Elliptic flow (v2) measurements in heavy ion collisions at CMS

10th Dec. 2011

Inkyu PARK for the CMS Collaboration Dept. of Physics, University of Seoul

- 1. CERN/LHC Physics goals
- 2. LHC as a new tool for HI Physics
- 3. CMS as a detector for HI Physics
- 4. Elliptic flow @ CMS
 - Results from QM2011
 - From Julia Velkovska (CMS HI Flow sub-group convener)
- **5.** Conclusion

CERN / LHC : Physics goals

 $\sqrt{s} =$ 7TeV p-p $\sqrt{s_{NN}} =$ 2.76 Pb-Pb LHC produces Higgs, QGP

~40 countries ~200 institutions ~3600 scientists 15x15x20m Compact Muon Solenoid

Goal of HI program

LHC / LHiC as a new tool for HI Physics

Inkyu Park

1.38ATeV+1.38ATeV

→ E=2.76ATeV

	AGS	SPS	RHIC	LHC (2010)	LHC
$\mathbf{s}_{\mathbf{NN}}$	5 GeV	20 GeV	200 GeV	2.76 TeV	$5.5\mathrm{TeV}$
E increase		x 4	X 10	x 14	x 2

SPS & RHIC:

- -show new and unexpected properties of hot nuclear matter
 - Jet quenching+high Elliptic Flow → strongly interacting color liquid
- LHC:
 - -significant increases of energy density
 - new properties of the QGP are guaranteed
- **Observables:**
 - -Soft probe observables
 - Multiplicity, Elliptic flow, Femto-scopy
 - Need small statistics, day 1 / week 1 measurement
 - -Hard probe observables
 - Jet, Jet-quenching, Quarkonia production, High p_T spectra
 - Need large statistics, full statistic measurement

Soft observables: RHIC \rightarrow LHC

- RHIC shows a simple energy dependence. How about at the LHC?

Hard observables: RHIC \rightarrow LHC

Jet quenching: strong interaction of high-p_T hadrons with dense medium

J/ψ suppression: SPS≈RHIC, larger at forward (CGC?)

Jets are modified in medium.

Strongly coupled hot & dense matter

CMS as detectors for HI Physics

Korea CMS

CMS add-ons

Korea CMS

13

Centrality, forward detectors

Centrality (impact parameter) determination is needed for physics analysis

CMS Heavy Ion institutions:

- -13 countries, 25 institutions, > 100 participants, ~6 Koreans
 - CERN, Croatia (Zagreb), Greece(Athens, Ioannina), France (Lyon, Paris), Hungary (Budapest), India (Mumbai), Korea (Seoul, Korea Univ.), Lithuania (Vilnius), New Zealand (Auckland), Portugal (Lisbon),Russia (Moscow), Turkey (Cukurova), USA (Colorado, Iowa, Kansas, Los Alamos, Maryland, Minnesota, MIT, Vanderbilt, UC Davis, UI Chicago)

2010 Heavy Ion Run

2010 Mar-Nov
pp ~ 40 pb-1
2010 Nov-Dec
Pb-Pb ~9µb-1

$-b \rightarrow$ centrality \propto Npart \propto Forward calorimeter energy

Elliptic Flow @ CMS

Elliptic flow Primer

Elliptic flow in HI collisions

- Measurement of azimuthal asymmetry in particle distribution in HI collisions
 - $-\frac{dN}{d\varphi}(\mathbf{p}_{\mathrm{T}},\mathbf{b},\mathbf{y})$
- **However, some difficulties**

- -Non-flow correlations : jets, decays, detectors, etc.
- Several different techniques and higher orders
 - -Event plane, cumulants, Lee-Yang zero

\Box Fourier expansion of azimuthal particle distribution

$$\frac{dN}{d\varphi} = N_0 (1 + 2\sum_{n=1} v_n \cos[n(\varphi - \Psi_R)]) \qquad v_2 = <\cos[2(\varphi - \Psi_R)] >$$

2-particle correlations

Higher harmonics

- □ The v₂(p_T) gives us important information on viscosity of medium and jet-quenching.
- The v₂(η) provides constraints on the system evolution in the longitudinal direction (EoS).
- □ Odd harmonic v₃, v₅ are new challenges and tell us fluctuations of initial state of medium.
- Different analysis methods show us the different sensitivities to non-flow contribution and eccentricity fluctuations.

Event Plane

- -based on particle correlations with the event plane
- -gives an estimate of the reaction plane
- -requires corrections for the detector acceptance
- **2**nd Order Cumulant
 - -based on 2-particle correlations
- **4th Order Cumulant**
 - -based on 4-particle correlations
 - -removes lower order non-flow effects
- Lee-Yang Zeros
 - -based on all particle correlations in each event
 - -removes non-flow effects

$v_2(p_T)$, $v_2(cen)$, $v_2(\eta)$

$v_2(p_T)$ at mid- $\eta : |\eta| < 0.8$

– Peaked at ~ 3 GeV/c, finite at ~ 10 GeV/c, strongest in 40-50% cent.

10

$v_2(p_T)$ at mid- η : LHC vs RHIC

LHC: Pb-Pb 2.76TeV, RHIC: Au-Au 0.2 TeV

-Low pT - within 15%, High pT - CMS < PHENIX for cent > 30%

v₂(centrality) at mid-η

v2 rises up to 40-50%, then decreases

v₂(η) : centrality dependence

-Weak η-dependence, except for most peripheral (EP and v2{2})

□ 15-30% increase in integral v₂ from top RHIC energy to LHC

Higher harmonics

v₃(p_T) at mid-η

□ Sizable signal; weak centrality dependence

 $-v_3$ at mid-rapidity driven by fluctuations

$v_4(p_T)$ at mid- η for 3 methods

-LYZ, v_4 {3} and v_4 {5}

Inkyu Park

 v_5 and v_6

$-v_5$ rises quadratically with p_T

$-v_6$ is small, reaches 2% in mid-central collisions

Comparison to Hydrodynamics

v_2 and v_3 : sensitivity to η/s

v₂ and v₃ together have better sensitivity The centrality dependence adds further constraints

v_2 and v_3 : initial conditions

Different initial conditions CGC, Glauber initial condition

v₂ and v₃ vs N_{part} : Hydro

Qualitative agreement with the data

Conclusions

- CMS has measured up to 6th order harmonic coefficients in a broad centrality, p_T and rapidity range using a variety of methods
- \Box v₂(p_T) is comparable to RHIC
 - –Integral $v_{\rm 2}$ scaling with transverse density and $\sqrt{s}_{\rm NN}$
- \Box v₃ is sizable and almost independent of centrality
 - $-v_5, v_6$ are small, finite
- Our results provide the basis for future detailed comparison to sQGP properties

