

Ju Hwan Kang (Yonsei)

Heavy Ion Meeting 2011-06 June 10, 2011 Korea University, Seoul, Korea

Most are extracted from ALICE talks presented at QM2011 (23-28 May 2011, Annecy)

- **Spectra & Particle Ratios**
- **Flow & Correlations & Fluctuations**
- \Rightarrow R_{AA} of inclusive particles
- **Heavy open Flavour**
- \Rightarrow J/ Ψ

Inner tracking system

- •Low p_T standalone tracker
- •PID: dE/dx in the silicon (up to 4 samples)

TPC

- Standalone and global (+ITS) tracks
- •PID: dE/dx in the gas (up to 159 samples)

Time of Flight •Matching of tracks extrapolated from TPC

•PID: TOF, $\sigma_{TOT} \sim 85ps(PbPb) - 120ps(pp)$

Topological ID + Invariant Mass

- •Resonances, Cascades, V0s, Kinks
- •PID: indirect cuts to improve S/B

 π ⁰-> γ+γ -> e⁺e⁻e⁺e⁻ similarly K0, $Λ$, Ξ, $Ω$,...

p**/K/p Spectra**

- Inner Tracking System
- Time Projection Chamber
- TOF

 p_T Range:

 $0.1 - 3$ GeV/c (π)

 $0.2 - 2$ GeV/c (K)

0.3 – 3 GeV/c (p)

Blast wave fits to individual particles

to extract yields

Comparison to RHIC (0-5% Central)

positive negative

Large feed down correction

At LHC: ALICE spectra are feed-down corrected **→ Consistent picture with feed-down corrected spectra**

- Harder spectra, flatter p at low pt
- Strong push on the p due to radial flow?

STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004) STAR, PRL97, 152301 (2006)

Mean p_T increases linearly with mass Higher than at RHIC (harder spectra, more radial flow?) For the same dN/d η higher mean p_T than at RHIC

Blast wave fits

PRC48, 2462 (1993).

Integrated yields ratios

All +/- ratios are compatible with 1 at all centralities, as expected at LHC energies

STAR, PRC 79 , 034909 (2009)

Integrated ratios vs Centrality

ALICE, BRAHMS, PHENIX (feed-down corrected)

STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

Predictions for the LHC p/π : lower than thermal model predictions

BRAHMS, PRC72, 014908 (2005)

(1) A. *Andronic et al, Nucl. Phys. A772 167 (2006)* **(2)** *J. Cleymans et al, PRC74, 034903 (2006)*

T = 164 MeV, μ_B = 1 MeV T = (170±5) MeV and μ_B =1+4 MeV

'Baryon anomaly': Δ **/K**⁰

● ALICE has very good capabilities for the measurement of identified particles

● PbPb Collision

- \Rightarrow Spectral shapes show much stronger radial flow than at RHIC
- \Rightarrow p bar/p \approx 1.0 (the state of zero net baryon number)
- \Rightarrow p/ $\pi \approx 0.05$ (lower than thermal model predictions with T = 160-170 MeV)

 \Rightarrow Baryon/meson anomaly: enhancement slightly higher and pushed to higher p_T than at RHIC

- ⚫ To get precision measurement of h/s *(parameters in hydro)* using flow v_n (experimental data):
	- fix **initial conditions** (geometrical shape is model dependent, eg Glauber, CGC)
	- \Rightarrow quantify flow fluctuations σ (influence measured v_2 , depending on method)
	- \Rightarrow measure **non-flow correlations** δ (eg jets)
	- **improve theory** precision (3D hydro, 'hadronic afterburner', ...)
	- \Rightarrow

Event plane (EP) method:

$$
E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n (\varphi - \Psi_{RP}) \right) \right)
$$

$$
v_n = \langle \cos \left(n (\varphi_i - \Psi_{RP}) \right) \rangle
$$

- Cumulants:
	- 2- and 4-particle azimuthal correlations for an event: $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_i)) \rangle$, $\varphi_i \neq \varphi_i$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle$, $\varphi_i \neq \varphi_i \neq \varphi_k \neq \varphi_l$
	- Averaging over all events, the 2^{nd} and $4th$ order cumulants are given:

$$
c_2\{n\} = \langle \langle 2 \rangle \rangle = v_n^2 + \delta_n
$$

$$
c_4\{n\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_n^4
$$

 $\langle \langle \rangle \rangle$: average _events | $\langle \rangle$ | $\$ $\langle \rangle$: average _ particles \vert _ _ _ _ _ _ _ _ _ v_n : reference _ flow $|v_n| \leq 2$ = $\sqrt{c_1(2)}$

$$
v_n\{2\} \equiv \sqrt{c_n\{2\}} \qquad v_n\{2\} \cong v_n^2 + v_n\{4\} \equiv 4\sqrt{-c_n\{4\}} \qquad v_n\{4\} \cong v_n^2 - 4\sqrt{-c_n\{4\}}
$$

$$
\begin{array}{c|c}\n\hline\n\overline{c_n\{2\}} & v_n\{2\} \cong v_n^2 + \sigma_n^2 + \delta & v_2\{2\} \text{ and } v_2\{4\\ \hline\n-\overline{c_n\{4\}} & v_n\{4\} \cong v_n^2 - \sigma_n^2 & \text{sensitivity to the}\\
\hline\n\text{fluctuations (}\sigma\n\end{array}
$$

 $\approx v^2 + \sigma^2 + \delta$ v_2 {2} and v_2 {4} $\simeq v^2 - \sigma^2$ Sensitivity to flow fluctuations $(\sigma_{\rm n})$ and non-flow $(δ)$

14.

centrality percentile

Higher Order Flow V_3 **,** V_4 **,..**

Triangular flow (v³) – models

We observe significant v_3 which compared to v₂ has a different centrality dependence

The centrality dependence and magnitude are similar to predictions for MC Glauber with η /s=0.08 but above MC-KLN CGC with η /s=0.16

ALICE Collaboration, arXiv: I 105.3865

16

The v3 with respect to the reaction plane determined in the ZDC and with the v2 participant plane is consistent with zero as expected if v3 is due to fluctuations of the initial eccentricity

The $v_3\{2\}$ is about two times larger than $v_3\{4\}$ which is also consistent with expectations based on initial eccentricity fluctuations

 $V₃$ measurements are consistent with initial eccentricity fluctuation and similar to predictions for MC Glauber with η=0.08

Elliptic Flow V_2 **– PID and** p_t

 π /K/p v_2

PID flow:

 $-\pi$ and p are 'pushed' further compared to RHIC

 $-v₂$ shows mass splitting expected from hydro

v_{3} for π /K/p

V_3 V_4 V_5 versus p_T

• Stronger flow than at RHIC which is expected for almost perfect fluid behavior

• First measurements of v3, v4 and v5, and have shown that these flow coefficients behave as expected from fluctuations of the initial spatial eccentricity

• New strong experimental constraints on η/s and initial conditions

 \cdot Flow coefficients at lower p_t showing mass splitting are in agreement with expectations from viscous hydrodynamic calculations

20

Measured reference, still needs extrapolation for p_T > 30 GeV

charged particle R_{AA}

$$
R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{\langle N_{coll} \rangle d^2 N^{pp} / dp_T d\eta}
$$

$$
\langle N_{coll} \rangle = \langle T_{AA} \rangle \cdot \sigma_{pp}^{I N E L}
$$

- pronounced centrality dependence below $p_T = 50$ GeV/c
- minimum at p_7 ≈ 6-7 GeV/c
- strong rise in $6 < p_T < 50$ GeV/c
- no significant centrality and p_T dependence at p_T > 50 GeV/c

Pcharged particle R_{AA} **-** centrality dependence

charged particle R_{AA} **- models**

charged pion R_{AA}

- agrees with charged particle R_{AA}
	- in peripheral events
	- $-$ for $p_T > 6$ GeV/c
- is smaller than charged particle R_{AA} for $p_T < 6$ GeV/c

- K^o_s R_{AA} very similar to that of charged particles: strong suppression of $\mathsf{K}^0_{\mathrm{s}}$ at high p_T
- Λ R_{AA} significantly larger than charged at intermediate p_T : enhanced hyperon production counteracting suppression
- for $p_T > 8$ GeV/c, \wedge and K⁰_s R_{AA} similar to charged particle R_{AA} : strong high- p_T suppression also of Λ

- Charged particle p_T spectra in Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV measured with ALICE at the LHC
- Pronounced p_T dependence of R_A _A at LHC
- Comparison to RHIC data suggests that suppression scales with the charged particle density for a given p_T window
- At $p_T > 50$ GeV/c, no strong centrality dependence of charged particle production is observed
- Results on identified particles will allow to disentangle the interplay between quark and gluon energy loss, and recombination mechanisms at intermediate p_T