Up-scope of the Forward RPCs for the CMS/LHC Experiment

Kyong Sei Lee

KODEL / Korea University

Forward RPC Collabora

Outline

- 1. Introduction: Forward RPC system for CMS
 - RPCs System for the Compact Muon Solenoid
 - Collaboration works for Forward RPC system of CMS
- 2. Completion of the Forward RPC System
 - Current condition for the endcap-RPCtrigger
 - Upscope plans
 - R&Ds for RE1/1
- 3. Collaboration for the Forward RPC upgrades
- 4. Schedule and milestones

1. Introduction: Forward RPCs for CMS

RPCs System for the Compact Muon Solenoid

- Detectors to select muon candidates for the CMS experiment

3

CMS RPCs, gas detectors in avalanche mode: Fast time response (~ 10 ns) and resolution (~ 1 ns) ⇒ Suitable for tagging particles every 25 ns for LHC collisions Thin panel detector structure of RPCs ⇒ Designed to provide L1 trigger information to trackers via PACT

Muon system

- Tracking : Drift Tubes + Cathode Strip Chambers
- Trigger : Resistive Plate Chambers

RPCs System for the Compact Muon Solenoid (CMS/TDR LHCC/CERN 97-32)

- RPCs in Barrel + Forwards cover η < 2.1
- The angular coverage ~ 3 π
- Barrel RPCs
 - 6 stations (layers)
 - Fully covering up to $\eta = 0.8$
 - Partially covering up to $\eta~$ = ~ 1.2
- Forward RPCs
 - 2 wings (RE+, RE-)
 - 4 stations (RE1, RE2, RE3, RE4) in each wing
 - Covering 0.92 < η <2.1

CMS RPCs: 2-gap RPCs

The avalanche mode for RPCs lies near the end of the proportional mode (just below $\eta x \sim 20$)

 \rightarrow 'Limited proportional mode'

Thickness of each electrode : 2 mm

Anode readout by placing the strip panel at the GND side

Freon based gas mixture :

96.0% $C_2H_2F_4$ + 3.5% i- C_4H_{10} (+ 0.5% for SF₆)

Digitization of the pulse for the time information and to select the meaningful muon track from the hit pattern.

Important Characteristics				
Time <u>resol</u> .	$\sim 1~ns$ for MIP			
Efficiency	>95 % for MIP			
Rate capability	>2 kHz/cm ²			
Noise rate	>5 Hz/cm ²			
Resistivity of HPLs	10 ¹⁰ Ohmcm			
Strip multiplicity	1.5-3.0			

- n₀: initial size of clusters(electrons)
- n : size of of clusters(electrons)
- $\eta = \alpha \beta$: effective Townsend coefficient
- β : attachment coefficient
- E : effective field
- P : gas pressure
- · A, B : constants in Korff's approximation
- ge : induced charge at signal pick-up strip
- µ : avarage initial size of clusters
- g_{el} : electron's charge
- d : gap width
- M : gain fluctuation factor
- $\cdot k = (\varepsilon_r d/s) / (\varepsilon_r d/s+2)$
- •λ : average cluster density

Collaboration works for the Forward RPCs

Korea, Belgium, CERN, China, India, Italy, Pakistan, Poland, Russia ...

RE1 in η < 1.6 RE1/2 & RE1/3 : 144 RPCs

Installation of ME1/2-RE1/2 packages

Installation of RE1/3

RE2 in η < 1.6 RE2/2, RE2/3, RE3/2, RE3/3 288 RPCs

RE3/2 & RE3/3 on the back of YE3

2. Completion of the Forward RPC System

- Why do we have to fully construct the endcap RPC system ?
 - The CMS was design to optimize detection of the muons from Higgs.
 - Only 3 RPC stations in 1.6 < η .
 - There is NO RPC muon trigger in 1.6 < η < 2.1.
 - The current muon trigger efficiency in 1.6 < η < 2.1 ~ 70 % with the current system without high- η RPCs.

► Barrel RPCs

- 6 stations (layers)
- Fully covering up to $\eta~$ = 0.8
- Partially covering up to $\eta~$ = ~ 1.2
- Forward RPCs
 - 2 wings (RE+, RE-)
 - 4 stations (RE1, RE2, RE3, RE4) in each wing
 - Covering 0.92 < η <2.1

Trigger efficiency in the original design of the CMS Muon TDR (W. Smith)

> Single-muon trigger ε vs. η

3-Station CSC Trigger Efficiency

Efficiency to find muon of any p_T in flat p_T =3-100 GeV sample

RE1/1 RPCs for high-η triggers

► 72 RE1/1 RPCs at YE1 :

- High priority among RPCs in 1.6 < η < 2.1
- Advantage of RE1/1 : RPCs closest to *pp* collision vertex with presence of strong magnetic fields.
- Expect an effective rejection of the beam-related backgrounds (Gammas, neutrons, charged pions...) for the muon triggers.

Have to insert trigger detectors in the CMS end-cap noses

Insert via rails

1) Standard 2-gap phenolic RPC: first six RE1/1 RPCs in CMS

Phenolic plate (~10¹⁰ Ω cm) instead of glass (~10¹³ Ω cm) Expected maximum rate : 300 ~ 400 Hz/cm² @ L = 10³⁴ cm² s⁻¹

- **1. Standard procedure for the detector manufacture**
- 2. Cosmic ray test for the detector quality assurance

First 2-gap RE1/1 Detector at ISR

Configuration of 6 RE1/1 RPCs in a 60 degree sector

Covered by shielding box

FEB flat cable layout

Signal cable layout

4 RE1/1 RPC module installed in the CMS nose-cone (2009)

•Final result : Chamber 1,2,5,6 is OK •Chamber 3,4 were rejected because of high and unstable current of bottom gap

16

2) Multi-gap phenolic RPCs for RE1/1

Smaller detector pulses

- Higher rate capability at RE1/1 of CMS
- Better radiation hardness

Aiming for higher-rate trigger to enhance the future CMS/LHC trigger condition Maximum rate expected ~ 2 kHz/cm² @ L ~ 10³⁵ Hz/cm²

	2-gap RPC	4-gap RPC	6-gap RPC	
Thickness of each gap	2.0 mm	1.0 mm	0.65 mm	
Total thickness of gap in RPC	4.0 mm	4.0 mm	4.0 mm	
$< q_{\rm e} >$ in a working plateau	2.5 ~ 5.0 pC	1.3 ~ 2.0 pC	0.6 ~ 1.0 pC	
Typical threshold	~ 200 fC	~ 150 fC	~ 100 fC	
Resistivity of resistive plates	1 ~ 6 x 10 ¹⁰ Ωcm	1 ~ 6 x 10 ¹⁰ Ωcm	~ 1 x 10 ¹¹ Ωcm	
Maximum rate capability	< 2 kHz/cm ²	~ 3 kHz/cm²	~ 5 kHz/cm²	

A 200 mCi ¹³⁷Cs gamma source

A six-gap RPC installed with trigger plastic scintillators

w/o and w. gamma-ray backgrounds

- Shifts in HV ~ 1.5 kV at 2.02 kHz/cm²
- Caused by increase in resistivity of HPL

 $ρ_{20} = (6.9 \pm 3.5) \times 10^{10} \Omega$ cm (at H = 75%) in Jul. 15, 2009 (right after the production)

 $ρ_{20} = (3.3 \pm 0.8) \times 10^{11} \Omega$ cm (at H = 47%) in Jan. 6, 2010 (final measurement)

- Resistivity of the HPL should be $\leq 10^{11} \Omega$ cm after fully polymerized.

HIM. June 10. 2011

$\varepsilon \& \langle q_e \rangle$ for a 4-gap RPC

3) GEMs for RE1/1

- Compact detector structure
- Rate capability > 10⁵/cm²
- Tracking capability
- RE1/1: no access allowed
 - \rightarrow Radiation hardness
- Problem: too many channels# of ch/det. = 8960
 - # of detector = 72

Basic structure

2 ~ 3 GEM plates : for the amplification of X-ray signals Two dim. microstrips (~ 100 \mu spacing : to pickup the avalanche images)

Photolithographic technology used for printed circuit board construction

3.05 mm GEM 2.15 mm Anode

- Gas mixture: Ar/CO₂ 70/30
- Gas flow: $\sim 5 l/h$
- Water content: ~ 100 ppm H_aO
- Radiation source: Cu X-ray tube
- •Cu X-ray @8.04 keV

Real size:GE1/1

Muon-beam test at GIF/CERN

Time resolution ~ 5 ns

GEM trackers for COMPASS

3. Collaboration for the Forward RPC upgrades

Korean Group :

- 1. Production and the tests for RPCs gaps (Phase I)
- 2. Participation of the detector assem. for high η RPCs

Will use the current detector production site and the facilities in Korea University (used for the previous production for the RE).

CERN Involvement

- 1. Project steering & coordination
- 2. Integration of the detectors
- 3. RPC assembly & test for the QA
- 4. Logistics
- 5. Finances
- 6. Installation & commissioning

Belgium Group (Vrije Univ. etc...)

- Design of the double-layered RE2
- Integration of the new FRPC system
- RPC assembly & test for QA

Chinese Group

- Parts for detectors (Honeycomb panels, frames ...)
- Participation in the assembly and test for the high- η RPCs

Indian Group (NPD-BARC, Panjab Univ.)

- RPC assembly and the test for QA

Italy (INFN + GT)

- Integration of the upscope
- Qualified HPL plates (Bakelite) for RPC gaps
- New Front-End-Electronics and the technical support

Facilities of assembly & test at NPD-Barc

4. Conclusions & Milestones

1) Upscope plans

- ► PHASE I (by mid of 2013) :
- RE4 station on YE3 in η < 1.6 \Rightarrow RE4/2(72) and RE4/3(72)
- ► PHASE II (~ 2016 ?) :
- Construction and installation detectors in 1.6 < η < 2.1 RE1/1 (RPCs or GEMs), RE2/1 and RE3/1 (RPCs) in 1.6 < η < 2.1

2) Detector production for PHASE I

- Detailed designs for RE4 RPCs completed.
- First delivery of HPLs ~ July 2011 to detector production from Aug. 2011.
- Completion of gaps ~ July of 2012.
- Completion of RPC module ~ end of 2012.
- Installation ~ mid of 2013.

3) R&D for RE1/1 (in PHASE II): options are still in an open question

- Standard 2-gap RPCs (same as the other RPC trigger detectors)
- Multi-gap RPCs (need a new detector mass-production technology)
- GEM (triggering + tracking)

BACKUPS

On YE+1 yoke equipped with CSC/RPC packages (inner ring) and RE1/3 RPC's (outer ring).

The ME1/3 CSC's now cover the RPC outer ring and hence complete the first muon station on YE+1.

At CERN

Cosmic tests for the new RPCs at the site in the ISR (used for the previous detector assembly and tests)

For the low- η trigger ($|\eta| < 1.6$) of the RE system,

- 1. The trigger of requiring 4 hits out of 5 stations will provides us high trigger efficiencies with low trigger rates.
- 2. The logic 4/5 for the low η RE can more effectively remove ghost hits for the CSC tracking system.

Figure 1.3: results of a simulation study on first level trigger performance of the RE system.

35 *HM, June 10, 2011*

J/ψ in pp collisions

Eur. Phys. J. C (2011) 71: 1575 DOI 10.1140/epjc/s10052-011-1575-8 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Prompt and non-prompt J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

Received: 18 November 2010 / Revised: 10 January 2011 / Published online: 22 March 2011 © CERN for the benefit of the CMS collaboration 2011. This article is published with open access at Springerlink.com

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}(\rm cent)}$$

Preliminary results for prompt dimuons

Quarkonia at CMS/LHC

Mass, BE, and radius

	J/ψ	Xc	ψ (2s)	Ύ (1s)	Ύ (2s)	Ύ (3s)
$M \; (\text{GeV/c}^2)$	3.10	3.53	3.69	9.46	10.0	10.36
$\Delta E (GeV)$	0.64	0.20	0.05	1.10	0.54	0.20
r ₀ (fm)	0.25	0.36	0.45	0.28	0.56	0.78

Proving QGP with pp and HI collisions

Debye screening: characterized by a debye radius λ_D where its eff. charge drops ~1/e.

In QGP > T_c , the screening suppresses formation J/ ψ .

 $\lambda_{\rm D}$ decreases as the *T* of the collision system.

cc-bar bound state with potential

40 *HM. June 10. 2011*