HIM-2011@KoreaU

Supernovae & Neutron Stars Prospects for KoRIA

Chang-Hwan Lee (PNU)

Contents

- White Dwarfs & Neutron Stars (in connection with Supernova)
- Various Types of Supernovae
 - Type I Supernovae (White Dwarfs, ...)
 - Type II Supernovae (Neutron Stars, ...)
 - Hypernovae (Rotating Black Holes)
 - Pair-Instability Supernovae
- Prospects for KoRIA

Well-known Types of Supernovae : Observations

- Type I : no H line
 - la: Si-II line
 - Ib: He-I line
 - Ic: weak or no He line
- Type II : with H line

Nuclear energy production is important for giant stars (beyond main sequence)

•	M < 8 N	1	→ Type Ia SN
•	$8 M \circ < M < 25 M$	I. : Neutron Star	→ Type II SN
•	$25 \text{ M} \circ < \text{M} < 100 \text{ M}$	¶ Ioi : Black Hole 	→ Hypernova
•	100 M• < M < 140 M	¶₀ : Black Hole	
•	$140 \text{ M} \circ < \text{M} < 260 \text{ M}$	1⊙ : Pair-Instabil i	ity SN
•	260 M. <m< th=""><th>: Black Hole</th><th></th></m<>	: Black Hole	

* Numbers above depend on the metallicity, etc \rightarrow Consider them only as guidelines

White Dwarfs

 $M = \mathcal{O}(1M_{\odot})$ and $R = \mathcal{O}(7000 \text{ km})$

Matter at quantum densities

de Broglie wavelength :
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} \approx \frac{h}{\sqrt{3mkT}}$$

inter-atom distance $\sim \lambda/2$: quantum domain

degenerate electron gas : white dwarfs degenerate nucleon gas : neutron stars

$$\begin{split} \rho_q \approx \frac{m_p}{(\lambda_e/2)^3} &= \frac{8m_p(3m_ekT)^{3/2}}{h^3} \\ \hline \rho_q(T = 15 \times 10^6 \text{K}) \approx 640 \text{ g cm}^{-3} \\ \rho_q(T = 10^8 \text{K}) \approx 11,000 \text{ g cm}^{-3} \end{split} \quad \rho_\odot^{\text{center}} \approx 150 \text{ g cm}^{-3} \end{split}$$

Required input from nuclear physics

white dwarf: non-relativistic vs relativistic gas

 $P_e^{\rm non-rel} \propto \rho^{5/3}$ (low mass white dwarf)

 $P_e^{\rm rel} \propto \rho^{4/3}$ (high mass white dwarf)

- as mass increases, the density increases
- from non-relativistic regime to relativistic regime
- the pressure support rises more and more slowly
- the radius shrinks even more sharply
- electron pressure cannot support gravitation

Supernova Type Ia

 $M_{\rm ch}$: SN Type Ia is standard candle in cosmology

- White dwarfs in close binaries
- Reach Chandrasekhar mass due to accretion
- Ignition of carbon core burning under degenerate conditions
- Structure is insensitive to the temperature (because degenerate pressure dominates)
 no self-control mechanism as in classical gas
- \checkmark Nuclear reaction rate increases more and more
- ✓ Thermonuclear runaway : SN Type Ia
- Nothing left after SN explosion

Supernova Type Ia

 $M_{\rm ch}$: SN Type Ia is standard candle in cosmology

과학동아 2010.02

$M_{\rm Ch} = 1.4 M_{\odot} ~({\cal Z}/A = 0.5)$

$(M > 8M_{\odot})$ Structure of massive star before collapse

What will happen when $M_{\rm Fe} \sim M_{\rm Ch}$?

Nuclear Photodisintegration
$$\gamma + {}^{56}Fe \rightarrow 13 \ {}^{4}He + 4n \ (-124 \ {\rm MeV})$$
 $\gamma + {}^{4}He \rightarrow 2p + 2n \ (-28.3 \ {\rm MeV})$ Neutronization $e^- + p \rightarrow n + \nu_e$ $e^- + {}^{56}Fe \rightarrow {}^{56}Mn + \nu_e$ $e^- + {}^{56}Fe \rightarrow {}^{56}Mn + \nu_e$ $e^- + {}^{56}Mn \rightarrow {}^{56}Cr + \nu_e$

* total loss of thermal pressure support
Core collapse on a free-fall timescale

 $\tau_{\rm ff} = \left(\frac{3\pi}{32G\bar{\rho}}\right)^{1/2} \sim 0.1 \ {\rm s} \to {\rm a} \ {\rm few \ seconds \ with \ neutrino \ scattering}$

final fate of evolving giant stars

white dwarfs & neutron stars & black holes

general relativity for neutron star

$$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2} \left[1 + \frac{P(r)}{\rho(r)c^2}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)c^2}\right] \left[1 - \frac{2GM(r)}{c^2 r}\right]^{-1}$$

$$P(\rho; p, n, e, \pi, K, Hyperon, ...)$$

beyond normal nuclear matter density ?

Open Question:

How to calculate in strong interaction regime?

Various R & M relation

 $P(\rho; p, n, e, \pi, K, Hyperon, ...)$

Supernova Type II

formation of neutron star at the core

- shock wave propagates outwards
- supernova explosion
- * neutron star is left at the core after SN

$$\begin{aligned} & \left(\begin{array}{c} L_{\rm SN} \sim 3 \times 10^9 \ L_{\odot} \\ & E_{\rm kin} \sim 3 \times 10^{51} \ {\rm erg} \\ & E_{\nu} \sim 10^{53} \ {\rm erg} \end{array} \right) \\ & E_{\rm gr} \sim \frac{GM^2}{r_{\rm ns}} = 5 \times 10^{53} \left(\frac{M}{1.4M_{\odot}} \right)^2 \left(\frac{r_{\rm ns}}{10 \ {\rm km}} \right)^{-1} \ {\rm erg} \end{aligned}$$

Supernova Type II

New Types of Supernovae

Hypernovae (Rotating Black Holes)
 25 M • < M < 100 M •

Low-Metallicity Stars in the Early Universe

- M > 100 M o
- High-metallicity galaxies (Our Galaxy, 0.02)
 → many stars with high metallicity
 → stable stars cannot exist beyond 100 M.
- Low-metallicity galaxy in the early Universe
 → expected : existence of low-metallicity stars
 → but, none of them found, yet
- Stars in the early Universe are high in mass
 → 100 M < M < 300 M •
 - Pair-Instability Process
 - → went into BH or pair-instability supernovae

Pair-Instability Process

방법 안정성 발생고 성 별의 절량이 태양보다 100배 이상 클 경우 핵용합반응으로 탄소가 쌓인다. 종심부의 오고가 10억'c를 넘으면 질량이 없는 빛이 전자 정치와 양천자 쌍으로 바뀌면서 압력이 졸어드는 방물안정성 단계에 이른다. 그 결과 중심부가 급히 수축하면서 다음 단계 핵융합이 일어나고 블랙홀이나 초신성 폭발로 최후를 맞는다

✓ 태양질량의 100배가 넘는 별의 중심부에 탄소가 쌓임.
 ✓ 중심부의 온도가 10억도를 넘으면 쌍불안정성 단계에 이름.
 ✓ 압력이 줄어, 별이 수축하여 다음 단계 핵반응이 일어남.
 ✓ 별의 질량에 따라 블랙홀 또는 초신성이 됨.

Pair-Instability

not enough to make explosion 100 M • < M < 140 M •</p>

태양질량의 100~140배인 별

핵반응의 과정을 거쳐 별의 중심에서 탄소가 만 들어진다. 이때 중심부 온도가 10억℃가 넘으면 질량이 없는 빛이 전자와 양전자 쌍으로 바뀌면 서 압력이 줄어드는 쌍불안정성 단계에 이르고 그 결과 별 내부가 급격히 수축한다. 이 수축으로 내부 온도가 더 높아지면서 다음 단계의 핵반응 이 폭발적으로 일어난다. 이 과정에서 부분적으 로 물질을 외부로 방출하지만 별 전체를 폭발시 키기에는 부족해 다시 수축하는 과정을 반복하면 서 철로 이뤄진 핵이 만들어지고, 핵이 붕괴해 블 랙홀이 남는다.

New Types of Supernovae

Pair-Instability Supernovae
 140 M • < M < 260 M •

태양질량의 140~260배인 별

초신성 폭발

초기에는 태양질량의 100~140배인 별과 비슷한 과정을 거치지만, 쌍불안정성에 따른 수축과 그 결과 일어나는 핵반응 에너지가 별 전체를 폭발 시키기에 충분해 아무것도 남기지 않고 별 전체 를 폭발시킨다. 이때 수반되는 초신성 폭발에너 지는 기존에 알려진 초신성 폭발에너지의 100배 에 이른다. 이 폭발은 최근까지 이론적으로만 예 측됐다가 2009년 12월 드디어 그 존재가 최초로 확인됐다.

쌍불안정성으로 별이 수축해 폭발적인 연소반응이 시작돼 별 전체를 폭발시키기에 충분한 에너지가 방출됨

Pair-Instability

 Pair-Instability M > 260 M•

태양질량의 260배 이상인 별

초기진화 과정은 태양질량의 100~260배인 별 과 비슷하다. 그러나 쌍불안정성에 따른 폭발적 인 산소와 실리콘 핵반응에서 발생하는 에너지 와 압력이 바깥쪽에 있는 물질이 받는 중력을 이 길 만큼 크지 못하다. 그 결과 핵반응으로 만들어 진 금속원소 전체를 흡수해 폭발 없이 블랙홀로 진화한다.

태양질량의 200배에 이르는 거대한 별이 폭발하는 현상인 쌍불안정성 초신성 폭발 장면이 최초로 관측됐다. 10억℃가 넘는 온도에서 빛이 전자와 양전자 쌍으로 붕괴하는 원인이 되는 쌍불안정성은 별의 폭발에 어떤 영향을 미치는 걸까. 한편 쌍불안정성 초신성의 발견은 초기 우주에 대한 비밀을 밝혀줄 것으로 기대되고 있다.

과학동아 2010.02

2009년 쌍불안정성 초신성 발견 (200 M☉)

28

•	M < 8 N	M. : White Dwarf → Type Ia SN
•	$8 \text{ M} \circ < \text{M} < 25 \text{ N}$	M. : Neutron Star → Type II SN
•	$25 \text{ M} \circ < \text{M} < 100 \text{ M}$	M⊕:Black Hole → Hypernova
•	$100 \text{ M} \circ < \text{M} < 140 \text{ M}$	M⊕ : Black Hole
•	$140 \text{ M} \circ < \text{M} < 260 \text{ M}$	Mo: Pair-Instability SN
•	260 M. <m< th=""><th>: Black Hole</th></m<>	: Black Hole

* Numbers above depend on the metallicity, etc \rightarrow Consider them only as guidelines

Prospects for KoRIA

- Nuclear Synthesis from various types of Supernovae
- Symmetry Energy in Neutron Stars
- Leading role in Astrophysics
 - gamma-ray bursts & gravitational wave radiation from colliding NS binaries

심광숙 교수님의 정년퇴임을 진심으로 축하 드립니다.

