Top down model with baryon density: Introduction

Yunseok Seo

CQUeST

February 28, 2011

Based on JHEP 0804:010: YS, Sang-Jin Sin JHEP 103:074: Youngman Kim, YS, Sang-Jin Sin JHEP 1003:115: YS, Jonathan P. Shock, Dimitrios Joakos, Sang-Jin Sin arXiv:1011.0868: Youngman Kim, YS, Ik Jae Shin, Sang-Jin Sin On going work: Kwanghyun Jo, YS, Sang-Jin Sin/ Bogeun Gwak, Minkyoo Kim, Bum-Hoon Lee, YS, Sang-Jin Sin

- 4 同 6 4 日 6 4 日 6

Motivation

- AdS/CFT correspondence
- Background geometry(D4 brane)
 - D6 probe: Massive quark model
- Background geometry(D3/D-instanton)
 - Phase transition
- Conclusion and Discussion

• We are interested in understanding of QCD diagram

< 🗇 >

2

·문▶ ★ 문▶

- We are interested in understanding of QCD diagram
- \bullet Strongly coupled system \rightarrow breakdown of perturbative calculation

프 () () () (

-2

- We are interested in understanding of QCD diagram
- \bullet Strongly coupled system \rightarrow breakdown of perturbative calculation
- QCD with finite density is very hard to understand even in lattice theory

글 > : < 글 >

- We are interested in understanding of QCD diagram
- $\bullet~$ Strongly coupled system $\rightarrow~$ breakdown of perturbative calculation
- QCD with finite density is very hard to understand even in lattice theory
 - Chiral symmetry breaking \leftrightarrow confinement breaking?

글 > : < 글 >

- We are interested in understanding of QCD diagram
- $\bullet~$ Strongly coupled system $\rightarrow~$ breakdown of perturbative calculation
- QCD with finite density is very hard to understand even in lattice theory
 - Chiral symmetry breaking ↔ confinement breaking?
 - What's the density dependence of hadronic properties? (B-R scaling...)

- ∢ ≣ →

- We are interested in understanding of QCD diagram
- $\bullet~$ Strongly coupled system $\rightarrow~$ breakdown of perturbative calculation
- QCD with finite density is very hard to understand even in lattice theory
 - Or Chiral symmetry breaking ↔ confinement breaking?
 - What's the density dependence of hadronic properties? (B-R scaling...)
- Holographic QCD based on AdS/CFT may help to understand strongly interacting system with finite density

글 > : < 글 >

• String theory

Open Strings	Closed Strings
massless excitation Gauge Filed A_{μ}	massless excitation Graviton $G_{\mu u}$
D-branes	Curved spacetime
low energy limit $\mathcal{N}=$ 4, $D=$ 4 SYM	low energy limit 10d Supergravity
Large <i>N</i> limit Super conformal Theory	Near horizon limit $\mathit{AdS}_5 imes S^5$

• There is Open-Closed string duality

白 と く ヨ と く ヨ と …

-2

- Weak coupling limit ($\lambda \ll 1$): $\mathcal{N} = 4$, D = 4, $SU(N_C)$ SYM
- Strong coupling limit ($\lambda >> 1$): Classical gravity in $AdS_5 \times S^5$
- From calculating classical gravity, we can obtain some quantities in gauge theory with strong coupling.

(B)

AdS/CFT correspondence

 AdS/CFT dictionary 	
Gauge Theory(boundary)	Gravity(bulk)
Operator ${\cal O}$ (Energy momentum tensor ${\cal T}_{\mu u}$)	Field ϕ (Graviton $g_{\mu u}$)
Source J	Non-normailzable mode ϕ_o
$Expectation \ value < \mathcal{O} >$	Normalizable mode
Conformal dimension Δ_{ϕ}	mass of field m_ϕ
Flavor degrees	Probe brane
Global symmetry	Gauge symmetry

・ロト・西ト・モート モー うらの

AdS/CFT correspondence

 AdS/CFT dictionary 	
Gauge Theory(boundary)	Gravity(bulk)
Operator ${\cal O}$ (Energy momentum tensor ${\cal T}_{\mu u}$)	Field ϕ (Graviton $g_{\mu u}$)
Source J	Non-normailzable mode ϕ_o
Expectation value $< \mathcal{O} >$	Normalizable mode
Conformal dimension Δ_{ϕ}	mass of field m_ϕ
Flavor degrees	Probe brane
Global symmetry	Gauge symmetry

• In asymptotic region $(r \to \infty)$

$$\phi \sim J + \frac{\langle \mathcal{O} \rangle}{r^{\alpha}} + \cdots$$

★個 ▶ ★ 国 ▶ ★ 国 ▶ →

-2

▲□ > ▲ 目 > ▲ 目 > → 目 → の Q ()

•
$$y(\rho) \sim M_q + \frac{\langle \psi \psi \rangle}{\rho^2} + \cdots$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ � � �

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

• Adding density (or chemical potential)

(4) 医(4) (4) 医(4) (4)

___ ▶

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry

< 三→ < 三→ -

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - Gauge symmetry on probe brane \leftrightarrow Global symmetry
 - U(1) on brane ${\cal A}_{\mu} \leftrightarrow$ Global current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

★ Ξ → ★ Ξ → ...

- T

= 990

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - Gauge symmetry on probe brane \leftrightarrow Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow {
 m Global}$ current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$
 - $A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q >$ (number density)

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → ∽ ۹ ()~

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - Gauge symmetry on probe brane \leftrightarrow Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow {
 m Global}$ current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > (ext{number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane ${\cal A}_{\mu} \leftrightarrow$ Global current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > (ext{number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

Sources

- ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 → の � () ◆

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane ${\cal A}_{\mu} \leftrightarrow$ Global current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > (ext{number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

- Sources
 - End points of fundamental strings (quarks)

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow {
 m Global}$ current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > ({
m number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

- Sources
 - End points of fundamental strings (quarks)
 - Baryon vertex

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow {
 m Global}$ current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > (ext{number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

Sources

- End points of fundamental strings (quarks)
- Baryon vertex

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow {
 m Global}$ current $< J^{\mu}> = < ar{\psi}\gamma^{\mu}\psi>$

•
$$A_0 \leftrightarrow \langle \bar{\psi} \gamma^0 \psi \rangle = \langle \psi^{\dagger} \psi \rangle = \langle Q \rangle$$
(number density)
• $A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$

- Sources
 - End points of fundamental strings (quarks)
 - Baryon vertex

- ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● � � � �

•
$$y(\rho) \sim M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$

- Adding density (or chemical potential)
 - $\bullet~$ Gauge symmetry on probe brane $\leftrightarrow~$ Global symmetry
 - U(1) on brane $A_{\mu} \leftrightarrow$ Global current $< J^{\mu} > = < ar{\psi} \gamma^{\mu} \psi >$

•
$$A_0 \leftrightarrow < ar{\psi} \gamma^0 \psi > = < \psi^\dagger \psi > = < Q > ({
m number density})$$

•
$$A_t \sim \mu + \frac{\langle \psi^{\dagger} \psi \rangle}{\rho^2} + \cdots$$

- Sources
 - End points of fundamental strings (quarks)
 - Baryon vertex

▲ 臣 ▶ ▲ 臣 ▶ = 臣 = ∽ � � �

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

★ Ξ → < Ξ → </p>

A 10

-2

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

★ Ξ → < Ξ → </p>

A 10

-2

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

• Black hole horizon at $U = U_T \sim T$ (temperature)

★ Ξ → ★ Ξ → ...

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

- Black hole horizon at $U = U_T \sim T$ (temperature)
- Deconfined phase

★ Ξ → ★ Ξ → ...

A .

Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

- Black hole horizon at $U = U_T \sim T$ (temperature)
- Deconfined phase
- Double Wick rotation $t \leftrightarrow ix_4, x_4 \leftrightarrow i\tau$

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad f(U) = 1 - \left(\frac{U_{KK}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

< 注→ < 注→ -

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

- Black hole horizon at $U = U_T \sim T$ (temperature)
- Deconfined phase
- Double Wick rotation $t \leftrightarrow ix_4, x_4 \leftrightarrow i\tau$

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \ f(U) = 1 - \left(\frac{U_{KK}}{U}\right)^{3}, \ R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

Arbitrary radius of time circle (zero temperature)

▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ∽ � �

Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} I_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

- Black hole horizon at $U = U_T \sim T$ (temperature)
- Deconfined phase
- Double Wick rotation $t \leftrightarrow ix_4, x_4 \leftrightarrow i\tau$

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad f(U) = 1 - \left(\frac{U_{KK}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

- Arbitrary radius of time circle (zero temperature)
- Geometry end at $U = U_{KK}$ (scale in the theory)

∋ na

• Black hole geometry of D4 brane

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(f(U)dt^{2} + d\vec{x}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \quad F_{4} = \frac{2\pi N_{c}}{\Omega_{4}}\epsilon_{4}, \quad f(r) = 1 - \left(\frac{U_{T}}{U}\right)^{3}, \quad R^{3} = \pi g_{s} N_{c} I_{s}^{3}$$

•
$$t = t + \beta$$
, $x_4 = x_4 + 2\pi R_4$

- Black hole horizon at $U = U_T \sim T$ (temperature)
- Deconfined phase
- Double Wick rotation $t \leftrightarrow ix_4, x_4 \leftrightarrow i\tau$

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{3/4}, \ f(U) = 1 - \left(\frac{U_{KK}}{U}\right)^{3}, \ R^{3} = \pi g_{s} N_{c} l_{s}^{3}$$

- Arbitrary radius of time circle (zero temperature)
- Geometry end at $U = U_{KK}$ (scale in the theory)
- confined phase

• Blackhole geometry

E > < E >

Blackhole geometry

• Doulbe Wick'ed geometry

• Putting D6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	x ⁶	<i>x</i> ⁷	x ⁸	x ⁹
D4	٠	٠	٠	٠	٠					
D6	•	٠	٠	٠		٠	٠	٠		

• Two transverse direction to probe brane $(x^8, x^9)
ightarrow M_q$

- ◆ □ ▶ ◆ 三 ▶ → 三 = → ○ < ○

• Putting *D*6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	<i>x</i> ⁷	<i>x</i> ⁸	x ⁹
D4	•	٠	٠	٠	٠					
D6	٠	٠	٠	٠		٠	٠	٠		
D4(baryon)	٠						٠	٠	٠	٠

Two transverse direction to probe brane (x⁸, x⁹) → M_q
 Adding baryon charge → quarks or baryon vertices(D4)

- T

• Putting *D*6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	<i>x</i> ⁷	<i>x</i> ⁸	x ⁹
D4	٠	•	•	•	•					
D6	•	٠	٠	٠		•	٠	٠		
D4(baryon)	•						٠	٠	•	•

• Two transverse direction to probe brane (x⁸, x⁹) ightarrow M_q

• Adding baryon charge \rightarrow quarks or baryon vertices(D4)

프 (프)

• Putting *D*6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	<i>x</i> ⁷	x ⁸	x ⁹
D4	•	•	•	•	•					
D6	٠	•	•	٠		•	٠	٠		
D4(baryon)	•						٠	٠	•	•

• Two transverse direction to probe brane (x⁸, x⁹) ightarrow M_q

• Adding baryon charge \rightarrow quarks or baryon vertices

글 > : < 글 >

• Putting *D*6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	x ⁷	<i>x</i> ⁸	x ⁹
D4	•	•	•	•	•					
D6	٠	•	٠	٠		٠	٠	٠		
D4(baryon)	٠						٠	٠	•	٠

• Two transverse direction to probe brane $(x^8, x^9) \rightarrow M_q$

 $\bullet\,$ Adding baryon charge $\to\,$ quarks or baryon vertices

• Putting *D*6 brane as probe

	<i>x</i> ⁰	x^1	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	x ⁵	x ⁶	x ⁷	x ⁸	x ⁹
D4	•	•	٠	•	•					
D6	٠	•	٠	٠		٠	٠	٠		
D4(baryon)	٠						٠	٠	•	٠

• Two transverse direction to probe brane $(x^8, x^9) \rightarrow M_q$

 $\bullet\,$ Adding baryon charge $\to\,$ quarks or baryon vertices

프 (프)

- Black hole background
 - Finite temperature
 - Deconfined phase

★ E ► ★ E ►

< 🗇 🕨

- Black hole background
 - Finite temperature
 - Deconfined phase
- Zero density

문어 세 문어

- Black hole background
 - Finite temperature
 - Deconfined phase
- Zero density

2

臣 🕨 🗶 臣 🕨

- Black hole background
 - Finite temperature
 - Deconfined phase
- Zero density

• Finite density(no baryon vertex solution)

-∢ ≣ ▶

-2

- Double Wicked geometry
 - Zero temperature
 - Confined phase
- Zero density

2

·문▶ ★ 문▶

- Double Wicked geometry
 - Zero temperature
 - Confined phase
- Zero density

2

-∢ ≣⇒

- Double Wicked geometry
 - Zero temperature
 - Confined phase
- Zero density

• Finite density (baryon vertex)

-∢ ⊒ →

-2

- Double Wicked geometry
 - Zero temperature
 - Confined phase
- Zero density

• Finite density (baryon vertex)

• Density dependence of mass of baryon JHEP 0804:010: YS, Sang-Jin Sin

문어 세 문어

• Density dependence of mass of baryon JHEP 0804:010: YS, Sang-Jin Sin

 $\bullet~Meson~spectrum~$ on going work: Kwanghyun Jo, YS, Sang-Jin Sin

- ∢ ⊒ →

-2

• Two flavor system JHEP 1003:074: Youngman Kim, YS, Sang-Jin Sin

(4) 医(4) (4) 医(4) (4)

< 🗇 >

• Two flavor system JHEP 1003:074: Youngman Kim, YS, Sang-Jin Sin

• Symmetry energy arXiv:1011.0868: Youngman Kim, YS, Ik Jae Shin, Sang-Jin Sin

(E) ► < E >

ም.

-2

Background Geometry (D3/D-instanton

D4 brane background

- Black hole geometry \rightarrow deconfined phase
- \bullet Double Wicked geometry \rightarrow confined phase
- Confine/deconfinement transition \rightarrow geometrical transition?

Background Geometry (D3/D-instanton

- D4 brane background
 - Black hole geometry \rightarrow deconfined phase
 - Double Wicked geometry \rightarrow confined phase
 - $\bullet~$ Confine/deconfinement transition $\rightarrow~$ geometrical transition?
- Finite temperature extension of D3/D-intanton geometry Ghoroku

$$ds_{10}^2 = e^{\Phi/2} \left[\frac{r^2}{R^2} \left(f(r)^2 dt^2 + d\vec{x}^2 \right) + \frac{1}{f(r)^2} \frac{R^2}{r^2} dr^2 + R^3 d\Omega_5^2 \right],$$

$$e^{\Phi} = 1 + \frac{q}{r_T^4} \log \frac{1}{f(r)^2}, \quad \chi = -e^{-\Phi} + \chi_0, \quad f(r) = \sqrt{1 - \left(\frac{r_T}{r}\right)^4}$$

프 (프)

Background Geometry (D3/D-instanton

- D4 brane background
 - Black hole geometry \rightarrow deconfined phase
 - Double Wicked geometry \rightarrow confined phase
 - Confine/deconfinement transition → geometrical transition?
- Finite temperature extension of D3/D-intanton geometry Ghoroku

$$\begin{aligned} ds_{10}^2 &= e^{\Phi/2} \left[\frac{r^2}{R^2} \left(f(r)^2 dt^2 + d\vec{x}^2 \right) + \frac{1}{f(r)^2} \frac{R^2}{r^2} dr^2 + R^3 d\Omega_5^2 \right], \\ e^{\Phi} &= 1 + \frac{q}{r_T^4} \log \frac{1}{f(r)^2}, \quad \chi = -e^{-\Phi} + \chi_0, \quad f(r) = \sqrt{1 - \left(\frac{r_T}{r}\right)^4} \end{aligned}$$

- Black hole horizon at $r = r_T \rightarrow$ Finite temperature
- q is proportional to value of gluon condensation $< F^2 >$
- Baryon vertex(spherical D5 with N_c fundamental strings) can exist
- D7 brane used as flavor brane

프 (프)

Phase transition

• Quark phase

三 のへで

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Quark phase

- Fundamental strings connect black hole horizon and probe brane
- Physical object is freely moving quark
- Deconfined phase

(本部) (本語) (本語)

Phase transition

Quark phase

- Fundamental strings connect black hole horizon and probe brane
- Physical object is freely moving quark
- Deconfined phase
- Baryon phase

★ E ► < E ►</p>

< 🗇 >

Quark phase

- Fundamental strings connect black hole horizon and probe brane
- Physical object is freely moving quark
- Deconfined phase
- Baryon phase

- Fundamental strings connect spherical D5 brane and probe D7 brane
- Physical object is baryon vertex(bound state of N_c quark)
- Confined phase

-2

< 🗇 →

Quark phase

- Fundamental strings connect black hole horizon and probe brane
- Physical object is freely moving quark
- Deconfined phase
- Baryon phase

- Fundamental strings connect spherical D5 brane and probe D7 brane
- Physical object is baryon vertex(bound state of N_c quark)
- Confined phase
- Comparing free energy, we can determine which phase is physical for given temperature and density

• In grand canonical ensemble On going work: Bogeun Gwak, Minkyoo Kim, Bum-Hoon Lee, YS, Sang-Jin Sin

프 🖌 🛪 프 🕨

• In grand canonical ensemble On going work: Bogeun Gwak, Minkyoo Kim, Bum-Hoon Lee, YS, Sang-Jin Sin

- Chiral transition = confinement/deconfinement transition
- Relation between chiral condensation and gluon condensation
- Fluctuation spectrum

- ∢ ⊒ →

-2

• We construct simple model with finite baryon density in holographic QCD

< 注入 < 注入 →

æ.

- We construct simple model with finite baryon density in holographic QCD
- Interaction between baryon vertex and probe brane gives medium effect

글 > : < 글 >

-

- We construct simple model with finite baryon density in holographic QCD
- Interaction between baryon vertex and probe brane gives medium effect
- We can calculate various quantities with finite density by solving classical equation of motion

(B) (A) (B) (A)

- We construct simple model with finite baryon density in holographic QCD
- Interaction between baryon vertex and probe brane gives medium effect
- We can calculate various quantities with finite density by solving classical equation of motion
- Baryon spectrum
- Application to condensed matter physic
- Beyond probe limit?

(B) < B)</p>

-

Thank you !!!

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ...

æ.