Heavy-Ion Meeting (HIM2011-12) Yonsei University, Seoul, Korea, 10 December, 2011

# Dihadron Correlations and Flow from CMS

#### Byungsik Hong (Korea University)



Collaboration



### Outline



#### 1. Introduction

- Physics motivation
- LHC and the CMS detector

#### 2. First experimental data from CMS

- We concentrate only on the correlation and flow results in this presentation.
- Correlations in pp at 7 TeV and PbPb at 2.76 TeV
- Flow in PbPb at 2.76 TeV
- Comparison to Hydro

#### 3. Summary



### Motivation



- Correlation is a powerful tool to study
  - Hadron production mechanism
  - Jet-medium interactions in heavy-ion collisions
  - Bulk properties of the produced medium (sQGP)
- Flow is a powerful tool to address
  - Equation-of-state
  - Viscosity of the medium
  - Fluctuations and initial conditions

p+p at  $(\sqrt{s})_{max} = 14 \text{ TeV}$ Designed L of pp:  $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Pb+Pb at  $(\sqrt{s}_{NN})_{max} = 5.5 \text{ TeV}$ 

#### CMS

ATLAS

LHCb





### **CMS** Detector

**ECAL** 

**CALORIMETERS** 

76k scintillating



## PbWO<sub>4</sub> crystals TRACKER Pixels (66M Ch.) Silicon microstrips (9.6M Ch.) 220 m<sup>2</sup> of silicon sensors Very large coverage ( $|\Delta \eta| < 5.0$ )

Weight: 12,500 tons Diameter: 15 m Length: 22 m

#### **MUON BARREL**

Drift Tube Chambers Resistive Plate Chambers

#### MUON ENDCAPS

Cathode Strip Chambers Resistive Plate Chambers

**HCAL** 

Plastic scintillator/

Brass sandwich

Centrality in heavy-ion events for 2010 run

Steel YOKE



#### Summary of 2010 PbPb Run



- A dedicated heavy-ion mode
  - Turn off zero suppression
  - Taking data at up to 220 Hz
  - 12 MB event size
- Triggering on minimum bias, jets, muons and photons
  - ALL rare probes written to tape
  - ~half of minimum bias written
- Recorded luminosity
  - PbPb @  $\sqrt{s_{NN}} = 2.76 \text{ TeV}: 8.7 \ \mu b^{-1}$
- Reference pp data
  - pp @ √s = 2.76 TeV: 241 nb<sup>-1</sup>
  - pp @ √s = 7 TeV: > 5 fb<sup>-1</sup>
- Total volume of PbPb data
  - ~0.89 PetaByte



Note: luminosities will be rescaled by few % after complete analysis of Van der Meer scans



#### **Dihadron Correlation Technique**







# High-Multiplicity pp Event



#### CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration

HIM2011-12



### Ridge in High-Multiplicity pp



350K top multiplicity events out of 50 billion collisions

#### High multiplicity pp (N $\ge$ 110)





JHEP09, 091 (2010)





# 100 billion (1.78 pb<sup>-1</sup>) sampled minimum-bias events from high-multiplicity trigger



No ridge when correlating to high  $p_T$  particles!

# Differential $\Delta \phi$ Projection



10 December 2011

HIM2011-12

## Differential $\Delta \phi$ Projection







# Near-Side Yields for N≥110





- Jet yield in pp monotonically increases with N
- Ridge in pp turns on around N~50-60 (4XMB) smoothly



## PbPb Event





CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173









10 December 2011

HIM2011-12

#### Integrated Associated Yield



arXiv:1105.2438

(0-5% most central PbPb)



- Ridge-region yield: integration of the near-side enhancement
- Jet-region yield: sum of the near-side short- & long-range yields
- Ridge in PbPb diminishes at high p<sub>T</sub>



## PbPb vs. pp





#### CMS PbPb 2.76 TeV, 0-5%



### Centrality Dependence in PbPb







# Possible Origin of Ridge



#### The ridge & Mach-cone like emission may be induced by higher



HIM2011-12



### **Fourier Decomposition**







- Fourier analysis of long-range dihadron correlation
  - Short-range non-flow effects are excluded.
  - Complementary to standard flow analysis methods (EP, cumulants, LYZ)



### **Fourier Decomposition**



#### (0-5% most central PbPb)

arXiv:1105.2438

#### **Ridge region (2**< $|\Delta\eta|$ <4): Long-range correlations



#### v<sub>2</sub> from Long-Range Correlations





# V<sub>2</sub> from Long-Range Correlations



#### v<sub>3</sub> from Long-Range Correlations





50 - 60 %

p<sub>T</sub><sup>trig</sup> (GeV/c)

60 - 70 %

p<sub>T</sub><sup>trig</sup> (GeV/c)

8

70 - 80 %

6

p<sub>T</sub><sup>trig</sup> (GeV/c)

8



10 Decemb

<sup>0.0</sup>ح

-0.2

40 - 50 %

6

 $p_{\tau}^{trig}$  (GeV/c)

8

#### v<sub>3</sub> from Long-Range Correlations







# v<sup>f</sup><sub>n</sub> vs. Centrality





- Powerful constraints on the viscosity of the medium
- Sensitive to the initial conditions



### More on v<sub>2</sub>



#### CMS vs. ALICE ( $|\eta| < 0.8$ )

#### LHC vs. RHIC ( $|\eta| < 0.8$ )



### CMS and ALICE agree in general except in most peripheral events

PHENIX > CMS at high p<sub>T</sub> for centrality > 30%



### Systematics on v<sub>2</sub>



#### Excitation function at mid $\eta$

 $v_2/\varepsilon_{part}$  scaling



#### Smooth increase from RHIC to LHC by 15-20%

density across systems &  $\sqrt{s_{NN}}$ • Constraint on  $\eta/s$ 



### $v_4$ and $v_6$



#### Different methods for $v_4$ ( $|\eta| < 0.8$ )

#### $v_4$ vs. $v_6$ ( $|\eta| < 0.8$ ) from LYZ





Signals are sizable, reaching ~7%
Compatible v<sub>4</sub>{3} and v<sub>4</sub>{5}

 $v_6$  signal is small, but finite, reaching ~2% at mid-cent.





 v<sub>5</sub> increases quadratically with p<sub>T</sub> in contrast with other flow harmonics.



## **Full Harmonic Spectra**





 $v_n$  vs N<sub>part</sub> shows different trends:

- Even orders decrease and diminish with increasing N<sub>part</sub>.
- $-v_3$  depends weakly on centrality & finite for central collisions.



### Comparisons to Hydro



#### For Glauber initial conditions



- $v_2$  and  $v_3$  together have better sensitivities on  $\eta/s$ .
- The centrality dependence adds further constraints.

# Initial Conditions & η/s





- Different initial conditions add another parameter space
- Quantitative comparison requires further tuning
- Yet to be determined which set of parameters works best



### Summary



- 1. Long-range ridge correlations observed in highmultiplicity pp
  - Ridge yield increases in low  $p_{\rm T}$  and vanished at high  $p_{\rm T}$
- 2. Systematic study of dihadron correlations in PbPb
  - In central events, the ridge yield significantly drops at high  $\ensuremath{p_{\text{T}}}$
  - Extracted flow parameters are consistent with other results done by the cumulant and LYZ methods
- 3. Flow parameters
  - $v_2$  is compatible with RHIC data
  - $v_3$  is sizable and weakly depends on the centrality
  - $(v_4/v_2^2$  is higher than at RHIC)
  - $-v_5$  and  $v_6$  are finite
  - Important basis for the initial conditions and  $\eta/s$  of sQGP