Few ideas on Hadronic Physics at RHIC/LHC

Su Houng Lee

1. Λ from pp at ALICE and H dibaryon

2. Exotics from HIC

3. Crypto-exotics from HIC

Acknowledgement: S. Cho, C.M. Ko, S. Yasui + ExHIC collaboration

Λ from p-p ALICE and the H dibaryon

∧ ∧ measurement at KEK (안정근 E224, E522)

→ A continued search for H-dibaryon
 (K. Imai ...)

H-dibaryon Jaffe 77

H Binding = -29 MeV + Instanton repulsion (M. Oka)

H di-baryon \rightarrow could be bound \rightarrow unfortunately not found in so far

Expectations for H and $\Lambda\Lambda$ production in Pb Pb collision at LHC

Exotics from HIC

 SHL, S. Yasui :
 EPJC 64 283 (09)

 SHL, S. Yasui, W. Liu, CM.Ko :
 EPJC 54 259 (08)

 S. Cho et al.
 arXiv:1011.0852

Recent Highlights in Hadron Physics – Heavy quark sector

Babar: D_{5.1}(2317) 0+

Puzzle in Constituent Quark Model(2400)

- 1. D0 K+ (2358) threshold effect
- Chiral partner of (0⁻ 1⁻) 2.
- 3. Tetraquark

X(3872) , Y(4260), Z(4430) $\rightarrow \psi' \pi$ Z(4051),Z(4248)→ χ_{c1}π Must contain cc??

Molecule? D0 D* D1 1864 2007 2420 D0+D* D*+D* D+D1 D1+D* 3871

4284

4427

4014

Tetraquark?

Previous Work on Multiquark hadrons - Light quark sector

Multiquark configuration:

 \triangleright Diquark attracation vs quark-antiquark

 $C_M \approx 3 \times C_B$ make $m_3 \rangle 3 \times m_2$

 \triangleright diquark picture: Yasui, Ko, Liu, Lee,.. (EJP08,EJP09)

	Type of diquark and its q-q binding				
S=C=0	(ud) $\rightarrow A$				
S=-1, m _s =5/3m _u	(us) → 3/5 A	(ds) → 3/5 A			
C=1, m _c =5m _u	(uc) → 1/5 A	(dc) → 1/5 A	(sc) → 3/25 A		

$$A = \frac{3}{4} \frac{C_B}{m_u^2} = 145 \text{ MeV}$$

Exotics 1: Tetra-quark - configurations

2- light quark 2-light anitquark configuration

2- light quark 2-heavy anitquark configuration

$$0^{+} \underbrace{3 C_{B}}{-\frac{3}{4} \frac{C_{B}}{m_{u}^{2}}} - \frac{3}{4} \frac{C_{B}}{m_{c} m_{b}}} \rightarrow 0^{-} \underbrace{u c}{-\frac{3}{4} \frac{C_{M}}{m_{u} m_{c}}} - \frac{3}{4} \frac{C_{M}}{m_{u} m_{b}}}$$

Binding of T_{cb}^0 $\rightarrow -21.25 \text{ MeV}$

 $T_{cb}^{0}/D > O(10^{-5})$ at LHC

Axial meson Tcc 2- light quark 2-heavy anitquark

$$\begin{split} \mathrm{T}^{1}_{\mathrm{cc}}(\mathrm{ud}\overline{\mathrm{c}}\overline{\mathrm{c}}) &\to (D^{*-} + \overline{D}^{\,0}) \to D^{*-} K^{+} \pi^{-} \\ \mathrm{T}_{\mathrm{cc}}/\mathrm{D} > \mathrm{O}(10^{-4}) \quad \mathrm{at} \ \mathrm{LHC} \end{split}$$

Vertex detector: FAIR 10⁴ D⁰ /month, LHC 10⁵ D⁰/month

Why Di-bayron

H Binding = -29 MeV + Instanton repulsion (M. Oka)

H di-baryon \rightarrow could be bound \rightarrow unfortunately not found in so far

13

A new Di-baryon : Hc

Binding of H_c $\rightarrow 29 \text{ MeV}$

$$\begin{split} \mathrm{H_{c}(udusuc)} &\to (\Lambda_{c}^{+} + \Sigma^{+}) \to pK^{-}\pi^{+} + p\pi^{0} \\ &\to (p + \Xi_{c}^{+}) \to p + \Lambda K^{-}\pi^{+}\pi^{+} \\ \mathrm{H_{c}/D} > \mathrm{O}(10^{-3}) \text{ at LHC} \end{split}$$

Vertex detector: FAIR 10⁴ D⁰ /month, LHC 10⁵ D⁰/month

Crypto Exotics from HIC

(Multiquark configurations)

S. Cho (ExHIC collaboration) arXiv:1011.0852

Normal meson, Tetraquark and Molecule

	Normal meson	Tetraquark	Molecule
Geometrical configuration			
Flavor quantum number	u <u>d</u>	u <u>d</u>	u <u>d</u>

Coalescence model : for things with structures

Coalescence model = Statistical model + overlap

$$\frac{dN_H}{d^2 P_T} = g_H \int \prod_{i=1}^n \frac{p_i \cdot d\sigma_i d^3 \mathbf{p}_i}{(2\pi)^3 E_i} f_q(x_i, p_i) f_H(x_1 \dots x_n; p_1 \dots p_n) \,\delta^{(2)} \left(P_T - \sum_{i=1}^n p_{T,i} \right)$$

Suppression of p-wave resonance (Muller and Kadana En'yo)

$$(\Lambda^{*}(1520)/\Lambda)_{Au-Au}/(\Lambda^{*}(1520)/\Lambda)_{p-p} < 1$$

Production of multiquark states from HIC arXiv:1011.0852

Sungtae Cho,¹ Takenori Furumoto,^{2, 3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,^{2, 1} Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2, 7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2, 3}

(ExHIC Collaboration)

 ¹Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
 ²Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
 ³RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
 ⁴Department of Physics, Tokyo Institute of Technology, Meguro 152-8551, Japan
 ⁵Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, U.S.A.
 ⁶Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil
 ⁷Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
 ⁸Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Ibaraki 305-0801, Japan

- 1. Determine Coalescence parameter to yields of normal hadrons at RHIC
- 2. Using the coalescence model, calculate the yields of multiquark candidates assuming they are **normal hadron, multiquark, molecule**

Expectations at RHIC and LHC

Suppression of multi-quark states in HIC

Summary

- One can search for H dibaryon from pp at LHC in ALICE and later from Pb Pb collisions→ end the 30 year old search.
- 2. One could also search for exotic multiquark states: Tcc, Hc, Θ c
 - \rightarrow First step towards dense matter and phase diagram of QCD
- 3. By measuring yields for crypto- exotic states one can identify multiquark configuration
 - \rightarrow finally identify multiquark configuration

Back up slides

Running conditions at LHC

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	Run time (s/year)	σ_{geom} (b)
рр	14.0	10 ³⁴ *	107	0.07
РЬРЬ	5.5	10 ²⁷	106 **	7.7
pPb	8.8	10 ²⁹	106	1.9
ArAr	6.3	10 ²⁹	106	2.7

Previous works on Tcc :

Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07)

QCD sum rules: F Navarra, M. Nielsen, SHLee, PLB 649, 166 (2007)

simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09)

Can look for 1⁺ (Tcc)

Belle: PRL 98, 082001 (07)

 $e+e- \rightarrow J/y + X(3904)$

 $J/\psi D\overline{D}^*$

 $J/\psi D^* \overline{D}^*$

2

M_{recoil}(J/ψD)

2.2

SHL, S Yasui, W Liu, C Ko (08)

2.4 GeV/c² Production ratios for predicted Multiquarks

 \succ Θ_{c} production at RHIC and LHC

 $\Theta_c/D > 0.74 \times 10^{-4}$ $\Theta_c/D_s > 0.23 \times 10^{-3}$

TABLE IX: Possible decay modes of $\Theta_{cs}.$

threshold	decay mode	lifetime
$M_{\Theta_{cs}} > M_N + M_{D_s}$	pD_s^-	hadronic decay
$M_{\Lambda} + M_D < M_{\Theta_{cs}} < M_N + M_{D_s}$	$\Lambda \bar{D}^0$	hadronic decay
	ΛD^{-}	hadronic decay
$M_{\Theta_{cs}} < M_{\Lambda} + M_D$	$\Lambda K^+\pi^-, \Lambda K^+\pi^+\pi^-\pi^-$	0.41×10^{-12} sec.
	$\Lambda K^+ \pi^- \pi^-$	1.0×10^{-12} sec.

> H_c production at RHIC and LHC

 $\begin{aligned} H_c/D > 0.8 & \times 10^{-4} \\ H_c/D_s > 0.25 & \times 10^{-3} \end{aligned} \qquad \begin{aligned} H_c(udusuc) \rightarrow (\Lambda_c^+ + \Sigma^+) \rightarrow pK^-\pi^+ + p\pi^0 \\ \rightarrow (p + \Xi_c^+) \rightarrow p + \Lambda K^-\pi^+\pi^+ \end{aligned}$

 \succ T_{cc} production

$$T_{cc}/D > 0.34 \times 10^{-4}$$
 RHIC
> 0.8 x 10⁻⁴ LHC

threshold	decay mode	lifetime
$M_{T_{cc}} > M_{D^*} + M_D$	$D^{*-}\bar{D}^{0}$	hadronic decay
$2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D$	$\bar{D}^0 \bar{D}^0 \pi^-$	hadronic decay
$M_{T_{cc}} < 2M_D + M_{\pi}$	$D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}$	0.41×10^{-12} sec.

Pariticle	${m \over (MeV)}$	g	Ι	$J\pi$	2q/3q/6q	4q/5q/8q	Mol.	$\omega_{Mol.}$ (MeV)	decay mode
$D_s(2317)$	2317	1	0	0+	$c\bar{s} \ (L=1)$	$q\bar{q}c\bar{s}$	DK	273(B)	$D_s\pi$ (strong decay)
X(3872)	3872	3	0	1 +	-	$q\bar{q}c\bar{c}$	$\overline{D}\overline{D}^*$	3.6(B)	$J/\psi\pi\pi$ (strong decay)
$f_0(980)$	980	1	0	0+	$q\bar{q} \ (L=1)$	$q\bar{q}s\bar{s}$	$\bar{K}K$	67.8(B)	$\pi\pi$ (strong decay)
$a_0(980)$	980	3	1	0+	$q\bar{q} (L=1)$	$q\bar{q}s\bar{s}$	$\bar{K}K$	67.8(B)	$\eta\pi$ (strong decay)
$\Lambda(1405)$	1405	2	0	1/2-	$qqs \ (L=1)$	$qqqs\bar{q}$	$\bar{K}N$	20.5(R) - 174(B)	$\pi\Sigma$ (strong decay)
$\bar{K}KN$	1920	4	1/2	1/2 +	_	$qqqs\bar{s} \ (L=1)$	$\bar{K}KN$	42(R)	$K\pi\Sigma$, $\pi\eta N$ (strong decay)
$\bar{D}N$	2790	2	0	1/2-	-	$qqqq\bar{c}$	$\overline{D}N$	6.48(R)	$K^+\pi^-\pi^- + p$
$\bar{K}NN$	2352	2	1/2	0-	$qqqqqs \ (L=1)$	$qqqqqqsar{q}$	$\bar{K}NN$	20.5(T)-174(T)	ΛN (strong decay)
$\bar{D}NN$	3734	2	1/2	0-	-	$qqqqqqq\overline{c}$	$\bar{D}NN$	6.48(T)	$K^{+}\pi^{-} + d, K^{+}\pi^{-}\pi^{-} + p + p$

