

Efforts for $\frac{1}{N_{event}} \frac{dN_{ch}}{d\eta}$ in pp collisions

Beomkyu Kim

A Large Ion Collider Experiment

p+p studies in ALICE experiment

- ALICE is the only dedicated heavy ion experiment at LHC
- ALICE also studies p+p
 - Several signals in heavy ion collisions are measured relative to p+p
 - ALICE has a rich p+p program
- ALICE special features for p+p physics
 - Low momentum sensitivity
 - Low material budget and low magnetic filed
 - Excellent particle identification(PID) capability

	Magnetic Field (T)	P _T cut-off (GeV/c)	Material Thickness X/X ₀ (%)
ALICE	0.2-0.5	0.1-0.25	7
ATLAS	2.0	0.5	30
CMS	4.0	0.5	20

p+p studies in ALICE experiment

Published papers by ALICE for p+p collisions

 Pseudo rapidity & multiplicity 					
$-\sqrt{s} = 900 \text{GeV}$	EJC: Vol. 65 (2010) 111				
$-\sqrt{s} = 2.36 \text{ TeV}$	EPJC: Vol. 68 (2010) 89				
$-\sqrt{s} = 7 \text{ TeV}$	EPJC: Vol. 68 (2010) 345				
$\checkmark \bar{p}/p$ ratio(\sqrt{s} = 900GeV & 7TeV)	PRL: Vol. 105 (2010) 072002				
 Momentum distribution(900GeV) 	PL B: Vol. 693 (2010) 53				
✓ Bose-Einstein correlation(900GeV)	PRD: Vol. 82 (2010) 052001				
✓ Strangeness(900GeV)	EPJC: Vol.71(2011) 1594				
✓ Rapidity & P _T distribution of J/Ps(7TeV)	PLB: Vol. 704(2011) 442				
✓ Pion, kaon, proton yield(900GeV)	Epjc: Vol.71(2011) 1655				

- dNdEta and multiplicity measurement
 - Basic measurements to examine the global characteristics of the collision
 - Useful to study QCD in the non-perturbative regime, and to constrain phenomenological models and event generators

$dN_{ch}/d\eta$ measurement

Physics motivation - diffraction

- Why is the diffraction important in pp collisions?
 - In HE p+p collisions, about 30% of $\sigma_{inelastic}$ comes from diffractive processes like

Single diffraction(SD) + Double diffraction(DD)

- The default MC(pythia-perugia0) has a rate of diffractions as like,
- NSD = ND + DD(less dependent to a diffraction rate, easy to detect)

Physics motivation - diffraction

- Two definitions of the diffraction
 - Elastic or quasi elastic scattering by the absorption of components of the wave functions of the incoming particles (s-channel view)
 - Large rapidity gap which is caused by pomeron exchange (t-channel view)
- Regge's formalism (can also describe hard process) for diffraction
 - Can describe these diffractive physics
 - The t-channel dominant wave-function in the high energy(as $s \rightarrow \infty$)

$$\begin{array}{c} \mathbf{p} \qquad \mathbf{p} \qquad T(s,t=0) \sim s^{\alpha t + \alpha_0} \\ \mathbf{p} \qquad \mathbf{p} \qquad T(s,t=0) \sim s^{\alpha(0)} = s^{1.08} : \text{This is a pomeron} \end{array}$$

Physics motivation – parton saturation?

Parton saturation and break down of Regge theory

• From Regge theory (no parton saturation), in asymptotic regime

$$\sigma_{tot} \propto s^{\alpha(t)-1} \rightarrow \frac{1}{N_{event}} \frac{dN_{ch}}{d\eta} \propto s^{\alpha(t)-1}$$

• On the other hand, the Froissart bound(partion saturation) limits the growth of σ_{tot} :

$$\sigma_{tot} \propto (\ln s)^2 \rightarrow \frac{1}{N_{event}} \frac{dN_{ch}}{d\eta} \propto (\ln s)^2$$

• There will be an energy where the power law takes over the logarithm increase. However, with present value of α_p , at LHC top energy, both behaviours are the same:

$$\sigma_{tot} \propto s^{\alpha(t)-1} \rightarrow \sigma_{tot} \propto (\ln s)^2$$

$$\xrightarrow{s^{\alpha(t)-1}(14 \, TeV)} \xrightarrow{1\sim 2\% \text{difference}} \frac{(\ln s)^2(14 \, TeV)}{(\ln s)^2(0.9 \, TeV)}$$

Tracking methods in ALICE

3 track counting methods

- 1) SPD tracklets(common method to count tracks)
- 2) ITSSA+: ITS detector's tracks + SPD tracklets
- 3) ITSTPC+: TPC tracks
 - + complementary ITS detector's track
 - + complementary SPD tracklets

Recent efforts in pp dNdEta

- dNdEta measurements by the use of other tracking methods
 - Old method : "Tracklet" for dNdEta and multiplicity
 - New methods: ITSSA+ tracks , ITSTPC+ tracks
 - Advantages of using new methods

More tolerance to background

Less possibility to lose tracks

 \rightarrow Good method to go over to high multiplicity events

- New dNdEta results with the modified diffraction rate
 - Re-calcuate dNdEta with new MC(with new measured diffraction rate)

900GeV	Default MC	New MC	7TeV	Default MC	New MC
SD(%)	22.5	19.45	SD(%)	19.2	17.85
DD(%)	12.3	9.46	DD(%)	12.9	8.94
ND(%)	100-SD-DD	100-SD-DD	ND(%)	100-SD-DD	100-SD-DD

1

How to measure the new rate of diffraction

• Corresponding trigger for SD and DD

Event and track selection

- Event selection
 - Pileup rejection: $\Delta_z \ge 0.8$ cm and $N_{contributor} \ge 3$
 - Vertex condition: -10cm<Z_{primary vertex} < 10 cm</p>
- Track selection
 - SPD tracklet

for each pair of hits: $\Delta \phi < 80 \text{ mrad}$, $\Delta \theta < 25 \text{mrad}$

- ITS track: $|\eta| < 1.3$
- **TPC track**: |η|<0.9
- Secondary particle rejection by DCA cut
- (* DCA = Distance of Closest Approach)

A measured track

DCA

dNch/dη measurement

Corrections for events
 True # of evts = Measured # of evts × Vertex finding efficiency
 × Trigger efficiency

• Corrections for tracks

True # of tracks = Measured # of tracks × Detector efficiency

- × Vertex finding efficiency
- × Trigger efficiency

Results – Raw dNdEta distributions

For inelastic events @ 7TeV

*As many detectors used, we can expect small background for ITSTPC+ tracks

1 4

Results – dNdEta distribution

15

Results – η density

*New data points(@ 0.9 and 7TeV) of ALICE are updated with new MC(with the modified diffraction rate)

Summary

- dNdEta measurements done
 - With new tracking methods(less particle loss)
 - With newly measured diffraction rates (by Martin)
 - New data points update for η density @ 0.9 & 7TeV

Study more

- How precisely can we measure the parton saturation in pp?
- Next plan
 - Gradual move to high-multiplicity events in p+p