

Ju Hwan Kang (Yonsei)

Heavy Ion Meeting 2011-06 June 10, 2011 Korea University, Seoul, Korea

Most are extracted from ALICE talks presented at QM2011 (23-28 May 2011, Annecy)

- ⇒ Spectra & Particle Ratios
- Flow & Correlations & Fluctuations
- ⇒ R_{AA} of inclusive particles
- Heavy open Flavour
- **⇒ J/**Ψ

Inner tracking system

- Low p_T standalone tracker
- PID: dE/dx in the silicon (up to 4 samples)

TPC

- Standalone and global (+ITS) tracks
- PID: dE/dx in the gas (up to 159 samples)

Time of Flight

- Matching of tracks extrapolated from TPC
- PID: TOF, σ_{τοτ} ~ 85ps(PbPb) 120ps(pp)

Topological ID + Invariant Mass

- Resonances, Cascades, V0s, Kinks
- PID: indirect cuts to improve S/B

 $Π⁰-> γ+γ -> e^+e^-e^+e^-$ similarly K0, Λ, Ξ, Ω,...

π/K/p Spectra

Combined analysis in

- Inner Tracking System
- Time Projection Chamber
- TOF

p_T Range:

 $0.1 - 3 \text{ GeV/c} (\pi)$

0.2 – 2 GeV/c (K)

0.3 - 3 GeV/c (p)

Blast wave fits to individual particles

to extract yields

Comparison to RHIC (0-5% Central)

positive

negative

At RHIC: STAR proton data generally not feed-down corrected.

Large feed down correction

→ Consistent picture with feed-down corrected spectra At LHC: ALICE spectra are feed-down corrected STAR, PRL97,

- Harder spectra, flatter p at low pt
- Strong push on the p due to radial flow?

STAR, PRL97, 152301 (2006) STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

Mean p_T increases linearly with mass Higher than at RHIC (harder spectra, more radial flow?) For the same dN/d η higher mean p_T than at RHIC

Blast wave fits

PRC48, 2462 (1993).

Integrated yields ratios

All +/- ratios are compatible with 1 at all centralities, as expected at LHC energies

STAR, PRC 79, 034909 (2009)

Integrated ratios vs Centrality

ALICE, BRAHMS, PHENIX (feed-down corrected)

Predictions for the LHC

STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004) BRAHMS, PRC72, 014908 (2005)

Ratio	Data	(1)	(2)
p/π+	0.0454+-0.0036	0.072	0.090
p/π⁻	0.0458+-0.0036	0.071	0.091+0.009-0.007
K /π ⁺	0.156 +- 0.012	0.164	0.180+0.001-0.001
K /π⁻	0.154 +- 0.012	0.163	0.179+0.001-0.001

 p/π : lower than thermal

model predictions

(1) A. Andronic et al, Nucl. Phys. A772 167 (2006)

 $T = 164 \text{ MeV}, \mu_B = 1 \text{ MeV}$

(2) J. Cleymans et al, PRC74, 034903 (2006)

T = (170±5) MeV and μ_B =1+4 MeV

'Baryon anomaly': Λ/K_0

• ALICE has very good capabilities for the measurement of identified particles

PbPb Collision

- ⇒ Spectral shapes show much stronger radial flow than at RHIC
- ⇒ p_bar/p ≈ 1.0 (the state of zero net baryon number)
- ⇒ $p/\pi \approx 0.05$ (lower than thermal model predictions with T = 160-170 MeV)

 \Rightarrow Baryon/meson anomaly: enhancement slightly higher and pushed to higher p_T than at RHIC

 10^4

- To get precision measurement of η/s (parameters in hydro) using flow V_n (experimental data):
- ⇒ fix initial conditions (geometrical shape is model dependent, eg Glauber, CGC)
- \Rightarrow quantify flow fluctuations σ (influence measured v₂, depending on method)
- \Rightarrow measure **non-flow correlations** δ (eg jets)
- ➡ improve theory precision (3D hydro, 'hadronic afterburner', ...)
- ⇒

• Event plane (EP) method:

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{RP})))$$
$$v_{n} = \langle \cos(n(\varphi_{i} - \Psi_{RP})) \rangle$$

- Cumulants:
 - 2- and 4-particle azimuthal correlations for an event: $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, \varphi_i \neq \varphi_j$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, \varphi_i \neq \varphi_i \neq \varphi_k \neq \varphi_l$
 - Averaging over all events, the 2nd and 4th order cumulants are given:

$$c_{2}\{n\} = \langle \langle 2 \rangle \rangle = v_{n}^{2} + \delta_{n}$$

$$c_{4}\{n\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

 v_n : reference _ flow $\langle \rangle$: average _ particles $\langle \langle \rangle \rangle$: average _ events

$$v_n\{2\} \equiv \sqrt{c_n\{2\}}$$
$$v_n\{4\} \equiv \sqrt[4]{-c_n\{4\}}$$

$$v_n\{2\} \cong v_n^2 + \sigma_n^2 + \delta$$
$$v_n\{4\} \cong v_n^2 - \sigma_n^2$$

 v_2 {2} and v_2 {4} have different sensitivity to flow fluctuations (σ_n) and non-flow (δ)

14

centrality percentile

Higher Order Flow v₃,v₄,...

Triangular flow (v₃) – models

We observe significant v₃ which compared to v₂ has a different centrality dependence

The centrality dependence and magnitude are similar to predictions for MC Glauber with η/s=0.08 but above MC-KLN CGC with η/s=0.16

ALICE Collaboration, arXiv:1105.3865

The v_3 with respect to the reaction plane determined in the ZDC and with the v_2 participant plane is consistent with zero as expected if v_3 is due to fluctuations of the initial eccentricity

The v₃{2} is about two times larger than v₃{4} which is also consistent with expectations based on initial eccentricity fluctuations

 V_3 measurements are consistent with initial eccentricity fluctuation and similar to predictions for MC Glauber with η =0.08

Elliptic Flow $V_2 - PID$ and p_t

 $\pi/K/p v_2$

PID flow:

 $-\pi$ and p are 'pushed' further compared to RHIC

- v₂ shows mass splitting expected from hydro

v_3 for $\pi/K/p$

$v_3 v_4 v_5$ versus p_T

• Stronger flow than at RHIC which is expected for almost perfect fluid behavior

• First measurements of v3, v4 and v5, and have shown that these flow coefficients behave as expected from fluctuations of the initial spatial eccentricity

• New strong experimental constraints on η/s and initial conditions

 Flow coefficients at lower p_t showing mass splitting are in agreement with expectations from viscous hydrodynamic calculations

²⁰Charged Particle R_{AA}: Ingredients

Measured reference, still needs extrapolation for $p_T > 30 \text{ GeV}$

charged particle R_{AA}

$$R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{\langle N_{coll} \rangle d^2 N^{pp} / dp_T d\eta}$$
$$\langle N_{coll} \rangle = \langle T_{AA} \rangle \cdot \sigma_{pp}^{INEL}$$

- pronounced centrality dependence below $p_T = 50 \text{ GeV/c}$
- minimum at $p \approx 6.7 \text{ GeV/c}$
 - *p*_{*T*} ≈ 6-7 GeV/c
- strong rise in
 6 < p_T < 50 GeV/c
- no significant centrality and p_T dependence at $p_T > 50$ GeV/c

Charged particle R_{AA}- centrality dependence

charged particle R_{AA} - models

charged pion R_{AA}

- agrees with charged particle R_{AA}
 - in peripheral events
 - for $p_T > 6 \text{ GeV/c}$
- is smaller than charged particle R_{AA} for $p_T < 6$ GeV/c

- K⁰_s R_{AA} very similar to that of charged particles: strong suppression of K⁰_s at high p_T
- Λ R_{AA} significantly larger than charged at intermediate p_T : enhanced hyperon production counteracting suppression
- for $p_T > 8$ GeV/c, Λ and $K_s^0 R_{AA}$ similar to charged particle R_{AA} : strong high- p_T suppression also of Λ

- Charged particle p_T spectra in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV measured with ALICE at the LHC
- Pronounced p_T dependence of R_{AA} at LHC
- Comparison to RHIC data suggests that suppression scales with the charged particle density for a given p_T window
- At p_T > 50 GeV/c, no strong centrality dependence of charged particle production is observed
- Results on identified particles will allow to disentangle the interplay between quark and gluon energy loss, and recombination mechanisms at intermediate p_T