf companion 

 Nature 467, 1081 (2010) :  J1614-2230 (1.97 Msun) 
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1. X-ray Pulsars 

Lattimer & Prakash (2007) 

 Mass measurements are highly uncertain 

 Many recent efforts to improve the estimates 
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Q) X-ray Binary [Vela X-1]  > 2 Msun ? 

“The best estimate of the mass of Vela X-1 is 1.86 Msun. 

Unfortunately, no firm constraints on the equation of state 

are possible since systematic deviations in the radial-velocity 

curve do not allow us to exclude a mass around 1.4 Msun 

as found for other neutron stars.” [Barziv et al. 2001] 

Actual center of mass 

Optical center (observation) 

NS 
He 
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rph= radius of photosphere 

Steiner, Lattimer, Brown, arXiv:1005.0811 
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arXiv:1810.1521 

2 sigma error 
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D.J. Champion et al., Science 320, 1309 (2008) 

2. Millisecond Pulsar J1903+0327 

 orbital period : P=95.1741 days 

 Spin period : P=2.14991 ms (recycled pulsar) 

 Highly eccentricity : e=0.43668 

 Mass estimate = 1.74(4) Msun 

 Observations of NS-MS(main sequence) binary 

requires different evolution process 
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Note that OBSERVERS  considered PSR J1903+0327  

as the most massive NS observed until 2009. 



WD-NS Binary 

3. Neutron Stars with  

White Dwarf companions 

Lattimer & Prakash (2007) 

NS-NS 

X-ray pulsar 
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Pulsar J0751+1807 

2.1 ± 0.2 solar mass 

1.26 +0.14 
-0.12  solar mass 

Nice, talk@40 Years of Pulsar, McGill,  

Aug 12-17, 2007 

Nice et al., ApJ 634 (2005) 1242 

difficulties in Bayesian analysis for WD mass 

Proven uncertainties in high-mass NS in NS-WD 
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 Nature 467, 1081 (Oct. 28, 2010)  

 PSR J1614-2230  

(Millisecond Pulsas & White Dwarf Binary)  

 1.97 ± 0.04 Msun 

(measurement based on Shapiro delay) 
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Shapiro delay 

pulsar 

Observer 

Additional red shift due to the gravity of companion star 
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http://www.nrao.edu/pr/2010/bigns/ 

Shapiro delay 

Nature 467, 1081 



If this limit is firm, maximum neutron star mass 

should be at least 1.97 Msun 
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Nature 467, 1081 



Q) IF maximum NS mass is confirmed to be 1.97 Msun 

 Why all well-measured NS masses in NS-NS binaries are 

< 1.5 Msun ? 

 Maybe, new-born NS mass is constrained by the stellar 

evolution, independently of maximum mass of NSs. 

Lattimer & Prakash (2007) 

NS-NS 
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• All masses are < 1.5 M⊙ 

Double NS binaries 
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Astrophysical Issues  

Formation & Evolution of NS Binaries 
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Accretion process 

is essential in 

understanding  

NS binaries  



Giant Star 

One has to understand formation of black hole/neutron star 

black hole or 

neutron star 
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Fe core mass 

Neutron 

Star 

In close Binaries 

Black Hole 
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Fresh NS mass from Fe core collapse 

Both in single & close binaries 

Fe core mass                   NS mass = 1.3 - 1.5 Msun 

This value is independent of NS equation of state. 

Q) What is the fate of primary (first-born) NS in binaries ? 

Note: Accurate mass estimates of NS come from binaries 
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Question) Final fate of first-born NS ? 

Evolution of 

Companion 

1st-born NS 

NS + accretion 

He 

Accretion 

Fe 
2nd 

NS/WD 
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Supercritical Accretion onto first-born NS 

 Eddington Accretion Rate :  photon pressure balances the 

gravitation attraction 

 If this limit holds, neutron star cannot be formed from the 

beginning (e.g. SN1987A; 10
8
 Eddington Limit). 

 Neutrinos can take the pressure out of the system  

allowing the supercritical accretion when accretion rate 

is bigger than 104 Eddington limit !  

(T > 1 MeV : Thermal neutrinos dominates !) 

Q) What is the implications of supercritical accretion ? 
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NS 

NS 
A 

B 

Life time 

He 

No accretion : nearly equal mass NS-NS binary! 

H 

H common 

envelope 

H 

He 

He common envelope 

Case 1 : DT < 1% 

A 

B 

Formation of NS-NS Binary 
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H red giant He red giant 

WD 

NS 

90% 10% 

A 

B 

Life time 

H He     He 

+0.7 Msun  
+0.2 Msun  

Supercritical Accretion:  

First born NS should accrete 0.9 M⊙ ! 

Case 2 : DT > 10% 

A 

B 

Formation of NS-WD Binary 
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Consequences of Supercritical Accretion 

 NS-NS Binary 

- nearly equal mass progenitors 

- no time for the accretion after NS formation 

- NS masses in NS-NS binaries are all below 1.5 msun 

 High-mass NS-WD Binary 

- mass difference of progenitors are large 

- some time for the supercritical accretion after NS birth 

- formation of higher-mass NS 

 Many other possibilities depending on the initial 

conditions of binaries 

 



 Open Question ? 

Are these different approaches consistent with each other ? 

• Neutron Star Equation of States :  

         Both in bottom-up & top-down approaches 

• Neutron Star Observations (Radio, X-ray, Optical, …) 

• Formation & Evolution Neutron Star Binaries  

• Gravitational Waves from Colliding Neutron Stars 

• Soft-Hard Gamma-ray Bursts from  Colliding Neutron Stars 

• Properties of Dense Matter from Heavy Ion Collisions 

• … … 
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Many Thanks 
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