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At Tch, chemical freeze-out occurs if inelastic collisions,
which makes A+B->C+D, are not abundant. Then the
numbers of each species, A,B,C, and D are not changing.

At Tth, thermal freeze-out occurs if elastic collisions are
not abundant. Then, the momentum distribution is not
changing any more.

Earlier chemical freeze-out and later thermal freeze-out.

Tech > Tth



Models to incorporate the fact that Tch > Ttn
in explaining the hadron production

® Hydrodynamic equation + Hadronic afterburner
(UrQMD)

Bass, Heinz+Bass

- at Tsw, generate hadrons via Monte Carlo Method

e Hydrodynamic equation + Partial Chemical
EqU|I|br|um (PCE) Hirano, Teaney

- below Tch, fix Ni except for short lived resonances
( eg. Delta) and solve for mui (13x13 matrix)



A Blast-wave model with

two freeze-outs

Suk Choi, KSLee, PRC84,
064905(2011)

Chemical analysis at Tch
— Lorentz boosted thermal distribution is used.

Tch<T<Tth, number of thermal hadrons of each
hadron species fixed.

Approximation: Treat short lived hadrons as long
lived ones, which causes small error but
calculation becomes much simpler and fast.

At Tth, thermal analysis of mt spectra

Resonance contribution is carefully treated.



Model Description
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Chemical analysis
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Chemical Potential  p; = (ny, — ng)p, + (ns — ns) 11

Total Particle Number N; = Nt  Nres

Thermal analysis
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Chemical Potential from particle ratios fixed at Tch.

N dedey(m)
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the ’ denotes that exp (u;/T') is missing in this equation.

Hi = Mg + T'ln [Rz'ﬂ ] Rt'i'r — i\rfh/i'\"r_trh
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Weak decay contribution is properly included.
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Conclusion

1. Within an expanding fireball model assuming two freeze-
outs, both the yields, the magnitudes and slopes of the
p; spectra, and y-distribution of charged hadrons
measured at RHIC are described.

2. Hadron ratios, mt spectra of pions, kaons and protons,
and rapidity distribution of total charged hadrons are
nicely fitted.

Resonance contribution is important.

For mt spectra, we have only one overall constant.

Wide width of rapidity distribution is also nicely fitted by

eta_max.

3. We are waiting for LHC data to analyze.



