Heavy Ion Meeting, Yonsei University Seoul, Dec. 10, 2011 **RECENT DEVELOPMENT OF HYDRO MODEL AFTER "PERFECT LIQUID"**

T.H., P.Huovinen, K.Murase, Y.Nara (in preparation)

Outline

- Introduction
 - Discovery of Perfect fluid
 - Importance of initial fluctuation
- Hydro-based event generator
 - Initial state fluctuation
 - Flow analysis
 - Results

Conclusion

Discovery of "Perfect Liquid"

Future Direction: × 🛞 https://ccvp	n10. × 🙀 STAR: The STAR × 🗤 Phys. Rev. Lett. × 🔇 My Profile 🛛 🔐 RHIC Scientists I × 🛨 👘
← → C S www.bnl.gov/bnlweb/pubaf/pr/pr_display.asp?prid=05-38	
Brookhaven National Laboratory News	
search Go News Archives OBNL	🖸 SHARE 📲 🕸 🏘)
News Resources	Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174
Newsroom Home	
Media Contacts	
News Archives	RHIC Scientists Serve Up "Perfect" Liquid
Image Library	
Streaming Video	New state of matter more remarkable than predicted raising
@brookhaven TODAY	New State of matter more remarkable than predicted raising
Fact Sheets	April 18, 2005
Management Bios	TAMPA EL The four detector groups conducting research at the Polativist
About Brookhaven	(RHIC) a giant atom "smasher" located at the U.S. Department of Energ Laboratory say they've created a new state of hot, dense matter out of t
:: Physics News	are the basic particles of atomic nuclei, but it is a state quite different and ϵ had been predicted. In <u>peer-reviewed papers</u> summarizing the first three y
Physicist Nima Arkani-Hamed to Give a Talk at Brookhaven Lab on 'Space Time,	scientists say that instead of behaving like a gas of free quarks and gluons, matter created in RHIC's heavy ion collisions appears to be more like a <i>liqu</i>
Quantum Mechanics and the	Once again, the physics research sponsored by the Department of Energy

http://www.bnl.gov/bnlweb/pubaf/pr/pr_display.asp?prid=05-38

Status as of Press Release

PHENIX, Nucl. Phys. A 757, 184 (2005)

<u>Three pillars of</u> <u>modeling</u>

- OGP ideal hydro
- hadronic cascade
- Glauber type initial conditions

What is missing in central collisions?

Undershoot the data at midrapidity in central collisions → Open question

T.Hirano et al., Phys. Lett. B 636, 299 (2006)

Importance of Fluctuation in Initial Conditions

Phys. Rev. Lett. 98, 242302 (2007)

Fluctuation in Initial Conditions

Elliptic flow is generated with respect to <u>participant plane</u> (x'-y' frame) rather than <u>reaction plane</u> (x-y frame).

B.Alver *et al.*, Phys. Rev. C 77, 014906 (2008)

Importance of PHOBOS finding

- System could (hydrodynamically?) respond to such a fine structure.
 - Is local thermalization achieved in such a short length scale (~1 fm)?
 - Need event-by-event hydro simulations?
 - Higher harmonics?

Higher Harmonics is Finite!

- Two particle correlation function is composed solely of higher harmonics
- Away-side two bumps just from hydrodynamic responses?

Figures adapted from talk by J.Jia (ATLAS) at QM2011

PHENIX v₂ vs. v₃ Argument

Analysis of v₂ and v₃ at once constrains the model New challenge to hydrodynamic models

HYDRO-BASED EVENT GENERATOR

Current Status: E-by-E H2C

Hadronic cascade 3D ideal hydro Monte Carlo I.C. (MC-KLN)

Initial Density Fluctuation

single initial condition event-by-event hydro

Event-by-event Fluctuation

Ideal, but unrealistic? OK on average(?)

Actual collision? → Higher order deformation

Figure adapted from talk by J.Jia (ATLAS) at QM2011

Deformation at Higher Order

Figure adapted from talk by J.Velkovska at QM11

Deformation in Model Calculations

Sample of entropy density profile in a plane perpendicular to collision axis

v_{2} {EP}, v_{2} {2}, v_{2} {4}, v_{2} {6}, v_{2} {LYZ}, ...

Hydro-based event generator → Analysis of the outputs almost in the same way as experimental people do.

Demonstration of v_n analysis according to event plane method by ATLAS setup. E.g.) Centrality cut using E_T in FCal region ATLAS, arXiv:1108.6018

Resolution of Event Plane

Reaction (Event) plane is not known experimentally nor in outputs from E-by-E H₂C. <u>Event plane method</u>

Event plane resolution using two subevents

$$R_{n} = \sqrt{\left\langle \cos\left[n\left(\Psi_{n}^{1} - \Psi_{n}^{2}\right)\right]\right\rangle}$$
$$n\Psi_{n} = \tan^{-1}\left(\frac{\sum E_{T,i}\sin n\phi_{i}}{\sum E_{T,i}\cos n\phi_{i}}\right)$$

c.f.) A.M.Poskanzer and S.Voloshin, Phys. Rev. C 58, 1671 (1998)

Resolution of Event Plane from Eby-E H2C

Even Harmonics

of events: 80000 (Remember full 3D hydro+cascade!) Subevent "N": charged, -4.8< η < -3.2 (FCal in ATLAS) Subevent "P": charged, 3.2< η < 4.8 (FCal in ATLAS) ATLAS, arXiv:1108.6018

Response of the QGP to initial deformation v_n roughly scales with ε_n

$V_{n} \{ EP \}(\eta)$ $v_{n} \{ EP \}(\eta, p_{T}) = \frac{1}{R} \langle \cos[n(\phi - \Psi_{n}^{P/N})] \rangle$

Even Harmonics

Odd Harmonics

Not boost inv. $\leftarrow \rightarrow$ almost boost inv. for epsilon

v_n{**EP**} **vs. v**_n{**RP**}

v_n{RP}: v_n w.r.t. reaction plane known in theory

Even Harmonics

v₂{EP}

10

V_n{EP}(p_T)

 $v_{2}{EP} \approx v_{3}{EP}$

Note: $\varepsilon_2 > \varepsilon_3$

 $v_{2}{EP} > v_{3}{EP}$

Comparison of v_n with Data Theory Experiment

Tendency similar to experimental data Absolute value $\leftarrow \rightarrow$ Viscosity

Impact of Finite Higher Harmonics

- Only few people believed hydro description of the QGP (~ 1995)
- Hydro at work to describe elliptic flow (~ 2001)
- Hydro at work (?) to describe higher harmonics (~ 2010)

coarse graining size

 $d \lesssim 1 \, \mathrm{fm}$

initial profile

Conclusion

Physics of the quark gluon plasma

- Strong coupling nature
- Small viscosity
- **Physics of relativistic heavy ion collisions**
- Toward precision physics
 - 2^{nd} order harmonics \rightarrow Higher order harmonics
 - Equilibration/coarse graining in a small system
 - Precise determination of transport coefficients

BACKUPS

Response to Deformation

CGC Initial Conditions

CGC and perfect fluid, are they compatible?

T.Hirano et al., Phys. Lett. B 636, 299 (2006)