Dissociation Temperature in QGP and Meson Mass Spectrum

2011.06.10

Jin-Hee Yoon (尹珍姬)

Dept. of Physics, Inha University

collaboration with C.Y.Wong and H. Crater

Introduction

J/ψ suppression : important signature of QGP

- EMatsuī & Satz, PLB 178 (1986)]
- > Heavy quarkonium states with charm(m_c~1.3 GeV)
- Why suppressed?
 - > Deconfined color charges are screened
 - r_D decreases with increasing T
 - When r_D < r_b, no more bound state
 - > Dissociation(melting) occurs

Introduction

[Satz, NPA 783 (2007)]

Heavy Quarkonium is a good probe for the thermal properties of QGP

Charmonium Family

In Nuclear Theory Group

Bottomonium Family

06/10/2011

Quarkonium at T=0

- \checkmark m_Q >> Λ_{QCD} and quark velocity v<<1
 - > non-relativistic approach
 - Schrodinger Eq.
 - > Potential V(r) : interaction between Q and \overline{Q}

 $V(r) = -\frac{\alpha_{eff}}{r} + \sigma r$ [Eichten et al., PRD 21 (1980)]

- Short distance + long distance
- Known as Cornell Potential

Quarkonium at T=0

In pNRQCD

- Can derive the QQ potential using scattering amplitude with 1-gluon exchange
- Verify the Cornell potential

Quarkonium at T≠0

Screening radius decreases as T

$$-\frac{\alpha_{\text{eff}}}{r} \rightarrow -\frac{\alpha_{\text{eff}}}{r} e^{-r/r_D(T)} \quad \text{[Matsuī & Satz, PLB [78(1986)]]}$$

> Long range Coulomb \rightarrow short range Yukawa

Quarkonium at T≠0

String Tension Term?

$$\sigma r \rightarrow \sigma r_D(T)(1-e^{-r/r_D(T)})$$

> T-dependent string tension

 $\sigma(T) \rightarrow \sigma \frac{(1 - e^{-r/r_D(T)})}{\mu(T)r} \rightarrow \sigma$

 $\mu = 1/r_{\rm D} \rightarrow 0$

[Karsch, Mehr, Satz(KMS), Z Phys C 37(1988)]

as

Quarkonium at T≠0

Screened Cornell Potential

$$V(r) = -\frac{\alpha_{eff}}{r} e^{-\mu(T)r} + \frac{\sigma}{\mu(T)} \left(1 - e^{-\mu(T)r}\right)$$

Effective binding potential

 \checkmark No bound state as $\mu(T)$ increases

Quarkonium at T=0

- ✓ Quarkonium dissociates when r_D<r_b
- ✓ For J/psi

	T=0	T=200 MeV
$lpha_{eff}$	0.52	0.2
r _b	0.41 fm	1.07 fm
r _D	00	0.59 fm

[Wong, Introduction to HIC (1994)]

QGP Thermometer

[Mocsy, (2008)]

- Gives T-dependent free energy(F)
- ✓ F as V(r)

$q\bar{q}$	T/T_c
J/Ψ	1.10
$\chi_c(1P)$	0.74
$\psi(2S)$	0.1-0.2
$\Upsilon(1S)$	2.31
$\chi_b(1P)$	1.13
$\Upsilon(2S)$	1.10
$\chi_b(2P)$	0.83
$\Upsilon(3S)$	0.75

Kaczmarek, Zantow , PRD71(2005)

Dīgal, Petreczky, Satz, PRD64(2001)

06/10/2011

 However, Entropy plays a role

 $U_1(R,T) = F_1(R,T) + TS_1(R,T)$

Internal Energy U(r) as
 V(r)

✓ U(r) as V(r)

- Same at small r
- Steeper at large r
- > Tightly bounded
- > Higher Diss. Temp.

T/T_c	1.1	1.5	2.0	2.5	3.0	3.3
$M[J/\psi, \eta_c]$	2.99	3.13	3.25	3.34	≈3.40	
$E_B[J/\psi, \eta_c]$	0.41	0.27	0.15	0.06	≈0	
$M[\psi(2S)]$	≈3.40			•••	• • •	
$E_B[\psi(2S)]$	≈0	•••		•••		
T/T_c	1.1	1.5	1.8	2.1	2.7	3.5
$M[\Upsilon, \eta_b]$	9.35	9.47	9.59	9.70	9.81	9.86
$E_B[\Upsilon, \eta_b]$	0.95	0.83	0.71	0.60	0.49	0.44
$M[\Upsilon(2S)]$	10.05	10.18	10.28			•••
$E_B[\Upsilon(2S)]$	0.25	0.12	≈0			
$M[\Upsilon(3S)]$	≃10.30	• • •				
$E_B[\Upsilon(3S)]$	≈0	•••				

TABLE II. Same as in Table I for P-wave quarkonia.

T/T_c	1.1	1.3	1.5	2	2.3
$M[\chi_c(1P)]$	3.38				
$E_{B}[\chi_{c}(1P)]$	≈0				
$M[\chi_b(1P)]$	9.95	10.05	10.11	10.23	10.30
$E_B[\chi_b(1P)]$	0.35	0.25	0.19	0.07	≈0
$M[\chi_b(2P)]$	10.25	10.30			
$E_B[\chi_b(2P)]$	0.05	~0			

Wong, PRD(2005)

✓ U(r) as V(r)

- Large Increase in strength
- Due to large increase of entropy and internal energy at transition temp.
- Which is not related to QQ potential
- > Cannot describe the Diss. Temp. suitably
- What is the suitable choice of V?

- ✓ Wong, J. Phys. G32 (2006)
- Fitted into the following analytic form

$$\{F_1, U_1\}(R, T) = -\frac{4}{3} \frac{\alpha_s(T)}{R} f(R, T) + C(T)[1 - f(R, T)],$$

$$f(R,T) = \frac{1}{\exp\{(R - r_0(T))/d(T)\} + 1}.$$

Some combination between F & U
 fractions of F & U are determined by EOS.

06/10/2011

Wong, PRC65(2002)

- T=0 is not suitably matching
- > Needs some treatment?
- → Rel. approach?

06/10/2011

Why Rel.?

Wong, PRC65(2002)

 $V_{spin-spin} + V_{spin-orbit} + V_{tensor}$ = const.× $s_1 \cdot s_2 e^{-d^2r^2} + const. \times L \cdot S + cont. \times S_{12}$

Already tested in e⁺e⁻ system within QED

(Todorov, PRD3(1971))

- * can be applied to two quark system
- Can treat spin-dep. terms naturally

06/10/2011

2-Body Constraint Dynamics

P. van Alstine et al., J. Math. Phys.23, 1997 (1982)

➤ Two free spinless particles with the mass-shell constraint
 → removes relative energy & time

$$\mathbf{H}_{i}^{0}\equiv\mathbf{p}_{i}^{2}+\mathbf{m}_{i}^{2}\approx\mathbf{0}$$

- Two free spin-half particles with the generalized mass-shell constraint
 - \rightarrow potential depends on the space-like separation only & P \perp p

$$\begin{aligned} \mathbf{H}_{i} &\equiv \mathbf{p}_{i}^{2} + \mathbf{M}_{i}^{2} \\ &= \mathbf{p}_{i}^{2} + \mathbf{m}_{i}^{2} + \Phi_{i}(\mathbf{x},\mathbf{p}_{1},\mathbf{p}_{2}) \\ &\approx \mathbf{0} \end{aligned}$$

2-Body Constraint Dynamics

P. van Alstine et al., J. Math. Phys.23, 1997 (1982)

> Pauli reduction + scale transformation

16-comp. Dirac Eq. \rightarrow 4-comp. rel. Schrodinger Eq.

$$\mathbf{H} = \frac{\boldsymbol{\varepsilon}_1 \mathbf{H}_1 + \boldsymbol{\varepsilon}_2 \mathbf{H}_2}{\mathbf{w}} = \mathbf{p}^2 + \boldsymbol{\Phi}_{\mathbf{w}}(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \mathbf{p}_{\perp}, \mathbf{A}(\mathbf{r}), \mathbf{S}(\mathbf{r})) = \mathbf{b}^2(\mathbf{w})$$

where
$$b^2(w) = \varepsilon_w^2 - m_w^2$$
 with $\varepsilon_w = \frac{w^2 - m_1^2 - m_2^2}{2w}$ and $m_w = \frac{m_1 m_2}{w}$

What's Good?

TBDE : 2 fermion basis

16-component dynamics —> 4-component

- Particles interacts through scalar and vector interactions.
- Leads to simple Schrodinger-type equation.
- Spin-dependence is determined naturally.

> Φ_w = central potentials + darwin + SO + SS + Tensor + etc.

$$\begin{split} \Phi_{w} &= 2\mathbf{m}_{w}\mathbf{S} + \mathbf{S}^{2} + 2\varepsilon_{w}\mathbf{A} - \mathbf{A}^{2} + \Phi_{D} + \mathbf{L} \cdot (\sigma_{1} + \sigma_{2})\Phi_{SO} + \sigma_{1} \cdot \sigma_{2}\Phi_{SS} \\ &+ \sigma_{1} \cdot \hat{\mathbf{r}} \,\sigma_{2} \cdot \hat{\mathbf{r}} \,\mathbf{L} \cdot (\sigma_{1} + \sigma_{2})\Phi_{SOT} + (3\sigma_{1} \cdot \hat{\mathbf{r}} \,\sigma_{2} \cdot \hat{\mathbf{r}} - \sigma_{1} \cdot \sigma_{2})\Phi_{T} \\ &+ \mathbf{L} \cdot (\sigma_{1} - \sigma_{2})\Phi_{SOD} + i\mathbf{L} \cdot (\sigma_{1} \times \sigma_{2})\Phi_{SOX} \end{split}$$

$$\Phi_{D} = -\frac{2F'(\cosh 2K - 1)}{r} + F'^{2} + K'^{2} + \frac{2K' \sinh 2K}{r} \qquad \Phi_{SS} = k(r) + \frac{2K' \sinh 2K}{3r} - \frac{2F'(\cosh 2K - 1)}{3r} \\ -\nabla^{2}F - \frac{2(\cosh 2K - 1)}{r^{2}} + m(r), \qquad \Phi_{SS} = k(r) + \frac{2K' \sinh 2K}{3r} - \frac{2F'(\cosh 2K - 1)}{3r} \\ -\frac{2(\cosh 2K - 1)}{3r^{2}} + \frac{2F'K'}{3} - \frac{\nabla^{2}K}{3}, \qquad -\frac{2(\cosh 2K - 1)}{3r^{2}} + \frac{2F'(\cosh 2K - 1)}{r} + 2F'K' \\ +\frac{K' \sinh 2K}{r}, \qquad \Phi_{SOD} = (l' \cosh 2K - q' \sinh 2K), \\ \Phi_{SOX} = (q' \cosh 2K - l' \sinh 2K), \qquad \Phi_{SOD} \& \Phi_{SOX}^{(A17)} = 0 \\ \exp(m_{1} - m_{2}) \qquad \exp(m_{1} - m_{2}) \qquad \exp(m_{1} - m_{2}) \\ \exp(m_{1} - m_{2}) \qquad \Phi_{SOT} = -K' \frac{\cosh 2K - 1}{r} + \frac{\sinh 2K}{r^{2}} - \frac{K'}{r} + \frac{F' \sinh 2K}{r},$$

06/10/2011

$$k(r) = \frac{1}{3} \nabla^2 (K + G) - \frac{2F'(G' + K')}{3} - \frac{1}{2} G'^2$$

$$n(r) = \frac{1}{3} \left[\nabla^2 K - \frac{1}{2} \nabla^2 G + \frac{3(G' - 2K')}{2r} + F'(G' - 2K') \right],$$

$$m(r) = -\frac{1}{2} \nabla^2 G + \frac{3}{4} G'^2 + G'F' - K'^2,$$
 (A19)

and

06

$$l'(r) = -\frac{1}{2r} \frac{E_2 M_2 - E_1 M_1}{E_2 M_1 + E_1 M_2} (L - \mathcal{G})',$$

$$q'(r) = \frac{1}{2r} \frac{E_1 M_2 - E_2 M_1}{E_2 M_1 + E_1 M_2} (L - \mathcal{G})'.$$
(A20)

$$\begin{split} K' &= \frac{G' + L'}{2}, \\ \nabla^2 F &= \frac{(\nabla^2 L - \nabla^2 \mathcal{G})(E_2 M_2 + E_1 M_1)}{2(E_2 M_1 + E_1 M_2)} \\ &- (L' - \mathcal{G}')^2 \frac{(m_1^2 - m_2^2)^2}{2(E_2 M_1 + E_1 M_2)^2} - \nabla^2 \mathcal{G}, \\ \nabla^2 L &= \frac{-L'^2 (M_1^2 + M_2^2)}{M_1 M_2} + \frac{w}{M_1 M_2} \left(\frac{\nabla^2 S(m_w + S) + S'^2}{w - 2A} \right) \\ &+ \frac{4S'(m_w + S)A' + (2m_w S + S^2)\nabla^2 A}{(w - 2A)^2} \\ &+ \frac{4(2m_w S + S^2)A'^2}{(w - 2A)^3} \right), \\ \nabla^2 \mathcal{G} &= \frac{\nabla^2 A}{w - 2A} + 2\mathcal{G}'^2. \qquad \nabla^2 K = \frac{\nabla^2 \mathcal{G} + \nabla^2 L}{2}. \quad \lor. \end{split}$$

$$F = \frac{1}{2} \log \frac{\mathcal{D}}{\varepsilon_2 m_1 + \varepsilon_1 m_2} - \mathcal{G},$$

$$\mathcal{D} = E_2 M_1 + E_1 M_2,$$

$$K = \frac{(\mathcal{G} + L)}{2},$$

$$F' = \frac{(L' - \mathcal{G}')(E_2 M_2 + E_1 M_1)}{2(E_2 M_1 + E_1 M_2)} - \mathcal{G}',$$

$$E_1 = \frac{\varepsilon_1 - A}{\sqrt{(w - 2A)/w}},$$

$$E_2 = \frac{\varepsilon_2 - A}{\sqrt{(w - 2A)/w}},$$

$$M_1 = \sqrt{m_1^2 + \frac{2m_w S + S^2}{(w - 2A)/w}},$$

$$M_2 = \sqrt{m_2^2 + \frac{2m_w S + S^2}{(w - 2A)/w}},$$

$$L' = \frac{M_1'}{M_2} = \frac{M_2'}{M_1} = \frac{w}{M_1 M_2} \left(\frac{S'(m_w + S)}{w - 2A} + \frac{(2m_w S + S^2)A'}{(w - 2A)^2}\right),$$

$$\mathcal{G}' = \frac{A'}{w - 2A}.$$

$$1/(\varepsilon_1 + \varepsilon_2)(M_1 + M_2) - (m_1 + m_2)(E_1 + E_2))$$

$$\cosh 2K = \frac{1}{2} \left(\frac{(\varepsilon_1 + \varepsilon_2)(M_1 + M_2)}{(m_1 + m_2)(E_1 + E_2)} + \frac{(m_1 + m_2)(E_1 + E_2)}{(\varepsilon_1 + \varepsilon_2)(M_1 + M_2)} \right),$$

$$\sinh 2K = \frac{1}{2} \left(\frac{(\varepsilon_1 + \varepsilon_2)(M_1 + M_2)}{(m_1 + m_2)(E_1 + E_2)} - \frac{(m_1 + m_2)(E_1 + E_2)}{(\varepsilon_1 + \varepsilon_2)(M_1 + M_2)} \right),$$

- > $\Phi_{SOD}=0$ and $\Phi_{SOX}=0$ when $m_1=m_2$
- > For singlet state with the same mass,
 - ✓ no SO, SOT contribution ← $L \cdot (\sigma_1 + \sigma_2) = 2L \cdot S = 0$
 - ✓ Terms of (Φ_D , Φ_{SS} , Φ_T) altogether vanishes.
 - $\checkmark H=p^2+2m_wS+S^2+2\varepsilon_wA-A^2$

> For π (S-state),

$$\left[-\frac{d^2}{dr^2} + 2m_w S + S^2 + 2\varepsilon_w A - A^2 + \Phi_D - 3\Phi_{SS}\right]v_0 = b^2 v_0.$$

> For ρ (mixture of S & D-state),

$$\left\{ -\frac{d^2}{dr^2} + 2m_w S + S^2 + 2\varepsilon_w A - A^2 + \Phi_D + \Phi_{SS} \right\} u_+ \qquad \left\{ -\frac{d^2}{dr^2} + \frac{6}{r^2} + 2m_w S + S^2 + 2\varepsilon_w A - A^2 + \Phi_D - 6\Phi_{SO} + \frac{2\sqrt{2}}{3} \{3\Phi_T - 6\Phi_{SOT}\} u_- + \frac{2\sqrt{2}}{3} \{3\Phi_T\} u_+ \right\} \\ = \left\{ -\frac{d^2}{dr^2} + \Phi_{++} \right\} u_+ + \Phi_{+-} u_- = b^2 u_+, \qquad (55) = \left\{ -\frac{d^2}{dr^2} + \frac{6}{r^2} + \Phi_{--} \right\} u_- + \Phi_{-+} u_+ = b^2 u_-. \qquad (56)$$

06/10/2011

Once we find b², Invariant mass $W = \sqrt{b^2 + m_1^2} + \sqrt{b^2 + m_2^2}$

QCD Potentials

Common non-relativistic static quark potential

$$\mathbf{V}(\mathbf{r}) = -\frac{\alpha_{c}}{\mathbf{r}} + \mathbf{b}\mathbf{r}$$

Dominant Coulomb-like + confinement

- But asymptotic freedom is missing
- Richardson(Phys. Lett. 82B,272(1979))

$$\widetilde{V}(q) = -\frac{16\pi}{27} \frac{1}{q^2 \ln(1+q^2/\Lambda^2)}$$

$$\xrightarrow{FT} V(r) = \frac{8\pi \Lambda^2 r}{27} - \frac{8\pi f(\Lambda r)}{27r}$$

QCD Potentials

• Richardson potential in coord. space

$$V(r) = \frac{8\pi\Lambda^2 r}{27} - \frac{8\pi f(\Lambda r)}{27r}$$

> For $r \to 0$, $f(\Lambda r) \to -\frac{1}{\ln(\Lambda r)}$: asymptotic freedom

> For $\mathbf{r} \to \infty$, $\mathbf{f}(\Lambda \mathbf{r}) \to 1$: confinement

• We will use fitting param. $V(\mathbf{r}) = \frac{8\pi\Lambda^{2}\mathbf{r}}{27} - \frac{16\pi}{27r\ln(ke^{2} + B/(\Lambda r)^{2})}$

06/10/2011

QCD Potentials

$$\mathbf{V}(\mathbf{r}) = \frac{8\pi\Lambda^2 \mathbf{r}}{27} - \frac{16\pi}{27r\ln(Ke^2 + B/(\Lambda r)^2)}$$

• Scalar Pot.

$$\mathbf{S(r)}=\frac{8\pi\Lambda^2\mathbf{r}}{27}$$

• Vector Pot.

A(r) =
$$-\frac{16\pi}{27r \ln(Ke^2 + B/(\Lambda r)^2)} + \frac{e_1e_2}{4\pi r}$$

What's Good?

TBDE : 2 fermion basis

16-component dynamics —> 4-component

- Particles interacts through scalar and vector interactions.
- Yields simple Schrodinger-type equation.
- Spin-dependence is determined naturally.
- No cutoff parameter
- * No singularity

06/10/2011

Individual Contribution(π)

terms	magnitude	terms	magnitude
<d² dr²=""></d²>	0.8508	<Ψ _{SI} >	-0.3832
<2m _w S>	0.0103	<Ψ _D >	-3.8040
< S ² >	0.0942	<Ψ _{SS} >	-2.8950
<2ɛ _w A>	-0.0598	<Ψ _{ST} >	6.2350
<-A ² >	-0.4279	<Ψ _{SD} >	-0.4643
<b< b="">²></b<>	0.0033	<Ψ _w >	-0.8475

Wave Functions($\pi \& \eta_c$)

Wave Functions(J/ ψ , ρ)

MESON Spectra

L	0.4218 GeV
В	0.05081
К	4.198
m _u	0.0557 GeV
m _d	0.0553 GeV
m _s	0.2499 GeV
m _c	1.476 GeV
m _b	4.844 GeV

MESON Spectra

32 mesons

TABLE II	Selected port	ions of meso	n spectrum.
	Exp.	Theory	Exp Theory
son	(GeV)	(GeV)	(GeV)
$u\bar{d}1^1S$	0.140	0.159	-0.019
$u\bar{d}1^{3}S_{1}$	0.775	0.792	-0.017
au 1 51	0.775	0.752	0.017
$: s\bar{u}1^{1}S_{0}$	0.494	0.493	0.001
$: sd1^{1}S_{0}$	0.498	0.488	0.010
$: s\bar{u}1^{3}S_{1}$	0.892	0.903	-0.011
$sd1^{3}S_{1}$	0.896	0.901	-0.005
$\bar{s}1^{3}S_{1}$	1.019	1.025	-0.006
$c\bar{u}1^1S_0$	1.865	1.840	0.025
$c\bar{d}1^1S_0$	1.870	1.845	0.025
$c\bar{u}1^{3}S_{1}$	2.010	1.981	0.029
: $c\bar{d}1^{3}S_{1}$	2.007	1.979	0.028
$c\bar{s}1^{1}S_{0}$	1.968	1.965	0.003
$c\bar{s}1^{3}S_{1}$	2.112	2.112	0.000

06/10/2011

Summary

- > Using Dirac's rel. constraints, TBDE successfully leads to the SR-type Eq.
- > With Coulomb-type + linear pots, non-singular (well-beaved) rel. WF is obtained.
- ➢ For L=2,
 - tensor term cancels the extremely singular S-state pot.
 - At small r, S-wave is proportional to D-wave for L=2.
- > Obtain mass spectrum of mesons

Large π–ρ **splitting explained** 06/10/2011 Korea Univ.

Future Work

- > Extends this potential to non-zero temperature.
- Find the dissociation temperature and cross section of a heavy quarkonium in QGP.
- > Especially on J/ψ to explain its suppression OR enhancement.
- > And more...

Thank you for your attention!

Possible Choice of V(T)

- F & U or their combination from lattice QCD
- > Blackhole Potential from hQCD which is analytically expressed and inherits temp-dep.
 (ongoing) → test the validity of Ads/CFT.

Backup slides

Introduction

Why heavy Quarkonium?

- heavy : charm(m_c~1.3 GeV), bottom(m_b~4.7 GeB)
- > small size but strong binding
- weak coupling with light mesons
- > can survive through the deconfinement transition
- > good probe for the thermal properties of QGP

	Mass	radius
π	0.14 GeV	0.06fm
р	0.94 GeV	0.87fm
Ψ'	3.68 GeV	0.90fm
Xc	3.53 GeV	0.72fm
J/ψ	3.1 GeV	0.50fm
Υ	9.5 GeV	0.28fm

 $\Lambda_{QCD} \sim 200 \text{ MeV}$ $\alpha_s(M_Q) \leftrightarrow 1$

Relativistic Application(1)

- Applied to the Binding Energy of chamonium
- Without spin-spin interaction
 - M(exp)=3.067 GeV
 - Compare the result with PRC 65, 034902 (2002)

T/Tc	BE(non-rel.)	BE(rel.)	Rel. Error(%)
0.0	-0.67	-0.61	9.0
0.6	-0.56	-0.52	7.1
0.7	-0.44	-0.41	6.8
0.8	-0.31	-0.30	3.2
0.9	-0.18	-0.17	4.0
1.0	-0.0076	-0.0076	0.0

> At zero temperature, 10% difference at most!

Relativistic Application(2)

With spin-spin interaction

> M(S=0) = 3.09693 GeV

M(S=1) = 2.9788 GeV

> At T=0, relativistic treatment gives

BE(S=0) = -0.682 GeV

BE(S=1) = -0.586 GeV

> Spin-spin splitting ~100 MeV

Overview of QQ Potential(1)

- > Pure Coulomb : $A = -\frac{0.2}{r}$ and S = 0BE=-0.0148 GeV for color-singlet =-0.0129 GeV for color-triplet(no convergence)
- + Log factor :

$$A = -\frac{0.2}{r\frac{1}{2}\ln\left(e^{2} + \frac{1}{\Lambda^{2}r^{2}}\right)}$$
 and $S = 0$

BE=-0.0124 GeV for color-singlet =-0.0122 GeV for color-triplet

> + Screening:
$$A = -\frac{0.2 e^{-\mu r}}{r \frac{1}{2} \ln \left(e^2 + \frac{1}{\Lambda^2 r^2} \right)} \quad \text{and} \quad S = 0$$

BE=-0.0124 GeV for color-singlet No bound state for color-triplet

Overview of QQ Potential(2)

+ String tension(with no spin-spin interaction)

$$A = -\frac{0.2 e^{-\mu r}}{r \frac{1}{2} \ln \left(e^2 + \frac{1}{\Lambda^2 r^2} \right)}$$

and S = -br

When b=0.17 BE=-0.3547 GeV When b=0.2 BE=-0.5257 GeV Too much sensitive to parameters!

QQ Potential

Modified Richardson Potential

- Parameters : m, Λ $\alpha_s = \frac{4\pi}{\left(11 \frac{2}{3}n_f\right)} = \frac{12\pi}{27}$ And mass=m(T)
- A : color-Coulomb interaction with the screening S : linear interaction for confinement

Too Much Attractive!

Korea Univ.

06/10/2011

$V(J/\psi)$ at small range

$V(J/\psi)$ with mixing

For J/y, S=1 and J=1.

Without mixing(L=0 only), splitting is reversed.

Therefore there has to be mixing between L=0 and L=2 states.

 $V(J/\psi)$ with mixing

Work on process

- To solve the S-eq. numerically,
- We introduce basis functions

 $\phi_{n}(r) = N_{n}r^{l}exp(-n\beta^{2}r^{2}/2) Y_{lm}$ $\phi_{n}(r) = N_{n}r^{l}exp(-\beta r/n) Y_{lm}$ $\phi_{n}(r) = N_{n}r^{l}exp(-\beta r/\sqrt{n}) Y_{lm}$

- > None of the above is orthogonal.
- We can calculate <p²> analytically, but all the other terms has to be done numerically.
- ➤ The solution is used as an input again → need an iteration
- > Basis ftns. depend on the choice of β quite sensitively and therefore on the choice of the range of r.

. . .