KIAS Workshop Nuclear and Particle Physics in KoRIA and BSI

Utilization of Intense Rare Isotope Beam at KoRIA

2011. 9. 17

Yong-Kyun Kim (Hanyang University)

On behalf of KoRIA User Community

초신성의 관측

M101 PTF11kly

M101 PTF11kly

초신성의 관측

Stellar Evolution and Nuclear Astrophysics

Limit of nuclear existence: n drip-line

New structure: ¹¹Li – A Neutron Halo

Worldwide Rare Isotope Beam Facility

Basic Concept of KoRIA

- High intensity RI beams by ISOL & IFF
 - 70kW ISOL from direct fission of ²³⁸U induced by 70MeV, 1mA protons → ~MW ISOL upgrade
 - 400kW IFF by 200MeV/u, 8pµA ²³⁸U
- High energy, high intensity & high quality neutron-rich RI beams
 ¹³²Sn with ~250MeV/u, up to 9x10⁸ pps
- More exotic RI beams by ISOL+IFF+ISOL(trap)
- Simultaneous operation of ISOL and IFF for the maximum use of the facility

Layout of KoRIA

For the basic and applied science with stable and unstable isotopes

IFF Linac Beam Specification

	Ion source output		SC linac output				
Ion Species	Z/ A	Charge	Current (pµA)	Charge	Current (pµA)	Energy (MeV/u)	Power (kW)
Proton	1/ 1	1	660	1	660	610	400
Ar	18/ 40	8	42.1	18	33.7	300	400
Kr	36/ 86	14	22.1	34-36	17.5	265	400
Xe	54/ 136	18	18.6	47-51	12.5	235	400
U	92/ 238	33-34	11.7	77-81	7.9	210	400

Estimated RIBs based on ISOL

Isotope	Half-life	Yield at target (pps)	Overall eff. (%)	Expected Intensity (pps)
⁷⁸ Zn	1.5 s	2.75 x 10 ¹⁰	0.0384	1.1 x 10 ⁷
⁹⁴ Kr	0.2 s	7.44 x 10 ¹¹	0.512	3.8 x 10 ⁹
⁹⁷ Rb	170 ms	7.00 x 10 ¹¹	0.88	6.2 x 10 ⁹
¹²⁴ Cd	1.24 s	1.40 x 10 ¹²	0.02	2.8 x 10 ⁸
¹³² Sn	40 s	4.68 x 10 ¹¹	0.192	9.0 x 10 ⁸
¹³³ ln	180 ms	1.15 x 10 ¹⁰	0.184	2.1 x 10 ⁷
¹⁴² Xe	1.22 s	5.11 x 10 ¹¹	2.08	1.1 x 10 ¹⁰

ISOL Calculation by Dr. B. H. Kang (Hanyang Univ.)

• Beam: proton of 70 MeV and 1 mA

• Target: UC₂ of 2.5 g/cm³ and 3 cm thickness

Intense RIB Production

GOAL: High intensity-high quality RI beam using relatively low beam power and direct fission target

Simulation of ²³⁸U(p, f)

- Model: MCNPX and ETFSI fission model
- Beam: 70 MeV, 1mA proton

Intensity of Sn isotopes

KoRIA

10¹⁰

products/sec

At experimental hall

¹³²Sn 9.0 x 10⁸ pps

Merit of Intense **RIB**

^{57,58}Ca discovery

⁷⁶Ge(132 A MeV, 32pnA) + ⁹Be

- 51 hour irradiation
- projectile fragmentation reactions
- A1900 fragment separator+ S800 analysis beam line

12

- NSCL at MSU 2009

Yield expectation of Calcium after A1900

Ca isotope	MSU (measured) ⁷⁶ Ge beam	KoRIA (predicted) ⁸⁴ Ge beam
57	~15	~15
58	3	7
59	0	3

Research subjects by using KoRIA

KoRIA User Community 8 Working groups		Nuclear Structure	- Better understanding of system of nucleons at wide variation in the chart of nuclei
		Nuclear Astrophysics & Nucleosynthesis	 To understand the role of unstable nuclei in the nucleosynthesis To understand the life cycle of a star and origin of elements
		Nuclear Matter	- To understand symmetry energy, EOS of hot and dense nuclear matter and property of hadron at dense neutron region
	groups	Nuclear Theory	 To understand origin of matter to describe the history of the Universe To understand the matter by describing nuclear structure and reaction
	Medical & Bio application	 Development of new cancer therapy using radioactive heavy ion beam To understand biological effect of tissue and DNA by RI beam 	
	RI Material Research	 Development and utilization of new material To understand property of material by RI 	
	Nuclear Data	 Nuclear data construction to develop future nuclear power technology Research for the radioactive waste transmutation 	
		Atom traps for RI research	 To understand basic property of atom and nuclei Study of structure and characteristics of element and nuclei

Research topics and RI beams (I)

Research group	Research topics	Energy & current of RIs
Nuclear Structure	 exotic nuclei near the neutron & proton drip line Isomer research Super heavy element 	 Unstable: 20Ca, ⁸⁴32Ge, 36Kr, ¹³²50Sn,54Xe Stable: ⁷⁶32Ge, ⁸⁶36Kr, ¹³⁶54Xe, ²³⁸92U 0 ~ 200 MeV/u, > 0.1 nA (10⁹ pps)
Nuclear Astrophysics & Nucleosynthesis	 Breakout reaction from Hot-CNO cycle to rp-process Nucleonsynthesis contribution of isomers Important constraint on core-collapse supernova model 	•Unstable: ${}^{15}_{8}$ O, ${}^{26m}_{13}$ AI, ${}^{45}_{23}$ V, ${}^{62-66}_{32}$ Ge, ${}^{46-52}_{12}$ Mg, ${}^{132}_{50}$ Sn, ${}^{134}_{52}$ Te, ${}^{140,144}_{54}$ Xe, ${}^{194-196}_{75}$ Re, ${}^{198,202}_{77}$ Ir, ${}^{195}_{69}$ Tm • Stable: ${}^{23}_{11}$ Na, ${}^{134-135}_{55}$ Cs • 0~10 MeV/u and few hundreds MeV/u 0.1 nA ~ 1 µA (10 ⁶ ~ 10 ¹³ pps)
Nuclear Matter	 Symmetry energy in astro- & nuclear physics Neutron skin thickness Isovector giant dipole resonance Collective flows in HI collisions, and etc. 	• All ions from H to U, (H, ¹³² ₅₀ Sn, ¹⁴⁰ ₅₄ Xe, ²³⁸ ₉₂ U) 0 ~ 200 MeV/u, > 10 ⁹ pps
Nuclear Theory	 Nuclear reactions by neutrinos in supernovae Nucleosynthesis of proton capture in stars Superburst in neutron star Study for the crust of neutron star 	• ¹⁸⁰ Ta (beta decay of ¹⁸⁰ Ta) • ¹³ N (¹³ N(p, γ) ¹⁴ O reaction) • ²³ Mg or ²³ Na (²³ Mg + n reaction) • ²⁰⁸ Pb (Reaction by ²⁰⁸ Pb beam)

Notation: Stable, neutron-deficient, neutron rich RIs, and µ

Research topics and RI beams (II)

4	_
1.3	\neg
	~

Research group	Research topics	Energy & current of RIs
Medical & Bio application	 Effect on human body by HI Radiobiology research with HI beams Radiation therapy with HI beams Industrial applications with HI beams 	• Unstable: μ , ¹¹ ₆ C • Stable: p, ⁴ ₂ He, ¹² ₆ C, ¹⁶ ₈ O, ²⁰ ₁₀ Ne, ²⁸ ₁₄ Si, ³⁵ ₁₇ Cl, , ⁴⁰ ₁₈ Ar, ⁴⁸ ₂₂ Ti, ⁵⁶ ₂₆ Fe, ¹³¹ ₅₄ Xe, 10 ~ few hundreds MeV, 0.1 nA ~ 1 uA
RI Material Research	 New material and its properties with β-NMR Elastic Recoil Detection (ERD) system µSR Radio isotope ions production by using laser 	• Unstable: μ , ⁸ Li, ¹¹ Be, ^{15,19} ₈ O, ¹⁷ ₁₀ Ne, ⁶² ₃₀ Zn, ⁷⁷ ₃₃ As, ⁹⁹ ₄₁ Nb, ⁹⁹ ₄₃ Tc, ¹⁰⁰ ₄₆ Pd, ¹¹⁷ ₄₈ Cd, ^{111,117} ₄₉ In, ¹³¹ ₅₂ Te, ¹⁴⁰ ₅₉ Pr, ¹⁷² ₇₁ Lu, ¹⁸¹ ₇₂ Hf, ¹⁸⁷ ₇₄ W, ¹⁹⁹ ₈₁ Tl, ²⁰⁴ ₈₃ Bi few tens keV ~ 10 MeV, 15~30 nA • Stable: p 50 and 600 MeV, >30 μ A
Nuclear Data	 Nuclear data with fast neutron Nuclear data with neutron from nuclear fragmentation Nuclear data with charged particles 	 Stable: p, d, ^{3,4}₂He 10 ~ few hundreds MeV/u > few mA Actinide (Z=89~103) ion beams, 2~10 MeV/u, > few mA Nuclear fragments (W, Ta, Pb, etc), few hundreds MeV, > few mA
Atom traps for RI research	 Precision mass measurement Precision laser spectroscopy 	• Unstable: ¹¹ ₃ Li, ^{11,14} ₄ Be, ⁸ ₅ B, ^{10,19} ₆ C, ¹⁷ ₁₀ Ne, ³⁴ ₁₇ Cl, ⁶² ₃₁ Ga, ⁷⁴ ₃₇ Rb, nuclei (Z=82) near n-rich drip line 40 ~ 100 keV/u, 20,000 pps

Notation: Stable, neutron-deficient, neutron rich RIs, and μ

Research

Nuclear structure

- To discover unknown isotopes
- Better understanding of system of nucleons at wide variation in the chart of nuclei

Synthesis of the superheavy elements

proves

- long-held nuclear theories regarding the existence of the "island of stability",
- the ultimate limits of the periodic table of the elements and
- how nuclei are held together and how they resist the fission process.

Reaction Candidate for SHE synthesis

Reaction Candidate for SHE @ KoRIA

candidates of hot fusion reactions (using actinide target) grater than 115 are better to produce because of its high cross sections rather than cold fusion.

(Actinide target) + (Intense Fe, Ni beam) \rightarrow 116 ~ 122

```
\label{eq:232Th} \begin{array}{l} ^{232}\text{Th} + {}^{58}\text{Fe} \rightarrow {}^{290}\text{-x116} + \text{xn} \\ ^{232}\text{Th} + {}^{64}\text{Ni} \rightarrow {}^{296}\text{-x118} + \text{xn} \\ ^{244}\text{Pu} + {}^{58}\text{Fe} \rightarrow {}^{299}\text{120} + 3\text{n} \\ ^{238}\text{U} + {}^{64}\text{Ni} \rightarrow {}^{299}\text{120} + 3\text{n} \end{array}
```

<u>Yield Estimation (rough)</u> 232 Th + 64 Ni $\rightarrow ^{296-x}$ 118 + xn

- Cross Section (σ): 1 pb (assumed)
- Target Thickness (T): **0.4**mg/cm²
- Beam intensity(I): ~ 20 pµA
- Total efficiency(ε): 0.8

```
-> Y/s = \varepsilon x \sigma x T x | \sim \frac{1 \text{ event / day}}{1 \text{ event / day}}
```

Research

Nuclear astrophysics

> To understand the role of unstable nuclei in the nucleosynthesis

- 1) Study of the abundances and formation processes of elements in the stars
- 2) Identifying the formation process of energy generated in the stars
- 3) Identifying the structure of extreme neutron rich nuclides regarded as existing in the neutron star or super giant stars and their properties

Synthesis of heavy nuclei

Study of the nucleosynthesis of the n-rich nuclides by r-process around 50<N<82

The r-process is very important to explain the nucleosynthesis mechanism, abundance of the chemical elements, and nuclear structure, and it happens in a region of very exotic nuclei.

Basic parameters for r-process

Half-lives ($T_{1/2}$)

 \rightarrow abundance

 \rightarrow process speed

Cross sections

→ location of the path <u>Masses (A, Q_β)</u> Resonances Continuum

beta-delayed neutron (P_n)

 \rightarrow final abundances

- Why 50<N<82
- → The model underestimate the abundance by one order in A~100
- → corrected under assumption of a reduction of shell gap in n-rich nuclide
- → Introduce new double magic nucleus ¹¹⁰Zr (p=40, n=70) which is theoretically expected in n-rich region
 - * NPA 693, 282(2001)

The first experiment will be to measure β -decay properties of nuclei in the neighbourhood of ¹¹⁰Zr to investigate its possible spherical character arising from new semi-magic numbers : Half-lives, P_n of neutron-rich of Y, Zr, Nb, Mo, Tc, etc.

✓ NSCL reported the measurement of $T_{1/2}$ and P_n of ¹⁰⁰⁻¹⁰⁵Y, ¹⁰³⁻¹⁰⁷Zr, ¹⁰⁶⁻¹⁰⁹Nb, ¹⁰⁸⁻¹¹¹Mo and ¹⁰⁹⁻¹¹³Tc with ¹³⁶Xe (120 MeV/u, 1.5 pnA)+ Be– PRC 79, 035806 (2009)

We will investigate the more neutron-rich isotope near to r-process waiting point ¹¹⁰Y, ¹¹⁰Zr, ¹¹⁴Nb, ¹¹⁶Mo, ¹¹⁸Tc with ¹⁴²Xe (220 MeV/u, 1pnA).

Production of more-exotic medium mass n-rich RI

Korea RI Accelerator could reach new n-rich isotope with rates of 10⁻³-10 pps.

nuclide	Estimated Intensity (pps)
110 Y	1.8
¹¹⁰ Zr	1.8
¹¹⁴ Nb	1.1
¹¹⁶ Mo	3.8
¹¹⁸ Tc	1.4

Note that $\sim 10^3$ times higher than 136 Xe (350 MeV/u, 10 pnA)+Be.

Facility

Nuclear astrophysics

Facility

Nuclear astrophysics

Research

Nuclear matter

To understand the origin of matter, its evolution and overall structure of the universe

Hot nuclear matter (Bigbang, early of universe)

- Symmetry Energy of nuclei far from stability
 - Neutron skin thickness, isovector giant dipole resonance,...
 - Phenomena of symmetry violation (ex, parity)
 - The explosion of supernovae and formation of neutron star
 - Inner structure of neutron star
 - Heavy ion flows
 - Property of hadron at dense neutron region
 - Equation of state (EOS) for hot and dense nuclear matter

Dense nuclear matter (Neutron star) Facility

Nuclear matter

Research

Atomic & nuclear physics

Precision Mass Measurements

Key questions

Fundamental prope Test of nuclear models and for

Nuclear Structure Shell closures, pairing, deform

Reaction and decay Q-values, Boundaries on exotic High-accuracy mass measurements and mass comparisons of stable or radioactive nuclides on the level of 10⁻⁸

Limits and Islands

Drip lines and Superheavies

Nuclear Astrophysics

r- and rp-process

Fundamental tests

Symmetries Weak interaction: CVC hypothesis, search for scalar and tensor currents

Precision Laser Spectroscopy

Magnetic & electrostatic hyperfine structure spin, magnetic moment, and quadrupole moment

Key questions

Limits of nuclear existence New formation type of nuclear matter New collective motion Change of the ordering of quantum states

Facility

Atomic and nuclear physics

International collaboration plan

Instruments: Recoil Spectrometer Target: for Experiment, Neutron Production, etc. Detector system Gamma-ray Array, Charged particle detector TPC, Focal plane detector, Neutron detector Trap, Laser related system Polarization system Irradiation system ISOL related system

Facilities/Institutes:

FRIB/MSU, SPIRAL-II/GANIL, RIBF/RIKEN, TRIAC/KEK, SPES/LNL, ISOLDE/CERN, TRIUMF, FAIR/GSI, etc.

Collaborations to participate in:

ISLA, Theory, S3, ISOLDE, SAMURAI, SHOGUN, etc.

Research Program

- Conceptual Design of the experimental facilities
- User training program with the international collaboration

Thank you for attention !