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Suppose we have the TOE (Theory Of Everything). Are we done with

PHYSICS? The answer is ABSOLUTELY NOT:

Think about biology, which is basically molecular physics, or chemistry,

which is atomic and/or molecular physics. The fundamental theory of both

of them is QED but incredible number of people (more than the number of

physicists) are working on them.

TOE will make human proud of themselves but it does not improve human

life, namely practical point of view it does not help much. Remember that

in mathematics, an important question is raised. Lots of people working on

the problem and one big guy will solve the problem. Once the solution is

known, NOBODY works on that anymore. It of cause will be applied to

TOE. One day, a guy named WITTENSTEIN will put the period and all of

the rest lose their jobs. (After Prof. YM Kim’s talk, I seriously reconsider

the superstring theory. It seems to me the theory can produce almost all of

physics).

Now coming back to bio-chemistry, what makes the chemistry and biology

to survive even though the fundamental theory is well known? That is the

phenomena coming from multiparticle interactions. Then how do we study

them? The answer depends on the phenomena: If it is related to the static

properties, we can use well developed Statistic Equilibrium Theory; i.e., we

define ensembles (micro-, canonical-, grand canonical ensemble) and we can

calculate all most all of the properties using them. How about nonequilibrium

or dynamic properties depending on time? We follow the idea of our beloved

physicists like NEWTON, BOLTZMANN, MAXWELL, SCHEODINGER,

DIRAC and so on: The system we are studying is known at one incident

2



time and hence forth looking for how will it evolve or how was it evolved to

become the specific state. Say differently we look for the equations of motion.

Luckly, the equations of motion of multiparticle system can be derived by

using the fundamental theory of Newton, QED or QCD. We will think about

this problem today. The problem can be looked at a variety of viewpoints:

We try to answer to the question based on CLASSICAL PHYSICS first and

move on to QUANTUM PHYSICS. We may go on to QFT.
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I. CLASSICAL TRANSPORT THEORY

A. Micro Equation of Motion

Suppose we have a system which consists of N particles (could be same

kind or mixture of a few different kinds). What is most general distribution,

which has all the information of the system? As far as we know, it is a

PHASE SPACE distribution since each particle is completely known once we

have position and momentum (all the information can be calculated using

them). Introduce N-particle phase space distribution,

FN(~r1, ~p1;~r2, ~p2; ...;~rN , ~pN ; t).

This function has all information the system can have. We can visualize

this distribution function in 6 dimension phase space (3 positions and 3

momentum variables) as the distribution of N points or in 6N phase space

as one point. Some examples of this distribution are

F1(~r, ~p, t) = δ(~r − ~r1)δ(~p− ~p1)

FN = δ(~r − ~r1)δ(~p− ~p1) + δ(~r − ~r2)δ(~p− ~p2) + ...+ δ(~r − ~rN)δ(~p− ~pN),

where ~ri and ~pi are the position and momentum of i-th particle. In the first

point of view, we can interprete the distribution as a probability distribution

since if the number of particles is sufficiently large and we see the number

of particles in a given phase space volume element as a number density. If

we integrate over ~r2, ..., ~rN variables and their momentum counterparts, we

are left over ~r1 and ~p1. This is nothing but one particle distribution out

of N-body. Or we can integrate over (~r3, ~p3), ..., (~rN , ~pN) to give 2 particle
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distribution. How can we get the evolution equation? The answer is simple:

each particle must satisfy Newton equation,

m1
d~p1

dt
= ~Fext + ~Fint

where ~Fext is the force on the particle due to force other than the system,

~Fint is the internal force coming from the interaction within the system so

that the time evolution of the system is described by

∂F

∂t
= {H,F}P , (1.1)

where H is the microscopic Hamiltonian of the system under study. {H,F}P

is the Poisson bracket,

{H,F}P =
3N∑
i=1

(
∂H

∂qi

∂F

∂pi
− ∂H

∂pi

∂F

∂qi

)
. (1.2)

This is the well known LIOUVILLE EQUATION and it follows from the

Hamilton equation of motion. This is most general microscopic equation of

motion for N-body system. All of the classical transport equations can be

derived from this equation.
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B. Kinetic theory

All of the classical transport (kinetic) equations can be derived from the

Lieuville equation. As an example, the transport equation of a one particle

distribution function f(~p, ~q, t) can be obtained by integrating over allowed

phase space all coordinates and momenta except the coordinates and mo-

menta (~q, ~p) of the particle considered. However, the resulting transport

equation is not ‘closed’ in general. Namely, one particle distribution is cou-

pled to the higher order distributions, such as for example, 2 particle and/or

3 particle distribution functions and so on. It is called BBGKY hierachy.

Much of the effort in this field is devoted to finding suitable approximations

which closes the system of transport equations. One most example of kinetic

equation is Boltzmann equation,

∂f

∂t
+
d~r

dt
· ∂f
∂~r

+
d~p

dt
· ∂f
∂~p

=

∫ ∫ ∫
dp2dp3dp4 (1.3)

[f3(~p3)f4(~p4)(1± f(~p))(1± f2(~p2))W34→12(~p3, ~p4; ~p, ~p2)

− f1(~p)f2(~p2)(1± f3(~p3))(1± f4(~p4))W12→34(~p, ~p2; ~p3, ~p4)].

Note that we used the chotic assumption here, F2(~r, ~p1;~r, ~p2) =

f1(~r, ~p1)f2(~r, ~p2) and the only short range two particle interactions be im-

portant and the collision time is negligible. The physics comes in through

the collision matrix W . If the process is reversal, W12−>34 = W34−>12. If we

are considering classical cases, we can ignore the Bose enhancement or Pauli

blocking.
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C. Hydro Equations of Motion

Integrating the Boltzmann equation gives the continuity equation,∫
d3p

∂f

∂t
+

∫
d3p

dr

dt
· ∂f
∂r

+

∫
d3p

dp

dt
· ∂f
∂p

=

∫
d3p(

df

dt
)coll (1.4)

If the force is only a function of position, the third integration gives null and

we have

∂ρ

∂t
+
∂J i

∂ri
= 0, (1.5)

where we assume the number of particle is conserved in collisions, and

ρ =
∫
fd3p and J i =

∫
vifd3p. This is nothing but the famous continu-

ity equation. If we multiply the mass of a particle, the equation is a mass

continuity equation of motion.

Now multiplying by momentum and integrating over momentum to give

momentum, we have∫
d3ppi

∂f

∂t
+

∫
d3ppivj

∂f

∂rj
+

∫
d3ppiF j ∂f

∂pj
=

∫
d3ppi(

df

dt
)coll (1.6)

If the momentum is conserved in collision, we have null on right hand side

and give

∂P i

∂t
+

∂

∂rj

∫
d3pmvivjf − F j

∫
d3pδijf = 0. (1.7)

Now we set vi = v̄i + δvi to give,

∂P i

∂t
+

∂

∂rj

∫
d3pmv̄iv̄jf +

∂

∂rj

∫
d3pδviδvjf − F i

∫
d3pf = 0. (1.8)

and

∂P i

∂t
+

∂

∂rj
T ij = F i, (1.9)

7



where the stress tensor is T ij = [ρmv̄
iv̄j+ < mδviδvj >] and F is the force

density. This is the famous Navier-Stokes equation.

Now we multiply both side with particle energy and integrate over mo-

mentum,∫
d3p

1

2
mv2∂f

∂t
+

∫
d3p

1

2
mv2p

j

m

∂f

∂rj
+

∫
d3p

1

2
mv2F j ∂f

∂pj
(1.10)

=

∫
d3p

1

2
mv2(

df

dt
)coll = 0,

where the energy conservation was used. Again we seperate the velocity(or

momentum) into two pieces

∂f

∂t
(
1

2
mv̄2 +m < δv2 >) +

∫
d3p(v̄2 + 2v̄jδvj + δv2)(v̄i + δvi)

∂f

∂rj
(1.11)

−F i

∫
d3ppif = 0,

The final form is

∂E

∂t
+

∂

∂rj
[(ρE + P )vi + πijvj + ρ < δvi

δv2

2
> = ρ < vi > F i, (1.12)

where πij is the viscous stress tensor. Putting all together, we have hydro-

dynamic equations of motion,

∂ρ

∂t
+
∂J i

∂ri
= 0, (1.13)

∂ ~J

∂t
+ ~∇ · [ ~J × ~v + Π] = ~Fext, (1.14)

∂ρE

∂t
+ ~∇ · [(ρE + p)~v] + ~∇ · ~h+ ~∇ · (~π · ~v) = ~Fext · ~v, (1.15)

where the press tensor is

Πij = Pδij = πij = Pδij − η(
∂vi

∂rj
+
∂vj

∂ri
− 2

3
δij)− ζ(~∇ · ~v)δij, (1.16)

where η is the dynamic viscosity and ζ the bulk viscosity.
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II. QUANTUM TRANSPORT THEORY

A. From Schödinger Equation to Hydrodynamics

The Schödinger equation is

ih̄
∂ψ

∂t
= Hψ (2.1)

where H = − h̄2

2m
~∇2 + U(~r, t). The Born interpretation tells us that |ψ|2 is

the probability of the particle existance, (if you multiply by its mass, then it

becomes mass density), and the probability current density is given by

~J =
h̄

2im
[ψ∗~∇ψ − ψ~∇ψ∗] (2.2)

As well known, the probability is positive definite and add up to give 1. We

put

f(~r, t) = |ψ(~r, t)|2 (2.3)

and we can set the complex function (Madelung transformation)

ψ =
√
feiS/h̄ (2.4)

where f, S are named the quantum probability density and the quantum

phase function respectively. Note that the function S has ambiguity of 2πnh̄.

We may use branch cut to make the function a single valued. Just plug this

in the Schödinger equation, we find

Df

Dt
+ f ~∇ · ~J = 0, (2.5)

∂S

∂t
+

1

2m
|~∇S|2 = −UQM (2.6)

where the convective derivative D
Dt = ∂

∂t + ~J · ~∇ and UQM = − h̄2

2 (1
2
~∇2ln f +

1
4|~∇ln f |

2) + U . Unfortunately, this formula is not quite satisfactory, i.e., S
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and UQM are not unique since the equations are invariant wrt Gauge trans-

formation. We can go on to define the gauge invariant form. Please find

references for more information.
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B. Wigner Function

In quantum physics, we cannot measure a coordinate and its momentum

simultaneously with an arbitrary precision because of the Heisenberg uncer-

tainty principle, ∆x∆p ≥ h̄. This makes impossible to define the quantum

phase space distribution function. Nonetheless, it has been known to define

a function which has almost all the features expected from a phase space

distribution function. Note first that the quantum expectation value of an

observable Ô can be calculated by

< Ô > = TrÔρ̂, (2.7)

where Tr is the ”trace” on any complete basis, Ô the quantum operator of

the observable and ρ̂ the density matrix of the quantum system. The density

matrix can be expressed in general as follows,

ρ̂ =
∑
i

wi|i><i|, (2.8)

where the weighing factor has following properties:

1. wi ≥ 0,

2.
∑

iwi = 1,

3. the set {|i >} is a complete ortho-normal basis.

The corollary of the second property of the weighing factor is

Trρ̂ = 1, (2.9)

If all wi but one of them are zero, the system is in a PURE STATE. Otherwise,

the system is in a MIXED STATE.
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Now I take the coordinate space |~x > as the quantum basis so that the

Eq.(2.7) becomes

< Ô > =

∫
d~x < ~x|ρ̂Ô|~x >

=

∫
d~xd~y < ~x|ρ̂|~y >< ~y|Ô|~x >

=

∫
d~Rd~r < ~R +

1

2
~r|ρ̂|~R− 1

2
~r >< ~R− 1

2
~r|Ô|~R +

1

2
~r >

=

∫
d~Rd~y1d~y2 < ~R +

1

2
~y1|ρ̂|~R−

1

2
~y1 > δ(~y1 − ~y2) < ~R− 1

2
~y2|Ô|~R +

1

2
~y2 >

=

∫
d~xd~p W (~x, ~p, t)O(~x, ~p), (2.10)

where

W (~x, ~p) =

∫
d~y

(2πh̄)3
< ~x+

~y

2
|ρ̂|~x− ~y

2
> e−i~p·~y/h̄, (2.11)

O(~x, ~p) =

∫
d~y < ~x+

~y

2
|Ô|~x− ~y

2
> e−i~p·~y/h̄. (2.12)

This is so–called the WEYL TRANSFORMATION. In the derivation, I have

used the relation

1 =

∫
d~y |~y >< ~y|, (2.13)

δ(~q) =
1

(2πh̄)3

∫
d~pe−i~p·~q/h̄. (2.14)

Note that not all quantum observables Ô can be transformed from an oper-

ator to a single scalar function by the Weyl transformation. Spin is a typical

counter-example and its representation requires several functions. I shall

address this issue further below. Noticing close resemblance of the forms

between the quantum expectation value Eq.(2.10) and the classical one, it

is customary to call the WIGNER FUNCTION Eq.(2.11) also the quantum

distribution function. The function W was first introduced by Wigner to
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study quantum corrections to classical statistical mechanics. Ever since, the

Wigner function has found numerous applications in many fields of modern

physics. The power of this approach to quantum mechanics is not limited to

being only a calculational tool but it also provides fundamental insights into

the relations between classical and quantum physics.

Let us consider some properties of the Wigner function of a pure state, i.e.

we consider the Weyl transform of any quantum eigenstate ψi(~r) = 〈~x|i〉:

Wi(~r, ~p) =

∫
d~s

(2πh̄)3
e−i~p·~s/h̄ψ∗i (~r − ~s/2)ψi(~r + ~s/2). (2.15)

Note that with Eqs.(2.8,2.11) I have in general W =
∑

iwiWi. Wi has the

following properties:

1. Wi(~r, ~p, t) is a Hermitian, i.e. W †
i (~r, ~p, t) = Wi(~r, ~p, t). Therefore,

Wi(~r, ~p, t) is real.

2. The Wigner function satisfies the following relations∫
d~p Wi(~r, ~p ) = |ψi(~r )|2, (2.16)∫
d~r Wi(~r, ~p ) = |ψ̃i(~p )|2, (2.17)∫

d~r d~p Wi(~r, ~p ) = 1, (2.18)

where ψ̃i(~p ) is the wavefunction in momentum space.

3. The quantum expectation value of an observable Ô is

< i|Ô|i >=

∫
d~r d~p Wi(~r, ~p, t)O(~r, ~p ), (2.19)

where O(~r, ~p ) is the Weyl transform of the observable, self–adjoint op-

erator Ô.
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4. For given wave functions ψi(~r ) and ψj(~r ), I have

|
∫
d~r ψ∗i (~r )ψj(~r )|2 = (2πh̄)3

∫
d~r

∫
d~p Wi(~r, ~p, t)Wj(~r, ~p, t)(2.20)

For i = j I obtain:∫
d~r

∫
d~p [Wi(~r, ~p, t)]

2 =
1

(2πh̄)3
. (2.21)

Taking the wave functions ψi and ψj to be orthogonal to each other, I

obtain ∫
d~r

∫
d~p Wi(~r, ~p, t)Wj(~r, ~p, t) = 0. (2.22)

Hence we see that in general Wi(~r, ~p) cannot be in everywhere positive,

i.e. it must also assume negative values. For this reason one calls Wi a

pseudo–probability density. However, there exists a simple way to make

Wi positive definite by using the coarse graining (smearing) function:

G(~r, ~p;λr, λp) =
1

(πλrλp)3
e−~p

2/λ2
p−~r 2/λ2

r . (2.23)

The coarse grained distribution is

Ws,i(~r, ~p, t;λr, λp) =
1

(πλrλp)3

∫
d~r ′d~p ′ e−(~p−~p ′)2/λ2

p−(~r−~r ′)2/λ2
rWi(~r

′, ~p ′, t).

(2.24)

5. From the Cauchy–Schwartz inequality and the normalization condition

of the wavefunction it further follows:

|Wi(~r, ~p, t)|2 ≤
∫

d~s

(2πh̄)3
|ψi(~r + ~s/2, t)|2

∫
d~s

(2πh̄)3
|ψi(~r − ~s/2, t)|2

=

(
2

2πh̄

)6

. (2.25)
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Therefore, I get

|Wi(~r, ~p, t)| ≤
(

2

2πh̄

)3

. (2.26)

This is another form of the uncertainty principle. Namely, since the

probability to find the particle at point (~r, ~p) is less than ( 2
h)3, the phase

volume needed to find the particle should be larger than (h2)3.

One can introduce a Wigner function in a gauge invariant way. The idea

is that a wave function can be written by using the translation operator as

follows;

ψ(~r ± ~s/2) = e±~s·
~∇/2ψ(~r ), (2.27)

and one then replaces the derivative ~∇ by the covariant derivative ~D for a

gauge transformation, i.e.

~∇ → ~D = ~∇− ie ~A(~r, t)/h̄ (2.28)

for the electromagnetic fields. The final result for the Wigner function in

electromagnetic fields is

W (~r, ~p ) =

∫
d~s

(2πh̄)3
exp

(
−i~s
h̄
· [~p+e

∫ 1/2

−1/2

dλ ~A(~r + λ~s )]

)
ψ∗(~r−~s/2)ψ(~r+~s/2).

(2.29)

It is possible to generalize this definition further to allow for non–abelian

gauge theory.

I note that there are many other definitions for a quantum distribution

in addition to the one (Wigner) presented here. I will not consider these

further. Also, I will mostly address pure state Wigner functions.
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C. Quantum Transport Equation

The evolution equation of a Wigner function W (~r, ~p, t) follows directly

from the Schrödinger equation,

ih̄
∂

∂t
ψ(~r, t) =

[
− h̄2

2m
∇2 + V (~r )

]
ψ(~r, t). (2.30)

Differentiating the Wigner function Eq.(2.15) with respect to time gives

ih̄
∂

∂t
W (~r, ~p, t) =

∫
d3s

(2πh̄)3
e−i~p·~s/h̄[− h̄2

2m
∇2ψ(~r + ~s/2, t) ψ∗(~r − ~s/2, t)

+
h̄2

2m
ψ(~r + ~s/2, t) ∇2ψ∗(~r − ~s/2, t)

+[V (~r + ~s/2)− V (~r − ~s/2)]ψ(~r + ~s/2, t) ψ∗(~r − ~s/2, t)].(2.31)

First of all, I replace the derivative with respect to ~r by the derivative with

respect to ~s and integrate by parts and then go from ~s back to ~r–derivative

to obtain[
∂t +

1

m
~p · ∇

]
W (~r, ~p, t) =

1

ih̄

∫
d3s

(2πh̄)3
e−i~p·~s/h̄ [V (~r + ~s/2)− V (~r − ~s/2)]

·ψ(~r + ~s/2, t) ψ∗(~r − ~s/2, t). (2.32)

Assuming the potential V can be expanded in Taylor series around point ~r,

I obtain finally,[
∂t +

1

m
~p · ~∇

]
W (~r, ~p, t) =

∞∑
k=0

(ih̄)2k

22k(2k + 1)!
(~∇′ · ~∂)2k+1V (~r )W (~r, ~p, t),

or, moving the classical force term ~F = −~∇V to the left hand side:[
∂t +

1

m
~p · ~∇+ ~F (~r) · ~∂

]
W (~r, ~p, t) =

∞∑
k=1

(−h̄2/4)k

(2k + 1)!
(~∇′ ·~∂)2k+1V (~r )W (~r, ~p, t),(2.33)

where ~∇′ is the derivative with respect to coordinate ~r on the potential V very

next to it and ~∂ the derivative with respect to momentum ~p. This equation

16



is the quantum transport equation for a one particle Wigner function.

In the classical limit h̄→ 0, I have

∂tW (~r, ~p, t) = −
[

1

m
~p · ~∇+ ~F (~r) · ~∂

]
W (~r, ~p, t) = {H,W}, (2.34)

which is just a Liouville equation, as indicated. We will see that the classical

limit (h̄ → 0) of the relativistic quantum transport equation is actually a

much more subtle matter, and I will study it in the context of the relativistic

classical limit in more detail. Note further that in the classical limit the

evolution of a Wigner function is determined by the solution of Hamilton’s

equations of motion, i.e.

W (~r, ~p, t) = W (~r(~r0, ~p0, t0|t), ~p(~r0, ~p0, t0|t)), (2.35)

where ~r(~r0, ~p0, t0|t) and ~p(~r0, ~p0, t0|t) are the solution of Hamilton’s equations

with initial condition (~r0, ~p0) at time t0. This (~r(t), ~p(t)) is the so–called

Wigner trajectory.

It is often useful to express the quantum transport equation in a integral

equation. To that end, I define the Green’s function which satisfies the

equation, (
∂

∂t
+
~p

m
· ~∇
)
G(~r, ~p, t) = δ(~r)δ(t). (2.36)

The integral form of Eq.(2.33) is then

W (~r, ~p, t) = W0(~r, ~p, t) +

∫
d~r ′dt′ G(~r − ~r ′, ~p, t− t′)K(~r ′, ~p, t′)W (~r ′, ~p, t′),(2.37)

where W0(~r, ~p, t) is the solution of a field free equation. The kernel K is

defined by

K(~r, ~p, t) =
∞∑
k=0

(ih̄)2k

22k(2k + 1)!
(~∇′ · ~∂)2k+1V (~r ). (2.38)
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The form of the Green’s function is most easily obtained considering the

integral equation Eq.(2.37) in the (~q, ~p, ω) space: consider the Fourier trans-

formations with respect to ~r and t

f̃(~q, ~p, ω) =

∫
d~r dt e−i~q·~r/h̄+iωt/h̄ f(~r, ~p, t). (2.39)

The Green’s function Eq.(2.36) becomes after this transformation,

G̃ret(~q, ~p, ω) =
i

ω + iε− ~p · ~q/m
, (2.40)

where ε is an infinitesimal positive definite. Note that I explicitly incorporate

the causality principle. I so obtain the integral equation in this representa-

tion,

W̃ (~q, ~p, ω) = W̃0(~q, ~p, ω)+ G̃(~q, ~p, ω)

∫
d~q ′dω′

(2πh̄)4
K̃(~q−~q ′, ~p, ω−ω′)W̃ (~q ′, ~p, ω′).

(2.41)

W̃0(~q, ~p, ω) is the solution of a homogeneous equation and the kernel

K̃(~q, ~p, ω) is the Fourier transform of K(~r, ~p, t),

K̃(~q, ~p, ω) =
∞∑
k=0

−i(h̄)2k

22k(2k + 1)!
(~q · ~∂)2k+1Ṽ (~q, ω)

=
1

ih̄
Ṽ (~q, ω)

(
e+ h̄

2~q·~∂ − e−
h̄
2~q·~∂
)
. (2.42)

Since the exponential term on the right hand side is a translation operator,

one obtains:

W̃ (~q, ~p, ω) = W̃0(~q, ~p, ω) +
1

ih̄
G̃(~q, ~p, ω)

∫
d~q ′dω′

(2πh̄)4
Ṽ (~q − ~q ′, ω − ω′)

·
[
W̃ (~q ′, ~p+

h̄

2
(~q − ~q ′), ω′)− W̃ (~q ′, ~p− h̄

2
(~q − ~q ′), ω′)

]
.(2.43)
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If the potential V (~r, t) does not depend on time, the Fourier transform of the

potential is

Ṽ (~q, ω) = Ṽ (~q)(2πh̄)δ(ω), (2.44)

so that the integral equation simplifies to

W̃ (~q, ~p, ω) = W̃0(~q, ~p, ω) +
1

ih̄
G̃(~q, ~p, ω)

∫
d3q ′

(2πh̄)3
Ṽ (~q − ~q ′)

·
[
W̃ (~q ′, ~p+

h̄

2
(~q − ~q ′), ω)− W̃ (~q ′, ~p− h̄

2
(~q − ~q ′), ω)

]
.(2.45)

This integral form is often useful in quantum physics.
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III. QUANTUM FIELD TRANSPORT THEORY

The Wigner transport formulation has been extended to allow for relativis-

tic kinematics and particle production next to the matter flow processes.

A. Introduction

In the previous section, we introduced the one–particle Wigner function as

the Weyl transform of the density matrix. While this Wigner function found

applications in a variety of fields such as the chemical reactions, nuclear

physics, quantum optics and solid state physics, this theory cannot describe

the particle production process. Since the process of particle production is

unavoidable in relativistic formulation and/or at sufficiently high energy, one

has to develop a transport theory which has room for the process. Nearly 30

years ago Carruthers and Zachariasen introduced a relativistic 8D Wigner

function for spinless neutral particle fields:

F (p, x) =

∫
d4y eip·y < Ψ|ϕ̂(x− y/2)ϕ̂(x+ y/2)|Ψ >, (3.1)

where |Ψ > is the state vector. ϕ̂(x) is the ‘second-quantized’ Klein–Gordon

field obeying the equation of motion

(∂µ∂
µ +m2)ϕ̂(x) = ĵ(x), (3.2)

where ĵ(x) is the source fixed in its form by the model under consideration.

The equation of motion of this Wigner function can be obtained by applying

(∂µ∂
µ + m2) on Eq.(3.1) and using the field equation. Since in general the

source ĵ(x) is a function of the field itself and/or other fields, the equation

of motion cannot be closed unless one makes some kind of approximation.
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This is one of the general properties of transport theory and is known as the

BBGKY hierarchy problem — the dynamics of a two-point Wigner function

is determined by a four– or higher point Wigner function and that of a four–

point Wigner function by six or higher–point Wigner function, and so on. To

break this hierarchy a suitable approximation, for example, MFA(mean field

approximation), is made. It is important to remember that this transport

theory inherits the intrinsic infinities from the relativistic field theory. There-

fore one needs to renormalize the theory to produce meaningful quantities.

This problem has been addressed by Cooper et. al. for the scalar field.

This field theoretical approach has been extended to the Dirac field by Hakim

who was interested to study strongly interacting particles forming relativistic

dense matter. While the scalar field Wigner function is in principle 2 × 2

matrix due to the particle and antiparticle sector, the spinor field Wigner

function is 4× 4 matrix coming from the spinor structure,

F (p, x) =

∫
d4y

(2πh̄)4
e−ip·y < Ψ| ˆ̄ψ(x+ y/2)⊗ ψ̂(x− y/2)|Ψ > . (3.3)

This 4 × 4 matrix Wigner function has been decomposed into 16 functions

on the basis of 16 linear independent matrices,

14, γ
µ, σµν, γ5, γµγ5. (3.4)

The dynamics of this Wigner function can be determined using the Dirac

field equation.

While the formulations presented above are in general manifestly Lorentz

covariant and can describe the particle production process, they miss one

important ingredient, namely, a gauge covariance. It is well–known that the

observable is gauge invariant and the physical process must be described by
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a gauge covariant theory. In particular, the gauge symmetry resides in the

heart of modern physics, as for example in QED, QCD or standard model.

Heinz and Elze et al were able to propose Wigner functions which had full

gauge symmetry. To this end, they consider the Wigner operator,

Ŵ (x, p) =

∫
d4y

(2πh̄)4
e−ip·y ˆ̄ψ(x+ y/2)⊗ ψ̂(x− y/2)

=

∫
d4y

(2πh̄)4
e−ip·y ˆ̄ψ(x)e+y

2∂
†
x ⊗ e−

y
2∂xψ̂(x), (3.5)

where ∂† operates on the function to the left of it and the relation f(x ±

y) = e±y·∂xf(x). ⊗ is the tonsorial product in spinor space (4 × 4) as well

as the internal quantum number such as the color. To make this function

gauge covariant, it is only necessary to replace the derivative by the covariant

derivative, i.e.

∂µ → Dµ = ∂µ − igAµ, (3.6)

where g is the coupling constant and Aµ is the gauge field. Thus, the gauge

covariant Wigner operator is

Ŵ (x, p) =

∫
d4y ˆ̄ψ(x+ y/2)U(x+ y/2, x)⊗ U(x, x− y/2)ψ̂(x− y/2),(3.7)

with

U(a, b) = exp

[
ig

∫ a

b

dxµA
µ

]
, (3.8)

where the path of the link operator U must be straight line in order to

interpret p as the physical 4–momentum.

Under the gauge transformation,

ψ(x) → S(x)ψ(x), S(x) = eiθa(x)ta, (3.9)

Aa
µ → Aa

µ −
1

g
∂µθ

a − fabcθbAc,µ, (3.10)
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the Wigner operator transforms covariantly, akin to the operator Dµ:

Ŵ (x, p) → S(x)Ŵ (x, p)S−1(x). (3.11)

Here ta is the generator of the gauge group and fabc the structure constant of

the gauge group. Of cause, the Wigner function is the quantum expectation

of the Wigner operator in a given state |Ψ >. The dynamics of this function

can be obtained by the field equation and it requires tedious operator or-

dering especially in the case of non–abelian gauge theory. This formulation

is manifestly Lorentz covariant, and the dynamics described occur also off

the mass–shell. Thus in order to calculate a physical observable one should

project the results on the mass–shell, which is a (complex) constraint of the

8-dimensional dynamical motion.
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B. BGR Functions and Equations

This projection requirement makes it difficult to extract the physical infor-

mation from the transport functions, which are even more difficult to obtain.

Consequently little progress was made regarding practical applications of the

eight dimensional formulation. However, a different approach has been also

recently proposed by Bia lynicki–Birula, Górnicki and Rafelski, who intro-

duced the so–called Dirac–Heisenberg–Wigner (DHW) function, which is the

Weyl transform of Dirac–Heisenberg density matrix. In many regards this

formulation is similar to the conventional nonrelativistic Wigner theory. The

DHW function for the matter field of the abelian gauge theory (QED), is

introduced as follows,

Wαβ(~r, ~p, t)=−1

2

∫
d3s e−i~p·~s <Ψ|e−ie

∫
dλ~s· ~A(~r+λ~s,t)[ψ̂α(~r+~s/2,t), ψ̂†β(~r−~s/2,t)]|Ψ>,(3.12)

where |Ψ> is a state vector and ~A is the gauge field. α and β are the spinor

index. This DHW function has following properties:

1) since the DHW function is gauge invariant, I can fix the gauge in a most

convenient way which is here the temporal gauge (A0 = 0);

2) the DHW function is not manifestly Lorentz covariant because it has only

one time t which is a laboratory time (this is a reason why it is called a single

time formulation). However, it has full Poincare symmetry;

3) the field operators in Eq.(3.12) have been combined such that Wαβ pos-

sesses the charge conjugation symmetry;

4) the transformation variable ~p is the physical kinetic momentum, a conse-

quence of choosing the straight line integral in the phase factor which makes

the function gauge invariant;
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5) Wαβ is a Hermitian by construction so that there are 16 linearly indepen-

dent real functions defining the matrix.

One can decompose this 4×4 matrix W on the complete set of 4×4 Hermitian

matrices,

W(~r, ~p, t) =
1

4

(
f0 +

3∑
i=1

ρifi + ~σ · ~g0 +
3∑
i=1

ρi~σ · ~gi

)
, (3.13)

where the complete set of 4× 4 Hermitian matrices is given in Appendix B.

This decomposition allows a direct physical interpretation of the coefficient

functions which are called ‘BGR’ functions. The physical meanings of the 16

component functions can be inferred from their momentum integrals:∫
d3p

(2πh̄)3
f0(~r, ~p, t) = Tr[ψ̄(~r, t)γ0ψ(~r, t)], (3.14)∫

d3p

(2πh̄)3
f1(~r, ~p, t) = Tr[ψ̄(~r, t)iγ0γ5ψ(~r, t)], (3.15)∫

d3p

(2πh̄)3
f2(~r, ~p, t) = Tr[ψ̄(~r, t)γ5ψ(~r, t)], (3.16)∫

d3p

(2πh̄)3
f3(~r, ~p, t) = Tr[ψ̄(~r, t)ψ(~r, t)], (3.17)∫

d3p

(2πh̄)3
~g0(~r, ~p, t) = −Tr[ψ̄(~r, t)iγ5~γψ(~r, t)], (3.18)∫

d3p

(2πh̄)3
~g1(~r, ~p, t) = Tr[ψ̄(~r, t)~γψ(~r, t)], (3.19)∫

d3p

(2πh̄)3
~g2(~r, ~p, t) = −Tr[ψ̄(~r, t)iγ0~γψ(~r, t)], (3.20)∫

d3p

(2πh̄)3
gk3(~r, ~p, t) = Tr[ψ̄(~r, t)iεijkγijψ(~r, t)], (3.21)

where γ5 = γ0γ1γ2γ3, and γij = γiγj. Tr stands here for the trace over the

spinor space only. Thus (f0, ~g1) form the current four vector phase space

distributions, f3 is the mass density, ~g0 the spin density, ~g3 the magnetic
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moment density, etc. These interpretations can be further justified by the

conservation laws I shall discuss below.

The time evolution of this DHW function, thus the relativistic quantum

transport equation, can be obtained by differentiating Eq.(3.12) with respect

to time and using Dirac field equations,

i∂tψµ = [~α · (−i~∇− e ~A) + βm]µνψν(~r, t), (3.22)

−i∂tψ†µ = ψ†ν(~r, t)[~α · (i∇− e ~A) + βm]νµ. (3.23)

Keeping track of arguments (~r − ~y/2) and (~r + ~y/2) of the field operators

carefully, one obtains the time evolution,

DtW = −c
2
~D · {ρ1~σ,W} −

ic

h̄
[ρ1~σ · ~P + ρ3mc,W], (3.24)

where the integro-differential operators are

Dt = ∂t + e

∫ 1/2

−1/2

dλ~E(~r + ih̄λ~∂p, t) · ~∂p, (3.25)

~D = ~∇+
e

c

∫ 1/2

−1/2

dλ ~B(~r + ih̄λ~∂p, t)× ~∂p, (3.26)

~P = ~p− ieh̄

c

∫ 1/2

−1/2

dλλ ~B(~r + ih̄λ~∂p, t)× ~∂p. (3.27)

Since the formulation is constructed on the temporal gauge, the electric and

magnetic fields are given by

~E = −∂
~A

∂t
, (3.28)

~B = ~∇× ~A. (3.29)

One further assumption was made to obtain these equations: The expectation

value of the products of Dirac field operators with gauge field strength was
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replaced by the product of corresponding expectation values,

<Ψ| ~E exp

(
−ie

∫
dλ~s · ~A(~r + λ~s, t)

)
[ψ(~r + ~s/2, t), ψ(~r − ~s/2, t)]|Ψ>→

<Ψ| ~E|Ψ> <Ψ| exp

(
−ie

∫
dλ~s · ~A(~r + λ~s, t)

)
[ψ(~r + ~s/2, t), ψ(~r − ~s/2, t)]|Ψ>,(3.30)

<Ψ| ~B exp

(
−ie

∫
dλ~s · ~A(~r + λ~s, t)

)
[ψ(~r + ~s/2, t), ψ(~r − ~s/2, t)]|Ψ>→

<Ψ| ~B|Ψ> <Ψ| exp

(
−ie

∫
dλ~s · ~A(~r + λ~s, t)

)
[ψ(~r + ~s/2, t), ψ(~r − ~s/2, t)]|Ψ> .(3.31)

If one does not make this approximation, the equation of motion cannot be

closed since the gauge field strength will introduce the Dirac field as a source.

This is similar to the BBGKY hierarchy as mentioned before. In this approx-

imation one neglects the fluctuation in the number of the photons, while all

fluctuations of the matter field are retained. Consequently, this approach is

particularly suitable to the study of the matter field in the presence of strong

gauge fields.

After substituting the expansion of DHW function W, Eq.(3.13), into the
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evolution equation, one obtains BGR equations,

Dtf0 + c ~D · ~g1 = 0, (3.32)

Dtf1 + c ~D · ~g0 = −2mc2

h̄
f2, (3.33)

Dtf2 +
2c

h̄
~P · ~g3 = +

2mc2

h̄
f1, (3.34)

Dtf3 −
2c

h̄
~P · ~g2 = 0, (3.35)

Dt~g0 + c ~Df1 −
2c

h̄
~P × ~g1 = 0, (3.36)

Dt~g1 + c ~Df0 −
2c

h̄
~P × ~g0 = −2mc2

h̄
~g2, (3.37)

Dt~g2 + c ~D × ~g3 +
2c

h̄
~Pf3 = +

2mc2

h̄
~g1, (3.38)

Dt~g3 − c ~D × ~g2 −
2c

h̄
~Pf2 = 0. (3.39)

To close the set of equations, Maxwell equations must be added,

∂t ~B = −~∇× ~E, (3.40)

~∇ · ~B = 0, (3.41)

∂tε0 ~E = ~∇× µ−1
0
~B −~jt, (3.42)

~∇ · ε0 ~E = ρt, (3.43)

where charge and current density including a back reaction are

ρt(~r, t) = e

∫
d~p f0(~r, ~p, t) + ρext(~r, t), (3.44)

~jt(~r, t) = e

∫
d~p ~g1(~r, ~p, t) +~jext(~r, t), (3.45)

and where ρext and ~jext is the external charge and current density. The total

charge, energy, momentum and angular momentum for the closed system are

28



given by, respectively,

Q = e

∫
dΓ f0(~r, ~p, t), (3.46)

E =

∫
dΓ [c~p · ~g1(~r, ~p, t) +mc2f3(~r, ~p, t)]

+
1

2

∫
d3r [ε0 ~E

2(~r, t) + µ−1
0
~B2(~r, t)], (3.47)

~P =

∫
dΓ ~pf0(~r, ~p, t) +

∫
d3r [ε0 ~E(~r, t)× ~B(~r, t)], (3.48)

~M =

∫
dΓ [~r × ~pf0(~r, ~p, t) +

h̄

2
~g0(~r, ~p, t)] +

∫
d3r ~r × [ε0 ~E(~r, t)× ~B(~r, t)],(3.49)

where dΓ is a phase space volume element, dΓ = d3rd3p/(2πh̄)3. ε0 and µ0

is the electric permittivity and magnetic permeability. It is straightforward

to prove that those quantities are constants of motion. Note that equations

(3.46-3.49) give further motivation for the interpretation of the distributions

f0, f3, ~g0, ~g3 presented above.
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C. Closed Time Path Method: Schwinger-Keldysh formalism

Why do we need this formalism? Think about a quantum field theory.

One major object is to calculate the transition matrix element,

iM = < out|Tφ(x)φ(y)|in > . (3.50)

We know how to handle this expression perturbatively. Now consider statis-

tical problem to obtain expectation,

< ψ, t0|Tφ(x)φ(y)|ψ, t0 > . (3.51)

namely the quantum state is at same time, which is huge difference from

standard formalism. One way to go around is to define a new time path

and see the time t0 different; the time t0 on the right hand side is starting

and goes to + infinity and comes back to the time t0 on the left side. We

can use all the machinery of the standard quantum field theory. But one

problem, which is good and bad, is that the time order of field operators is

much more: actually 4 of them. See the figures: However all of them have

physical meanings. See the further information in Phys. Rep. 118, 1 (1985)

by G. Zhou, Z. Su, B. Hao and L. Yu.
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