Large Acceptance Multipurpose Spectrometer AT KoRIA for Symmetry Energy Researches

Kyong Sei Lee / Korea University

On behavior of Nuclear Matter Research Group

김은주(전북대), 김현철(인하대), 안정근(부산대), 오용석(경북대), 이강석(전남대), 이경세(고려대), 이수형(연세대), 이창환(부산대), 이희정(충북대), 현창호(대구대), 홍병식(고려대)

Contents

- **1. Introductions**
- 2. Physics Proposed by the Symm.E group
- 3. Design of LAMPS
- 4. Current Status & Discussions

1. Introductions

- 1. High-intensity RI beams by ISOL & IFF
 - 70 kW ISOL from direct fission of ²³⁸U induced by 100-MeV S. C. cyclotron proton beam with the current of 1 mA
 - 400 kW IFF RI by using 200 MeV/u ²³⁸U with a maximum 8pµA
- 2. High-energy, high-intensity neutron-rich RI beams
 - ¹³²Sn (double magic) at maximum E of ~250 MeV/u up to 9x10⁸ pps
- 3. Various exotic RI beams by using ISO+IFF RI production processes
- 4. Need a design of a facility to adapt various exotic experiments in nuclear physics
 - Should be designed for maximal use (More statistically precise measurements proposed in FRIB & RIBF)
- 5. Facility: available for upscope.

- ISOL RI: K100 proton cyclotron \rightarrow ISOL \rightarrow ISOL LINAC \rightarrow IFF main LINAC \rightarrow High energy experiments (2)

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

IFF RI: SC ECR → IFF Main LINAC → In-flight target → Fragment separator → High energy experiments (6) Stable HI: Main LINAC → High energy experiments (7)

2. Physics proposed in the KoRIA Symm.E group

- Equation of state (EOS) of neutron-rich nuclear matter at low & high density up to $\rho \sim 3\rho_0$ (?)
- **1.** Probing E_{sym} of neutron-rich matters at a wide range of density from neutron-rich HI collisions
- 2. Understanding astronomical phenomena in neutron stars, black holes, and super novae by the EOS of nuclear matter at high density
- 3. Nuclear synthesis
- 4. Exotic nuclei lying near neutron drip lines

Nuclear Equation Of State (EOS) of nuclear matter in the isospin space

$$\delta \equiv \left(\rho_n - \rho_p\right) / \left(\rho_n + \rho_p\right)$$

 $\rho_{\rm n}$: neutron density $\rho_{\rm p}$: proton density $\rho_{\rm 0}$: Saturation density Nucleon density $\rho = \rho_n + \rho_p$

$$\begin{split} E_{sym}(\rho) &= \frac{1}{2} \left. \frac{\partial^2 E(\rho, \delta)}{\partial \delta^2} \right|_{\delta = 0} E_{sym}(\rho_0) \sim 30 \,\mathrm{MeV} \\ E_{sym}(\rho) &\simeq E(\rho, \delta = 1) - E(\rho, \delta = 0) \end{split}$$

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

7

Model predictions for $E_{\rm sym}$ at high nuclear matter density

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

Experimentally we observe phenomena...

- **1.** Signals at sub-saturation densities appeared in collision data
- Sizes of neutron skins for unstable neutron-rich nuclei
- n/p ratio of fast, pre-equilibrium nucleons
- Isospin fractionation and isoscaling in nuclear multifragmentation
- Differential collective flows of n and p
- Isospin diffusion
- Correlation function of n and p
- ³H/³He ratio in rapidity, etc.
- 2. Signals at above saturation densities appeared in collision data
- π^-/π^+ ratio
- Differential collective flows of n and p
- Azimuthal angle dep. of n/p ratio w.r.t. the reaction plane
- Correlation of various observables

- 다수의 파쇄핵 발생시 isospin fractionation, isoscaling, isospin diffusion I Isospin-dep. of EOS (¹³² Sn+ ¹³² Sn, ¹²⁴ Sn+ ¹²⁴ Sn), B. Li, Phys Rev Lett 85 4221 (2000)
I - 발생하는 중성자와 양성자의 미분 집단 흐름(differential collective flow, BA. Li, PRL 85, 4221(2000), (Ru-96, Zr-96: PRL84 1120, 2000)
ι - 종방향 편극도에 따른 π ⁻ 및 π ⁺ 발생 분포 및 비율 At SIS/GSI, W. Reidorf. et al., Nucl Phys A 781 459 (2007) (¹⁹⁷ Au+ ¹⁹⁷ Au)
i - 충돌 반응면(reaction plane) 상에서 중성자와 양성자의 발생비의 방위각 의존성 (azimuthal angle dependence)
- EOS와 중성자 과잉핵의 중성자 핵껍질 구조 (¹³² Sn+ ²⁰⁸ Pb, IFF from ²³⁸ U beam, GSI) Neutron skin of ¹³² Sn & ⁶⁸ Ni : A. Carbone et al., Phys Rev C <u>81</u> 041301 (2007) Neutron skin of ^{129~132} Sn, ^{133~134} Sb A. Klimkiewicz, Phys Rev C <u>76</u> 051603 (2007)
- Neutron drip line 근처의 rare isotope (MoNA-LISA/FRIB) First evidence of ¹⁸ B : Phys Lett B <u>683</u> 129 (2010)

First observation of ¹²Li* : Phys Rev C <u>81</u> 021302R (2010)

Evidence of double magic ²⁴O : Phys Lett B 672 17 (2009)

From theory group

1. Neutron-rich nuclei 포화 핵물질 밀도에 따른 대칭 에너지의 변화의 전반적 연구

- 포화 핵물질 밀도 이하에서 GMR, neutron skin thickness 등 이론적 계산
- Neutron-rich nuclei 강입자의 질량, 전자기적 형태 인자 등 특성 연구
- 유효장 이론, 쿼크 모형, 격자 양자색역학 등을 이용 RI 내 핵자 간 상호작용 연구

2. 중성자별에 대한 전반적 이론적 연구

- 대칭에너지 이용 중성자별 내부를 구성하는 입자의 종류, 구성비 계산 - 중성자별 크기, 질량 계산 결과 대칭 에너지의 밀도 변화를 결정하는 주요 변수를 결정
- 포화 핵물질 밀도 이하의 상태 방정식 이용 중성자별의 껍질 구조 연구
- 초강력 전자기장이 중성자별의 특성에 미치는 영향에 대한 연구

- 4. Parity, time reversal 등이 위배되는 현상과 이러한 현상에 연관된 상호작용에 대한 연구
 - Even 또는 odd parity를 갖는 방사성 동위원소의 전자기적 전이 과정을 통해 중성자가 많은 환경에서 핵자 간 약한 상호작용의 형태와 결합상수를 결정

5. 핵자 스핀에 대한 탐침과 스핀에 의해 결정되는 물리량에 대한 이론 및 실험 연구

traditional neutron star

연구의 중요도 순위

- 1. Neutron-rich matter에서 포화 핵물질 밀도보다 큰 밀도에서 EOS에 대한 연구
- 최대 250 MeV/u의 에너지를 갖는 RI beam 이용 충돌계에서 양성자, 중성자, 파편핵, π⁺, π⁻등을 측정하여 포화 핵물질 밀도 이상에서 대칭에너지의 밀도 의존성 연구
- 2. 다수 중성자 원자핵을 이용한 포화 핵물질 밀도 이하에서 물질의 상태방정식에 대한 연구
 포화 핵물질 밀도 이하에서 대칭에너지의 밀도 의존성 연구
- GMR, neutron skin thickness 등을 이론적으로 계산하고 실험에서 측정하여 대칭에너지를 결정 하는 주요 변수를 결정하는데 기여
- 3. 최대 300 AMeV stable HI 충돌 실험을 통해 물질의 상태방정식에 대한 연구
 p, n, 및 light fragment들의 생성량과 운동량 분포, collective flow, 반응면에 대한 n/p 발생 각분포 연구 (RI 실험결과를 이해하기 위하여 중요한 reference data 역할을 함)

상기 연구 목적을 달성하기에 적합한 다목적 분광기 및 검출장치의 개발이 요구됨.

→ Large Acceptance Multipurpose Spectrometer (LAMPS)

3. Design of LAMPS

LAMPS for Symm.E

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

Detectors in LAMPS

Solenoid with B = 1 T & TPC

- Acceptance ~ 8 Sr for π^+ , π^- , p, n, d, t, ³He, ⁴He and nuclear fragments up to ⁷Li

Silicon-strip trackers

- To measure hi-rapidity charged particles and nuclear fragments and reaction plane.

Dipole magnet & focal plane detectors

- Dipole magnet: 0.35 < p/Z < 1.5 GeV/c with max. $\mathbf{B} \circ \mathbf{dl} = 1.5 \text{ Tm}$
- Capable of multi-particle tracking for p, d, t, α with acceptance of 30 mSr
- $-\Delta p/p \sim 10^{-3} @ \beta = 0.5$

- Cylindrical TPC in the solenoid magnet: **TPC measures minimum-ionizing particles** such as π^{-} and π^{+} with presence of projectilelike residues and strong-ionizing fragments.
- In the spectrometer arm(s) **TOF** system with 100-ps time resolution: required to obtain $\Delta p/p \sim 10^{-3}$ @ $\beta = 0.5$
- Neutron detector Efficiency > 80% **Capable of resolving multi-neutron events**

Solenoid and dipole magnets (TOSCA)

H-type Dipole Pole size (x,z) : (150 cm, 100 cm) Maximum $B_y = 1.5$ T Gradient : 0.5 T·m $< \int B_y dz < 1.5$ T·m

Solenoid Size (r,z) : (50 cm, 200 cm) Maximum B_z ~ 1.0 T

A cylindrical TPC

- 0.35< p/Z < 1.5 GeV/c for π, p, d, t, ³He, ⁴He
- Acceptance ~ 8 Sr
- A compact TPC with GEM readout
- OD: 90 cm, ID: 40 cm, L = 120 cm

Simulated events for p (GEANT4)

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

IQMD output + GEANT4

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

PANDA for hadron spectroscopy, nuclear structure, & hypernuclei (FAIR, GSI)

TPC central tracker

- NIMA 628 204 (2011) - IEEE NSS Conf. Rec. N12-1 (2007)
- IEEE NSS Conf. Rec. N44-3 (2009)

- 2 half cylinders L=150cm R=15/42cm
- Drift field 400 V/cm
- Ne/CO₂ (90/10), max. drift time 55µs
- Multi-GEM stack
- Pad Size ~2x2mm², 100.000 ch

TPC at PANDA/GSI

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

FRIB

Fast beam area

Active Target TPC FRIB

NSCL: AT-TPC

- Cylinder length 120cm, radius 35cm
- Chamber designed to sustain vacuum
- 2cm radius entrance window
- · 33cm radius exit window
- Removable target wheel
- 10,000pads, 0.5cm x 0.5cm
- Testing wire planes, GEMS & Micromegas for electron amplification

- Superconducting solenoid
- 2 Tesla Field
- Bore Dimensions:
 - ≥ 70 cm diameter
 - ≥ 120 cm length
 - ≤ 125 cm beam height
- Field Non-uniformity: ≤ 10%

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

Neutron detector Array

- Veto counter array
- Plastic scintillator array
- • Sampling-calorimeter array -
- Time resolution ~ 1 ns to measure TOF for energy determination
- Capable of multi-hit by analysis of hit pattern
- Efficiency > 80% for 30 MeV < E_n < 300 MeV

- TOF measurements \rightarrow determination of energy $\Delta E/E < 0.03$ for $E_n < 50$ MeV, $\Delta E/E \sim 0.05$ for $E_n > 50$ MeV
- 1-cm thick veto counter array to veto charged particles

Determination of the neutron energy by measuring TOF of the first hit

- Time resolution of the plastic detector module ~ 1 ns
- TOF length = 15 m (distance from the target to the neutron detector)

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

4. Current Status & Discussions

- **1. GEANT4 Simulation for the LAMPS system for a full reconstruction of simulation data for LAMPS**
- Cylindrical TPC in a solenoid magnet (1 T)
- Neutron detector array
- Ray tracing in a dipole magnet (upto 1.5 T) need detailed B field mapping by using TOSCA simulations
- Focal plane detectors (DC & TOF array) in dipole arms
- 2. Planning to test a unit detector for the neutron detector array
- Purchased plastic scintillators ($10 \times 10 \times 100$ cm³) & PMTs
- DAQs: VME (FADC) + CAMAC (ADC + TDC)
- ²⁵²Cf source: TOF measurement for neutron with energy up to 7 MeV

- 3. Detailed design for the dipole magnet & the focal plane detectors
- Decision of physics with available RI by IFF & ISOL in KoRIA
- Stable beams: p(polarized or non-polarized), Ar, U, Xe, Kr ...
- Then, an optimal specification with the required rigidity
- 4. For precision measurements of nuclear fragmentations
- B > 2T to obtain a field integral $\int B dz > 4 Tm$
 - \rightarrow Super conducting dipole magnet
- Required momentum resolving power ~ a few thousands
- Need dedicated detector system minimizing energy loss for the heavy particles in narrow kinematical ranges.
- 5. Gamma-ray detectors before surrounding the target

BACK UPS

1. Introductions

Korea Rare Isotope Accelerator Facility

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

KoRIA RI Beam intensities compared for ISOL & IFF

RIB species	ISOL (pps)	In-Flight Fragmentation (pps)	comment	
¹⁵ O	5x10 ⁸ * ¹⁹ F(p,αn), LiF pressed powder	To be estimated	Nuclear astropysics	
⁹⁴ Kr	4x10 ⁹	4x10 ²	Nuclear structure	
109Y	2x10⁵	< 10 ²	New discovery at RIKEN	
¹¹⁷ Mo	Not available due to low vapor pressure	<10 ³	New discovery at RIKEN	
¹³² Sn	9x10 ⁸	2x105	Double magic	
¹⁴² Xe	1x10 ¹⁰	1x10 ⁴	Symmetry energy	
¹⁴⁴ Cs	7x10 ⁸	3x10 ⁴	Nuclear astrophysics	

Coulomb Breakup

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

N.B. S_n,S_{2n}: Estimated value by Audi & Wapstra (Jurado et al.(PLB649,43(2007)), incorporated)

MoNA-LISA @ FRIB

Physics motivation

Structure of exotic neutron-rich nuclei along the neutron drip line. Reconstruction of neutron unbound states from decay products: fast neutron + fragment (+ γ)

A. Spyrou

MoNA-LISA

•MoNA : 144 individual plastic scintillator modules; 10 cm×10 cm×200 cm; stack to match experimental needs

•LISA: additional 144 modules (MRI – funded)

•<u>FRIB requirements for MoNA</u>: Flight path of at least 10 m to maintain the same energy resolution

<u>New HRS requirements – 7 Tm</u> Acceptances similar to Sweeper Larger flight path Larger neutron window that extends to the side

MoNA-LISA @ FRIB

Physics motivation

Structure of exotic neutron-rich nuclei along the neutron drip line. Reconstruction of neutron unbound states from decay products: fast neutron + fragment (+ γ)

A. Spyrou

MoNA-LISA

•MoNA : 144 individual plastic scintillator modules; 10 cm×10 cm×200 cm; stack to match experimental needs

•LISA: additional 144 modules (MRI – funded)

•<u>FRIB requirements for MoNA</u>: Flight path of at least 10 m to maintain the same energy resolution

<u>New HRS requirements – 7 Tm</u> Acceptances similar to Sweeper Larger flight path Larger neutron window that extends to the side

2011-09-16

Specification

 Table 1. Parameters of the superconducting dipole magnet.

	value
type	H-type,
	superconducting
number of turns	3411 turns/coil
current	560 A
magnetomotive force	1.9 MAT/coil
current density of coil	$66.0 \mathrm{A/mm^2}$
field at the pole center	3.1 T
(median plane)	
BL integral at 3.1 T	$7.05~\mathrm{Tm}$
maximum magnetic field	$5.26 { m T}$
in a coil	
inductance	212 H
stored energy	33 MJ
coil inner diameter	2350 mm
outer diameter	$2710 \mathrm{~mm}$
cross section	$180{ imes}160~{ m mm}^2$
weight	1783 kg/coil
pole shape	circular
$_{\mathrm{gap}}$	880 mm
diameter	2000 mm
height	500 mm
yoke width	$6700 \mathrm{~mm}$
depth	$3500 \mathrm{~mm}$
height	$4640 \mathrm{~mm}$
weight	$566140 \ { m kg}$

 Table 2. Parameters of the superconducting wire.

	value
material	NbTi/Cu
diameter	$3 \text{ mm}\phi$
Cu/SC ratio	$5.0 \sim 6.0$
insulation	$PVF(\geq 40 \ \mu m)$
filament diameter	${\sim}28~\mu{ m m}\phi$
number of filaments	${\sim}1760$
twist pitch	${\sim}88~{ m mm}$
RRR	≥ 100
critical current at 4.2 K	>4000 A at 3 T
	> 3290 A at 4 T
	>2690 A at 5 T
	> 2150 A at 6 T

The energy loss distribution for primary and seconday particles in the STAR TPC as a function of the p_T of the primary particle. The magnetic field was 0.25 T.

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

Hough transformation for particles tracking in TPC

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

deuteron 400 MeV Soft Model w/ Secondary

2011-09-16

KIAS Workshop on Nuclear and Particle Physics in KoRIA and BSI

alpha

400 MeV Soft Model w/ Secondary

IFF Linac Beam Specification

Ion Species	Z/ A	Ion source output		SC linac output			
		Charge	Current (pµA)	Charge	Current (pµA)	Energy (MeV/u)	Power (kW)
Proton	1/ 1	1	660	1	660	610	400
Ar	18/ 40	8	42.1	18	33.7	300	400
Kr	36/ 86	14	22.1	34-36	17.5	265	400
Хе	54/136	18	18.6	47-51	12.5	235	400
U	92/ 238	33-34	11.7	77-81	8.4	200	400

Estimated RIBs based on ISOL

Isotope	Half-life	Yield at target (pps)	Overall eff. (%)	Expected Intensity (pps)
⁷⁸ Zn	1.5 s	2.75 x 10 ¹⁰	0.0384	1.1 x 10 ⁷
⁹⁴ Kr	0.2 s	7.44 x 10 ¹¹	0.512	3.8 x 10 ⁹
⁹⁷ Rb	170 ms	7.00 x 10 ¹¹	0.88	6.2 x 10 ⁹
¹²⁴ Cd	1.24 s	1.40 x 10 ¹²	0.02	2.8 x 10 ⁸
¹³² Sn	40 s	4.68 x 10 ¹¹	0.192	9.0 x 10 ⁸
¹³³ In	180 ms	1.15 x 10 ¹⁰	0.184	2.1 x 10 ⁷
¹⁴² Xe	1.22 s	5.11 x 10 ¹¹	2.08	1.1 x 10 ¹⁰