
String theory for Nuclear physics

Sang-Jin Sin (Hanyang U.) @KPS meeting 2011.04

Why string theory? I. Since there is a string in QCD

Confining theory: Linear potencial: $\mathbf{E} \propto \mathbf{L}$

- Confinement →
 Flux string or QCD string
- That is how string theory began 40 years ago.
- But not the reason today.

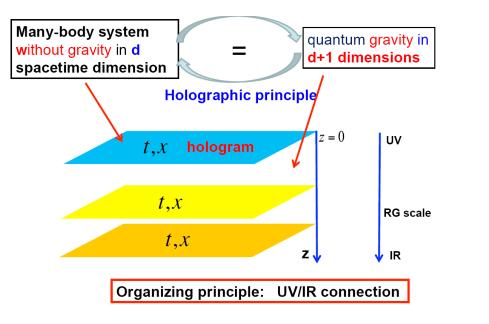
Why string theory? II

• Shear viscosity /entropy density in RHIC

experiment: < 0.1

pQCD: $\eta / s = \frac{1}{g^4 \ln g} >> 1$ String Theory : ~ 1/4π =0.09

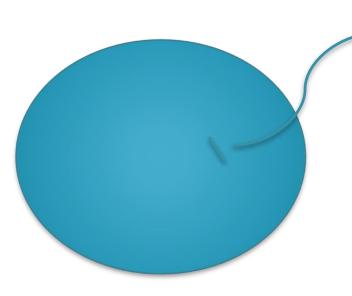
- The method used is AdS/CFT
- Q: Confinement and Hadron physics?


Gauge/gravity duality (ads/cft)

- Maldacena, GKP, Witten,
- D brane can be described in 2 ways.
 One is gauge theory
 The other is string theory
 in curved spacetime.
- So they must be equivalent.
- In certain limit, the latter is Einstein gravity theory

Character of AdS/CFT

 I. Holographic: 5d gravity theory for 4d QCD origin of +I dim? Scale


z direction is warped! \rightarrow ads

Stolen from Hong Liu

Character of AdS/CFT II

Within the validity,
 Do not need loop calculation.

I. ls<<Rads 2. gs<<I $\lambda = g^2 N_c >> 1$

Large N theory. Good and Bad

Character of AdS/CFT III

Super-symmetry
 Original version is N=4 SUSY.
 SUSY can be broken by BC.T. d. etc

• Is it QCD?

Hopefully some properties will be univer sal. Some results are too good to be irrel evant

[eta/s, glueon mass, ads/qcd, SS]

Ads/cft Dictionary

- Let O(x) is an color singlet operator with dimension A and spin p A(x) is an source of it.
- Then AdS/CFT says: Extend it to d+1(=5) dim by $A(x,z) = A(x)z^{d-p-\Delta} < O > z^{\Delta-p} + \dots$
- If we know action and BC, it can be calculated CLASSICALLY.
- So is all correlation functions and its corollaries.

Density and chemical potential

- In 4d, Source of baryon number op $J_0= \bar{\psi}\gamma_0\psi$ is A_0
- Extend it to 5dim by

$$A_0 = \mu z^{3-\Delta} - Q z^{\Delta-1}$$

 $\Delta = \text{dimesion of Operator} = 3$

$$Q = <\bar{\psi}\gamma_0\psi>$$

 $\mu = chemical \ potentia$

Gluon condensation and dilaton

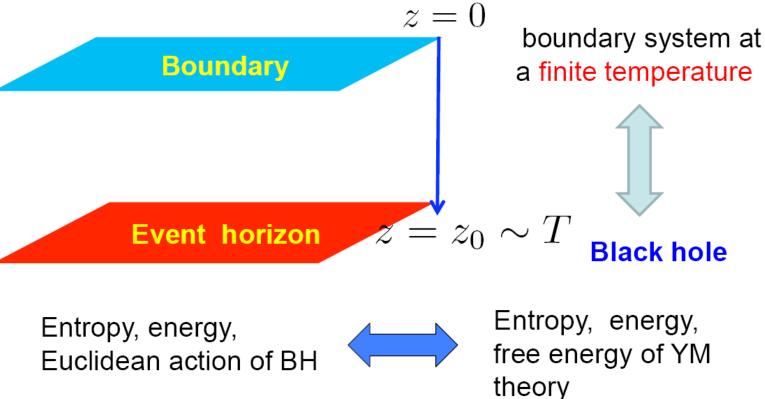
- Tr(F^2) is dual to scalar ϕ
- Extend it to 5dim by

$$\phi(x,z) = \phi_0 z^{4-\Delta} - c z^{\Delta}$$

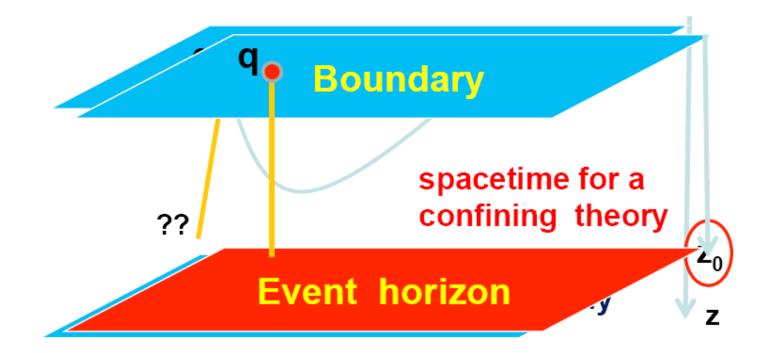
$$\phi_0 = 0 \qquad c = < Tr F^2 >$$

Chiral condensation and mass

- Mass op. $ar{\psi}\psi\,$ is dual to a scalar σ
- Extend it to 5 dim by

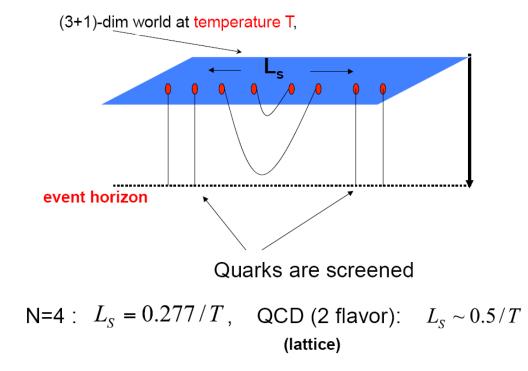

$$\sigma(x,z) = m_q z - c z^3$$

$$c = <\bar{\psi}\psi>$$



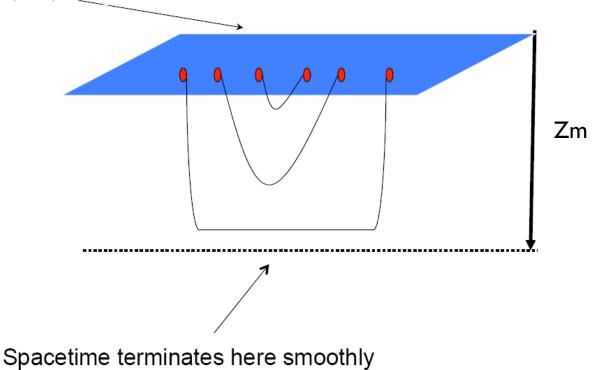
Temperature

Finite temperature


Gluon dynamics → Geometry. Confinement or deConfinement depends on geometry.

Goemetry with

Screening of quarks in a QGP



Geometry with

Confinement

(3+1)-dim world

What can one do with it.

- Phase transition, equation of state.
- Two point function

 → Transports. Spectral fct
 Viscosity conductivity heat cd
- Elliptic flow(time dependence)
- Dissipation and energy loss. (dragging)
- Meson/Baryon spectrum
- Symmetry energy

.

Lepto and Photo emission rate

Bottom up model

• Write down linear sigma model in ads5. with chiral symmetry SU(Nf)xSU(Nf)

$$\begin{split} S &= \int d^5 x \, \sqrt{g} \, \operatorname{Tr} \Big\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \Big\} \\ X_0(z) &= \frac{1}{2} M z + \frac{1}{2} \Sigma z^3, \qquad \Sigma^{\alpha\beta} \, = \, \langle \bar{q}^{\alpha} q^{\beta} \rangle. \end{split}$$

- Roughly, X=sU , <sigma> by hand. No Potential
- No loop calcalculation: Point of the theory:
- Throw away Kaluza Klein

Observables

- Interaction: Overlapping integral $g_{\rho\pi\pi} = g_5 \int dz \,\psi_{\rho}(z) \left(\frac{\phi'(z)^2}{g_{\tau}^2 z} + \frac{v(z)^2(\pi - \phi)^2}{z^3} \right).$
- Decay constant:
- $F_{\rho}^{2} = \frac{1}{g_{5}^{2}} [\psi_{\rho}'(\epsilon)/\epsilon]^{2} = \frac{1}{g_{5}^{2}} [\psi_{\rho}''(0)]^{2}, \quad f_{\pi}^{2} = -\frac{1}{g_{5}^{2}} \left. \frac{\partial_{z} A(0,z)}{z} \right|_{z=\epsilon},$ • **GOR relation**

 $m_{\pi}^2 f_{\pi}^2 = (m_u + m_d) \langle \bar{q}q \rangle = 2m_q \sigma.$

• Mass spectrum:

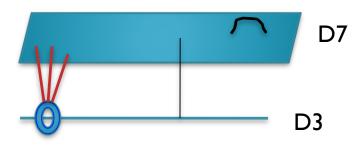
 $\psi_{\rho}(\epsilon) = 0, \ \partial_z \psi_{\rho}(z_m) = 0$

Resuls:

TABLE II: Results of the model for QCD observables. Model A is a fit of the three model parameters to m_{π} , f_{π} and m_{ρ} (see asterisks). Model B is a fit to all seven observables.

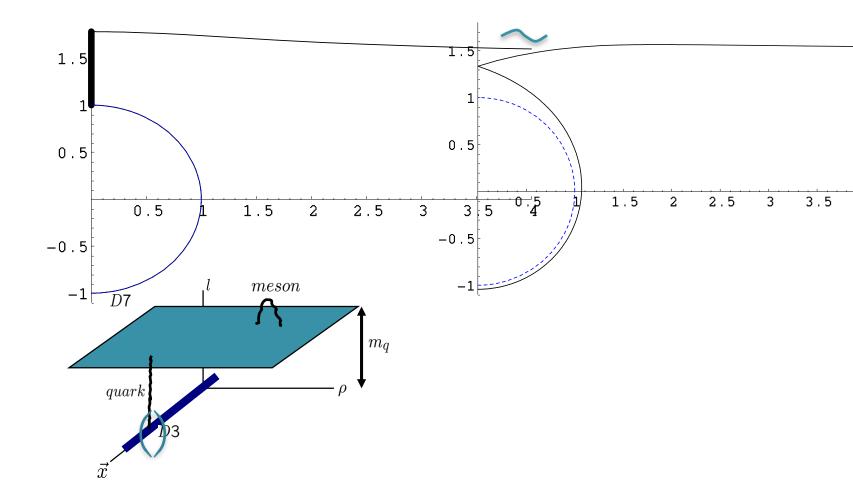
	Measured	Model A	Model B
Observable	(MeV)	(MeV)	(MeV)
m_{π}	139.6±0.0004 [8]	139.6^{*}	141
$m_ ho$	775.8 ± 0.5 [8]	775.8^{*}	832
m_{a_1}	$1230{\pm}40$ [8]	1363	1220
f_{π}	92.4 ± 0.35 [8]	92.4^{*}	84.0
$F_{\rho}^{\ 1/2}$	345 ± 8 [15]	329	353
$F_{a_1}^{1/2}$	$433{\pm}13$ [6, 16]	486	440
$g_{ ho\pi\pi}$	$6.03{\pm}0.07$ [8]	4.48	5.29

 $z_m = 1/(323 \text{ MeV})$. $m_q = 2.29 \text{ MeV}$ and $\sigma = (327 \text{ MeV})^3$


The rms error, for Model A is 15%.

too good to be true?

Top down


• Quark: Bifundamental,

Meson: adjoint
 Dynamics: Dirac-Born-Infeld action
 S_{D4} = -μ₄ ∫ e^{-φ}√det(g + 2πα'F) + μ₄ ∫ A₍₁₎ ∧ G₍₄₎

 Baryon: compact D5

Baryon density and meson at probe D7

BR-scaling

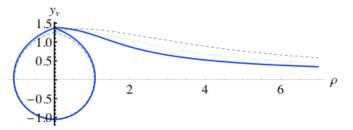
• In 1991, G.Brown and M.Rho

 $m_M^*(n)/m_M \approx m_B^*(n)/m_B \equiv \Phi(n)$ $\Phi(n) = 1 - Cn/n_0 \text{ with } C = 0.1 \sim 0.3$ $\Phi(n)_{BR} \approx f_\pi^*(n)/f_\pi.$ $\sim \langle \bar{q}q \rangle^*(n)/\langle \bar{q}q \rangle \quad \text{as } n \to n_c. \quad \text{(HLS) model}$

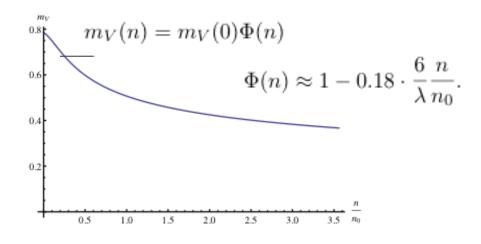
• Q: ls it true?

D4/D6 model

• Confining geometry.

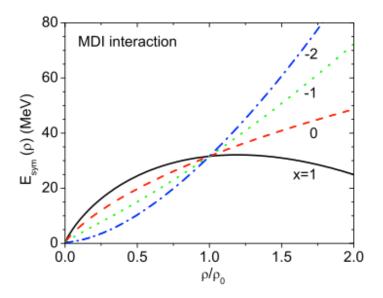

$$\begin{split} ds^2 &= \left(\frac{U}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) dx_4^2\right) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^2}{f(U)} + U^2 d\Omega_4^2\right) \\ e^\phi &= g_s \left(\frac{U}{R}\right)^{3/4}, \quad F_4 = \frac{2\pi N_c}{\Omega_4} \epsilon_4, \quad f(U) = 1 - \left(\frac{U_{KK}}{U}\right)^3, \quad R^3 = \pi g_s N_c l_s^3. \end{split}$$

$$g_s = \frac{\lambda}{2\pi l_s N_c M_{KK}}, \quad U_{KK} = \frac{2}{9} \lambda M_{KK} l_s^2, \quad R^3 = \frac{\lambda l_s^2}{2M_{KK}}, \quad \lambda = g_{YM}^2 N_c.$$

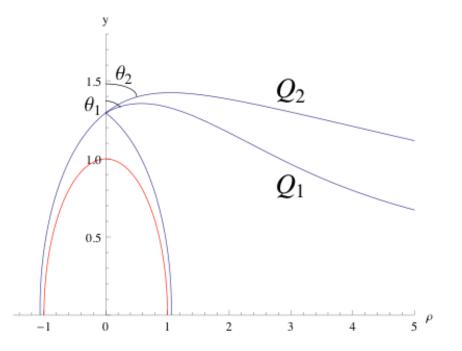

	Boundary			S^1	$r(S^4)$	S^4				
coordinate	x ⁰	x ¹	x ²	x^3	x ⁴	U (~ ξ)	θ	ψ_1	ψ_2	ψ_3
Backgr D4	•	•	•	•	•					
Baryonic D4	•						•	•	•	•
	Boundary			S^1	R^3			R^2		
coordinate	x ⁰	x ¹	x ²	\mathbf{x}^3	x ⁴	ρ	θ_1	θ_2	У	ϕ
Flavor D6	•	•	•	•		•	•	•		

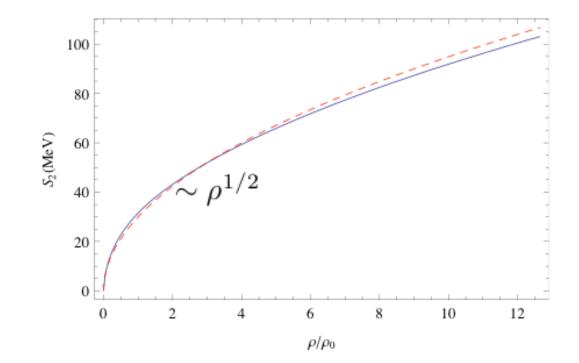
Result: Yes in a model.

• Embedding:


Vector Mass

GOR relation is true in Medium.

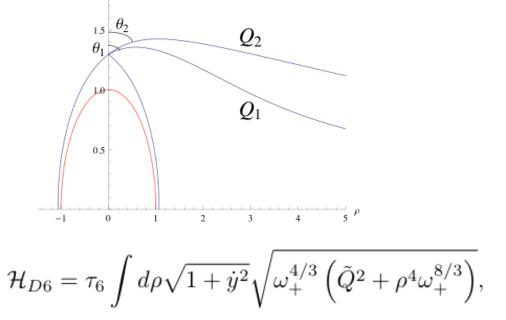

- Def: $E_{\rm B} = a_{\rm v}A a_a(N-Z)^2/A a_cZ^2/A^{1/3}$ $-a_sA^{2/3} \pm a_{\delta}/A^{3/4}$.
- Present status:


Symmetry energy II

 Main idea: different isospin ~ different number of strings attached to tw o probe brane

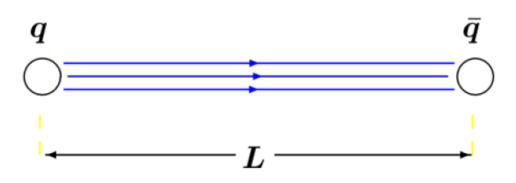
Symmetry energy : result

• Stiff \rightarrow neutron star crest is Thin.



Pauli principle in hQCD.

• two puzzles

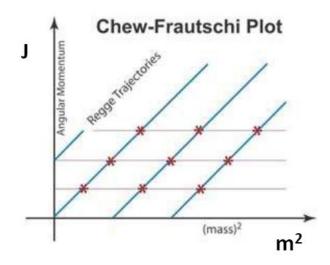

in 4d: Driving force of Z=N is Pauli principle. Ads/cft is count ing QM by classical dynamics. So how to count Pauli force.

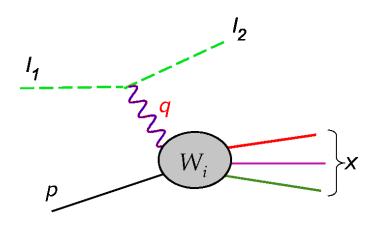
In 5d: coulomb force by charge. But charge is dual to baryon number, which is global charge. So what is dual of the coulo mb force?

String theory began as a Hadron Th.

Confining theory: Linear potencial: $\mathbf{E} \propto \mathbf{L}$

Confinement →
 Flux string or QCD string


Conclusion


- One can do many things
- Omitted:

Elliptic flow. Photo/Lepto emission in LHC? Non-fermiliquid Color superconductivity what I have shown is just tip of iceberg.

- Not really QCD but may be relevant.
- Can we do something together?

. QCD string: good for Reggestrajectory bad for deep inelastic scattering data

