Four-nucleon interactions from holography

Yi Deokhyun (APCTP/POSTECH)

based on Youngman Kim, DY, Piljin Yi (1111.3118)

HIM 2011-12-10

Introduction: The effective Lagrangian

• Four-nucleon contact interactions in the effective chiral Lagrangian weinberg (1990) up to Q^2 order: —

Ordonez et al. (1996)

$$\mathcal{L} = -\frac{1}{2} \frac{C_S}{O_S} O_S - \frac{1}{2} \frac{C_T}{O_T} O_T$$
$$-\sum_{i=1}^{14} \frac{C'_i}{O_i} O_i.$$

	0	
-	O_S	$(N^{\dagger}N)(N^{\dagger}N)$
	O_T	$(N^{\dagger} \sigma N) \cdot (N^{\dagger} \sigma N)$
	O_1	$(N^{\dagger}\nabla N)^2 + h.c.$
	O_2	$(N^{\dagger} \nabla N) \cdot (\nabla N^{\dagger} N)$
	O_3	$(N^{\dagger}N)(N^{\dagger}\nabla^{2}N) + h.c.$
	O_4	$i(N^{\dagger}\nabla N) \cdot (\nabla N^{\dagger} \times \boldsymbol{\sigma} N) + \text{h.c.}$
	O_5	$i (N^{\dagger}N)(\nabla N^{\dagger} \cdot \boldsymbol{\sigma} \times \nabla N)$
	06	$i (N^{\dagger} \sigma N) \cdot (\nabla N^{\dagger} \times \nabla N)$
	07	$(N^{\dagger}\boldsymbol{\sigma}\cdot\nabla N)(N^{\dagger}\boldsymbol{\sigma}\cdot\nabla N) + h.c.$
	08	$(N^{\dagger}\sigma^{i}\partial_{j}N)(N^{\dagger}\sigma^{j}\partial_{i}N) + h.c.$
	O_9	$(N^{\dagger}\sigma^{i}\partial_{j}N)(N^{\dagger}\sigma^{i}\partial_{j}N) + h.c.$
0	2_{10}	$(N^{\dagger} \boldsymbol{\sigma} \cdot \nabla N)(\nabla N^{\dagger} \cdot \boldsymbol{\sigma} N)$
(2_{11}^{-5}	$(N^{\dagger}\sigma^{i}\partial_{j}N)(\partial_{i}N^{\dagger}\sigma^{j}N)$
(O_{12}	$(N^{\dagger}\sigma^{i}\partial_{j}N)(\partial_{j}N^{\dagger}\sigma^{i}N)$
0	O_{13}	$(N^{\dagger}\sigma^{i}N)(\partial_{j}N^{\dagger}\sigma^{j}\partial_{i}N) + h.c.$
(2_{14}	$2(N^{\dagger}\sigma^{i}N)(\partial_{j}N^{\dagger}\sigma^{i}\partial_{j}N)$

- The low energy constants (LECs)
 - leading (Q^0) order: C_S , C_T
 - next (Q^2) order: C_i s

Meson exchange interactions

Outline of the process

pre. AdS/CFT, D4/D8/ $\overline{D8}$, holographic baryon, ...

- 1. 5d meson and baryon with cubic interactions
- 2. down into 4d and carrying out cubic couplings \boldsymbol{g}
- 3. integrating out mesons
- 4. non-relativistic reduction (+constraints)
- 5. matching 4N operators with LECs
- 5d interaction Hong-Rho-Yee-Yi (2007):

$$-i\bar{\mathcal{B}}\gamma^m D_m \mathcal{B}$$
 and $\bar{\mathcal{B}}\gamma^{mn} F_{mn} \mathcal{B}$

will give the 4d cubic couplings

$$g_V \bar{\mathcal{N}} \gamma^\mu \omega_\mu \mathcal{N}, \, g_V \bar{\mathcal{N}} \gamma^{\mu\nu} \partial_\mu \rho_\nu \mathcal{N}, \cdots$$

• For example,

$$g_V^{(k)singlet} = \int dw \, \left| f_+(w) \right|^2 \psi_{(2k-1)}(w)$$

- $\psi_{(n)}(w)$: profile functions of meson fields,
- $f_+(w)$: profile functions of baryon fields.

5d Lagrangian from $D4/D8/\overline{D8}$

- AdS/CFT correspondence Maldacena (1997)
 - is the duality between
 - $\mathcal{N}=4$ super Yang-Mills theory with gauge group $SU(N_c)$
 - and closed string theory in $AdS_5\times S^5.$
- $D4/D8/\overline{D8}$ model _{Sakai-Sugimoto} (2004) embodies this duality as
 - the five dim gauge theory is fixed by the brane configuration,
 - which represents $U(N_c)$ with N_f massless flavors.

This construction provides holographic manifestation of the chiral symmetry breaking.

• Meson sector: Sakai-Sugimoto (2004)

5d $U(N_f)$ gauge theory on N_f D8

$$\begin{aligned} -\frac{1}{4} \int d^4 x dw & \frac{1}{e(w)^2} \operatorname{tr} \mathcal{F}^2 + \frac{N_c}{24\pi^2} \int_{4+1} \omega_5(\mathcal{A}) \\ \mathcal{A}_{\mu}(x,w) &= i \left[U^{-1/2}, \partial_{\mu} U^{1/2} \right] / 2 + i \{ U^{-1/2}, \partial_{\mu} U^{1/2} \} \psi_0(w) \\ &+ \sum_n v_{\mu}^{(n)}(x) \psi_{(n)}(w) \,. \end{aligned}$$

• Baryon sector: Hong-Rho-Yee-Yi (2007)

flavor soliton, baryon as wrapped D4 brane.

 \rightarrow effective theory of isospin 1/2 baryons in 5d

$$+\int d^4x \, dw \left[-i\bar{\mathcal{B}}\gamma^m D_m \mathcal{B} - im_{\mathcal{B}}(w)\bar{\mathcal{B}}\mathcal{B} + \frac{g_5(w)\rho_{baryon}^2}{e(w)^2}\bar{\mathcal{B}}\gamma^{mn}F_{mn}\mathcal{B} \right]$$

where $D_m \equiv \partial_m - i(N_c \mathcal{A}_m^{U(1)} + A_m)$. $\mathcal{B}(x, w) = \mathcal{N}_+(x)f_+(w) + \mathcal{N}_-(x)f_-(w)$,

4d Lagrangian

By integrating out the holographic direction w, we get Kim-Lee-Yi (2009)

$$\int d^4x \, \mathcal{L}_4 = \int d^4x \left(-i\bar{\mathcal{N}}\gamma^{\mu}\partial_{\mu}\mathcal{N} - im_{\mathcal{N}}\bar{\mathcal{N}}\mathcal{N} + \mathcal{L}_{\text{vector}} + \mathcal{L}_{\text{axial}} \right) \,,$$

$$\begin{split} \mathcal{L}_{\text{vector}} &= -\sum_{k\geq 1} \frac{g_V^{(k)triplet}}{2} \bar{\mathcal{N}} \gamma^{\mu} \rho_{\mu}^{(k)} \mathcal{N} - \sum_{k\geq 1} \frac{N_c g_V^{(k)singlet}}{2} \bar{\mathcal{N}} \gamma^{\mu} \omega_{\mu}^{(k)} \mathcal{N} \\ &+ \sum_{k\geq 1} \frac{g_{dV}^{(k)triplet}}{2} \bar{\mathcal{N}} \gamma^{\mu\nu} \partial_{\mu} \rho_{\nu}^{(k)} \mathcal{N} + \cdots, \\ \mathcal{L}_{\text{axial}} &= \frac{g_A^{triplet}}{2 f_{\pi}} \bar{\mathcal{N}} \gamma^{\mu} \gamma^5 \partial_{\mu} \pi \mathcal{N} + \frac{N_c g_A^{singlet}}{2 f_{\pi}} \bar{\mathcal{N}} \gamma^{\mu} \gamma^5 \partial_{\mu} \eta' \mathcal{N} \\ &- \sum_{k\geq 1} \frac{g_A^{(k)triplet}}{2} \bar{\mathcal{N}} \gamma^{\mu} \gamma^5 a_{\mu}^{(k)} \mathcal{N} - \sum_{k\geq 1} \frac{N_c g_A^{(k)singlet}}{2} \bar{\mathcal{N}} \gamma^{\mu} \gamma^5 f_{\mu}^{(k)} \mathcal{N} + \cdots \end{split}$$

with $\pi = \pi^a \tau^a$.

The couplings are

$$\begin{split} g_{V}^{(k)triplet} &= \int_{-w_{max}}^{w_{max}} dw \left| f_{+}(w) \right|^{2} \psi_{(2k-1)}(w) \\ &\quad + 2 \int_{-w_{max}}^{w_{max}} dw \left(g_{5}(w) \frac{\rho_{baryon}^{2}}{e(w)^{2}} \right) \left| f_{+}(w) \right|^{2} \partial_{w} \psi_{(2k-1)}(w) \,, \\ g_{A}^{(k)triplet} &= 2 \int_{-w_{max}}^{w_{max}} dw \left(g_{5}(w) \frac{\rho_{baryon}^{2}}{e(w)^{2}} \right) \left| f_{+}(w) \right|^{2} \partial_{w} \psi_{(2k)}(w) \\ &\quad + \int_{-w_{max}}^{w_{max}} dw \left| f_{+}(w) \right|^{2} \psi_{(2k)}(w) \,, \\ g_{dV}^{(k)triplet} &= 2 \int_{-w_{max}}^{w_{max}} dw \left(g_{5}(w) \frac{\rho_{baryon}^{2}}{e(w)^{2}} \right) f_{-}^{*}(w) f_{+}(w) \psi_{(2k-1)}(w) \,, \\ g_{V}^{(k)singlet} &= \int_{-w_{max}}^{w_{max}} dw \left| f_{+}(w) \right|^{2} \psi_{(2k-1)}(w) \,, \\ g_{A}^{(k)singlet} &= 2 \int_{-w_{max}}^{w_{max}} dw \left| f_{+}(w) \right|^{2} \psi_{(2k)}(w) \,, \\ g_{A}^{singlet} &= 2 \int_{-w_{max}}^{w_{max}} dw \left| f_{+}(w) \right|^{2} \psi_{(0)}(w) \,. \end{split}$$

Integrating out mesons

- eom of meson $v \to \text{cubic term } vNN$ becomes NNNN
- For example, isosinglet vector meson ω case, the four-point interaction up to Q^2 order:

$$\begin{split} \mathcal{L}_{\omega} = & \sum_{k \ge 1} \frac{1}{2m_{\omega^{(k)}}^2} \left(\frac{N_c g_V^{(k)singlet}}{2}\right)^2 \bar{\mathcal{N}} \gamma^{\mu} \mathcal{N} \bar{\mathcal{N}} \gamma_{\mu} \mathcal{N} \\ &+ \sum_{k \ge 1} \frac{1}{2m_{\omega^{(k)}}^4} \left(\frac{N_c g_V^{(k)singlet}}{2}\right)^2 \bar{\mathcal{N}} \gamma^{\mu} \mathcal{N} \partial^2 \left(\bar{\mathcal{N}} \gamma_{\mu} \mathcal{N}\right) \end{split}$$

• The relativistic $4\mathcal{N}$ operators after integrating out mesons:

$$\begin{split} \bar{\mathcal{N}}\gamma^{\mu}\mathcal{N}\bar{\mathcal{N}}\gamma_{\mu}\mathcal{N}, & \bar{\mathcal{N}}\gamma^{\mu}\mathcal{N}\partial^{2}\left(\bar{\mathcal{N}}\gamma_{\mu}\mathcal{N}\right), \\ \bar{\mathcal{N}}\gamma^{\mu}\gamma^{5}\mathcal{N}\bar{\mathcal{N}}\gamma_{\mu}\gamma^{5}\mathcal{N}, & \bar{\mathcal{N}}\gamma^{\mu}\gamma^{5}\mathcal{N}\partial^{2}\left(\bar{\mathcal{N}}\gamma_{\mu}\gamma^{5}\mathcal{N}\right), \\ \partial_{\mu}\left(\bar{\mathcal{N}}\gamma^{\mu}\gamma^{5}\mathcal{N}\right)\partial_{\nu}\left(\bar{\mathcal{N}}\gamma^{\nu}\gamma^{5}\mathcal{N}\right), & \bar{\mathcal{N}}\gamma_{\mu}\mathcal{N}\partial_{\nu}\left(\bar{\mathcal{N}}\gamma^{\nu\mu}\mathcal{N}\right), \\ \partial_{\nu}\left(\bar{\mathcal{N}}\gamma^{\nu}{}_{\mu}\mathcal{N}\right)\partial_{\lambda}\left(\bar{\mathcal{N}}\gamma^{\lambda\mu}\mathcal{N}\right) \end{split}$$

Non-relativistic limit

 \bullet We expand the relativistic fermion field ${\cal N}$

$$\mathcal{N}(x) = \begin{pmatrix} N(x) + \frac{1}{8m_{\mathcal{N}}^2} \nabla^2 N(x) \\ \frac{1}{2m_{\mathcal{N}}} \boldsymbol{\sigma} \cdot \nabla N(x) \end{pmatrix} + \mathcal{O}(Q^3)$$

where \boldsymbol{N} is the two-component spinor.

• For example,

$$\begin{split} \bar{\mathcal{N}}\gamma^{\mu}\mathcal{N}\bar{\mathcal{N}}\gamma_{\mu}\mathcal{N} &\to -N^{\dagger}NN^{\dagger}N + \frac{1}{4m_{\mathcal{N}}^{2}} \Big(4(N^{\dagger}\nabla N) \cdot (\nabla N^{\dagger}N) \\ &+ 2i\,(N^{\dagger}N)(\nabla N^{\dagger} \cdot \boldsymbol{\sigma} \times \nabla N) - 4i\,(N^{\dagger}\boldsymbol{\sigma}N) \cdot (\nabla N^{\dagger} \times \nabla N) \\ &- (N^{\dagger}\boldsymbol{\sigma} \cdot \nabla N)(N^{\dagger}\boldsymbol{\sigma} \cdot \nabla N) + \text{h.c.} \\ &+ (N^{\dagger}\boldsymbol{\sigma}^{i}\partial_{j}N)(N^{\dagger}\boldsymbol{\sigma}^{i}\partial_{j}N) + \text{h.c.} \\ &- 2(N^{\dagger}\boldsymbol{\sigma} \cdot \nabla N)(\nabla N^{\dagger} \cdot \boldsymbol{\sigma}N) + 2(N^{\dagger}\boldsymbol{\sigma}^{i}\partial_{j}N)(\partial_{j}N^{\dagger}\boldsymbol{\sigma}^{i}N) \Big) \\ &= -O_{S} + \frac{1}{4m_{\mathcal{N}}^{2}} \left(4O_{2} + 2O_{5} - 4O_{6} - O_{7} + O_{9} - 2O_{10} + 2O_{12} \right) \end{split}$$

Relativistic constraints

 From the beginning, the fournucleon Lagrangian up to Q² order was

$$\begin{aligned} \mathcal{L} &= -\frac{1}{2} C_S O_S - \frac{1}{2} C_T O_T \\ &- \sum_{i=1}^{14} C_i' O_i \,. \end{aligned}$$

O_S	$(N^{\dagger}N)(N^{\dagger}N)$
O_T	$(N^{\dagger}\sigma N) \cdot (N^{\dagger}\sigma N)$
01	$(N^{\dagger}\nabla N)^2 + h.c.$
O_2	$(N^{\dagger} \nabla N) \cdot (\nabla N^{\dagger} N)$
03	$(N^{\dagger}N)(N^{\dagger}\nabla^2 N) + h.c.$
04	$i(N^{\dagger}\nabla N) \cdot (\nabla N^{\dagger} \times \boldsymbol{\sigma} N) + \text{h.c.}$
O_5	$i (N^{\dagger}N)(\nabla N^{\dagger} \cdot \sigma \times \nabla N)$
06	$i (N^{\dagger} \sigma N) \cdot (\nabla N^{\dagger} \times \nabla N)$
07	$(N^{\dagger}\boldsymbol{\sigma}\cdot\nabla N)(N^{\dagger}\boldsymbol{\sigma}\cdot\nabla N) + \text{h.c.}$
08	$(N^{\dagger}\sigma^{i}\partial_{j}N)(N^{\dagger}\sigma^{j}\partial_{i}N) + h.c.$
O_9	$(N^{\dagger}\sigma^{i}\partial_{j}N)(N^{\dagger}\sigma^{i}\partial_{j}N) + h.c.$
O_{10}	$(N^{\dagger} \boldsymbol{\sigma} \cdot \nabla N)(\nabla N^{\dagger} \cdot \boldsymbol{\sigma} N)$
011	$(N^{\dagger}\sigma^{i}\partial_{j}N)(\partial_{i}N^{\dagger}\sigma^{j}N)$
O_{12}	$(N^{\dagger}\sigma^{i}\partial_{j}N)(\partial_{j}N^{\dagger}\sigma^{i}N)$
O_{13}	$(N^{\dagger}\sigma^{i}N)(\partial_{j}N^{\dagger}\sigma^{j}\partial_{i}N) + h.c.$
014	$2(N^{\dagger}\sigma^{i}N)(\partial_{j}N^{\dagger}\sigma^{i}\partial_{j}N)$

• The underlying Lorentz symmetry constrains that only nine (2+7) linearly independent combinations appear up to Q^2 . Girlanda et al. (2010)

$$\begin{split} \mathcal{A}_{S} &= O_{S} + \frac{1}{4m^{2}}(O_{1} + O_{3} + O_{5} + O_{6}) \,, \\ \mathcal{A}_{T} &= O_{T} - \frac{1}{4m^{2}}(O_{5} + O_{6} - O_{7} + O_{8} + 2\,O_{12} + O_{14}) \,, \\ \mathcal{A}_{1} &= O_{1} + 2\,O_{2} \,, \mathcal{A}_{2} = 2\,O_{2} + O_{3} \,, \mathcal{A}_{3} = O_{9} + 2\,O_{12} \,, \\ \mathcal{A}_{4} &= O_{9} + O_{14} \,, \mathcal{A}_{5} = O_{5} - O_{6} \,, \\ \mathcal{A}_{6} &= O_{7} + 2\,O_{10} \,, \mathcal{A}_{7} = O_{7} + O_{8} + 2\,O_{13} \end{split}$$

• Then the effective Lagrangian

$$\mathcal{L} = -\frac{1}{2} \frac{C_S}{O_S} O_S - \frac{1}{2} \frac{C_T}{O_T} O_T - \sum_{i=1}^{14} \frac{C'_i}{O_i} O_i \,.$$

can be written as

$$\mathcal{L} = -\frac{1}{2}C_{S}\mathcal{A}_{S} - \frac{1}{2}C_{T}\mathcal{A}_{T}$$

$$-\frac{1}{2}C_{1}\mathcal{A}_{1} + \frac{1}{8}C_{2}\mathcal{A}_{2} - \frac{1}{2}C_{3}\mathcal{A}_{3} - \frac{1}{8}C_{4}\mathcal{A}_{4}$$

$$-\frac{1}{4}C_{5}\mathcal{A}_{5} - \frac{1}{2}C_{6}\mathcal{A}_{6} - \frac{1}{16}C_{7}\mathcal{A}_{7}.$$

(definition of C_i 's)

• Also we get

$$\bar{\mathcal{N}}\gamma^{\mu}\mathcal{N}\bar{\mathcal{N}}\gamma_{\mu}\mathcal{N} \to -O_{S} + \frac{1}{4m_{\mathcal{N}}^{2}} \left(4O_{2} + 2O_{5} - 4O_{6} - O_{7} + O_{9} - 2O_{10} + 2O_{12}\right)$$
$$= -\mathcal{A}_{S} + \frac{1}{4m_{\mathcal{N}}^{2}} \left(\mathcal{A}_{1} + \mathcal{A}_{2} + \mathcal{A}_{3} + 3\mathcal{A}_{5} - \mathcal{A}_{6}\right).$$

The whole structures we encounter are

 $\bar{N}\gamma^{\mu}N\bar{N}\gamma_{\mu}N \rightarrow -O_{S} + \frac{1}{4m_{_{N}}^{2}} \left(4O_{2} + 2O_{5} - 4O_{6} - O_{7} + O_{9} - 2O_{10} + 2O_{12}\right)$ $= -A_{S} + \frac{1}{4m_{c}^{2}} \left(A_{1} + A_{2} + A_{3} + 3A_{5} - A_{6}\right),$ $\bar{\mathcal{N}}\gamma^{\mu}\mathcal{N}\partial^{2}\left(\bar{\mathcal{N}}\gamma_{\mu}\mathcal{N}\right) \rightarrow O_{1} + 2O_{2} = \mathcal{A}_{1},$ $\bar{\mathcal{N}}\gamma^{\mu}\gamma^{5}\mathcal{N}\bar{\mathcal{N}}\gamma_{\mu}\gamma^{5}\mathcal{N} \to O_{T} + \frac{1}{4m_{c}^{2}}\left(-2O_{6} + O_{7} - O_{9} - 2O_{10} - 2O_{12} + 2O_{13} - 2O_{14}\right)$ $= A_T + \frac{1}{4m_{14}^2} \left(-A_4 + A_5 - A_6 + A_7 \right) ,$ $\bar{\mathcal{N}}\gamma^{\mu}\gamma^{5}\mathcal{N}\partial^{2}\left(\bar{\mathcal{N}}\gamma_{\mu}\gamma^{5}\mathcal{N}\right) \rightarrow O_{9} + 2O_{12} = \mathcal{A}_{3},$ $\partial_{\mu} \left(\bar{\mathcal{N}} \gamma^{\mu} \gamma^{5} \mathcal{N} \right) \partial_{\nu} \left(\bar{\mathcal{N}} \gamma^{\nu} \gamma^{5} \mathcal{N} \right) \to O_{7} + 2O_{10} = \mathcal{A}_{6} ,$ $\tilde{N} \gamma_{\mu} \mathcal{N} \partial_{\nu} \left(\bar{N} \gamma^{\nu \mu} \mathcal{N} \right) \rightarrow \frac{1}{2m_{N}} \left(O_1 + 2O_2 + 2O_5 - 2O_6 - O_7 + O_9 - 2O_{10} + 2O_{12} \right)$ $=\frac{1}{2m_{\star}c}\left(\mathcal{A}_1+\mathcal{A}_3-2\mathcal{A}_5-\mathcal{A}_6\right)\,,$ $\partial_{\nu} \left(\bar{\mathcal{N}} \gamma^{\nu}{}_{\mu} \mathcal{N} \right) \partial_{\lambda} \left(\bar{\mathcal{N}} \gamma^{\lambda \mu} \mathcal{N} \right) \rightarrow -O_7 + O_9 - 2O_{10} + 2O_{12} = \mathcal{A}_3 - \mathcal{A}_6 \,.$

• Finally we get
$$\begin{array}{c} & \overbrace{=}^{} \swarrow + \swarrow + \cdots \text{ for } \omega, \\ \mathcal{L}_{\omega} = \sum_{k \geq 1} \frac{1}{2m_{\omega^{(k)}}^{2}} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \bar{\mathcal{N}} \gamma^{\mu} \mathcal{N} \bar{\mathcal{N}} \gamma_{\mu} \mathcal{N} \\ & + \sum_{k \geq 1} \frac{1}{2m_{\omega^{(k)}}^{4}} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \bar{\mathcal{N}} \gamma^{\mu} \mathcal{N} \partial^2 \left(\bar{\mathcal{N}} \gamma_{\mu} \mathcal{N} \right) \\ & \rightarrow - \sum_{k \geq 1} \frac{1}{2m_{\omega^{(k)}}^{2}} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \mathcal{A}_S \\ & + \frac{1}{4m_{\mathcal{N}}^2} \sum_{k \geq 1} \frac{1}{2m_{\omega^{(k)}}^{2}} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \left(\mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3 + 3\mathcal{A}_5 - \mathcal{A}_6 \right) \\ & + \sum_{k \geq 1} \frac{1}{2m_{\omega^{(k)}}^{4}} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \mathcal{A}_1 \,. \end{array}$$

• Actually, for example, the non-relativistic four-point contact Lagrangian from the isospin singlet mesons is

$$\mathcal{L}^{singlet} = \mathcal{L}_{\omega} + \mathcal{L}_{f} + \mathcal{L}_{\eta'}$$
.

...interlude...

- Outline of the process
 - pre. AdS/CFT, D4/D8/ $\overline{D8}$, holographic baryon, ...
 - 1. 5d meson and baryon with cubic interactions
 - 2. down into 4d and carrying out cubic couplings g
 - 3. integrating out mesons
 - 4. non-relativistic reduction (+constraints)
 - 5. matching 4N operators with LECs

Four-point interactions and LECs

• (Isosingplet) By direct comparison

$$\mathcal{L} = \mathcal{L}_{\omega} + \mathcal{L}_{f} + \mathcal{L}_{\eta'}$$
.

with the effective Lagrangian,

$$\begin{split} \mathcal{L} &= -\frac{1}{2}C_{S}\mathcal{A}_{S} - \frac{1}{2}C_{T}\mathcal{A}_{T} \\ &- \frac{1}{2}C_{1}\mathcal{A}_{1} + \frac{1}{8}C_{2}\mathcal{A}_{2} - \frac{1}{2}C_{3}\mathcal{A}_{3} - \frac{1}{8}C_{4}\mathcal{A}_{4} - \frac{1}{4}C_{5}\mathcal{A}_{5} - \frac{1}{2}C_{6}\mathcal{A}_{6} - \frac{1}{16}C_{7}\mathcal{A}_{7} \,, \end{split}$$

 \bullet the leading order C_S and C_T are

$$C_{\boldsymbol{S}} = \sum_{k \ge 1} \frac{1}{m_{\omega(k)}^2} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \,, \quad C_{\boldsymbol{T}} = -\sum_{k \ge 1} \frac{1}{m_{f(k)}^2} \left(\frac{N_c g_A^{(k)singlet}}{2} \right)^2$$

 ${\ensuremath{\, \bullet }}$ and the LECs of order Q^2 are

$$\begin{split} &-\frac{C_1}{2} = \frac{1}{4m_{\mathcal{N}}^2} \sum_{k \ge 1} \frac{1}{2m_{\omega(k)}^2} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 + \sum_{k \ge 1} \frac{1}{2m_{\omega(k)}^4} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \,, \\ &\frac{C_2}{8} = \frac{1}{4m_{\mathcal{N}}^2} \sum_{k \ge 1} \frac{1}{2m_{\omega(k)}^2} \left(\frac{N_c g_V^{(k)singlet}}{2} \right)^2 \,, \\ &\cdots \\ &-\frac{C_7}{16} = \frac{1}{4m_{\mathcal{N}}^2} \sum_{k \ge 1} \frac{1}{2m_{\ell(k)}^2} \left(\frac{N_c g_A^{(k)singlet}}{2} \right)^2 \,. \end{split}$$

$$\begin{split} \bullet & \left(\text{(Isotriplet)} \ \mathcal{L} = \mathcal{L}_{\omega} + \mathcal{L}_{\rho} + \mathcal{L}_{a_{1}} \ . \\ & -\frac{1}{2} \mathcal{C}_{S} = -\sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} + 3\sum_{k \geq 1} \frac{1}{2m_{a(k)}^{2}} \left(\frac{g_{A}^{(k)triplet}}{2} \right)^{2} \ , \\ & -\frac{1}{2} \mathcal{C}_{T} = -2\sum_{k \geq 1} \frac{1}{2m_{a(k)}^{2}} \left(\frac{g_{A}^{(k)triplet}}{2} \right)^{2} \ , \\ & -\frac{\mathcal{C}_{1}}{2} = -3\frac{1}{4m_{\mathcal{N}}^{2}} \sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} - \sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{4}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} \\ & -\frac{1}{2m_{\mathcal{N}}} \sum_{k \geq 1} \frac{1}{m_{\rho(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right) \left(\frac{g_{dV}^{(k)triplet}}{2} \right) \\ & -\frac{1}{4m_{\mathcal{N}}^{2}} \sum_{k \geq 1} \frac{1}{2m_{a(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} - 2\sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{4}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} \\ & -\frac{1}{4m_{\mathcal{N}}^{2}} \sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} - 2\sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{4}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} \\ & -\frac{4}{2m_{\mathcal{N}}} \sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right) \left(\frac{g_{V}^{(k)triplet}}{2} \right) - 2\sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{2}} \left(\frac{g_{dV}^{(k)triplet}}{2} \right)^{2} \\ & + \frac{1}{4m_{\mathcal{N}}^{2}} \sum_{k \geq 1} \frac{1}{2m_{a(k)}^{2}} \left(\frac{g_{V}^{(k)triplet}}{2} \right)^{2} - 4\sum_{k \geq 1} \frac{1}{2m_{\rho(k)}^{4}} \left(\frac{g_{dV}^{(k)triplet}}{2} \right)^{2} , \\ & -\frac{\mathcal{C}_{3}}{2} = \cdots \\ \text{and so on.} \end{split}$$

Numerical values

	Original	N_c -Shifted	CD-Bonn	AV-18
$\overline{C_S (10^{-4} \mathrm{MeV^{-2}})}$	1.32	0.976	-0.893	0.0816
$C_T \ (10^{-4} \mathrm{MeV^{-2}})$	0.129	0.342	0.0736	0.125
$\overline{C_1 (10^{-9} \mathrm{MeV}^{-4})}$	-0.225	-0.221	0.436	0.426
$C_2 \ (10^{-9} {\rm MeV^{-4}})$	-0.379	-0.951	1.437	1.49
$C_3 \ (10^{-9} {\rm MeV}^{-4})$	0.0032	0.0533	0.0240	0.0316
$C_4 \ (10^{-9} {\rm MeV}^{-4})$	0.0243	-0.0475	-1.155	-0.304
$C_5 \ (10^{-9} \mathrm{MeV^{-4}})$	-0.353	-0.425	0.799	0.792
$C_6 \ (10^{-9} {\rm MeV}^{-4})$	-0.0125	-0.0612	-0.0527	-0.0567
$C_7 \ (10^{-9} \mathrm{MeV}^{-4})$	0.291	0.610	-0.853	-0.536

* CD-Bonn, AV-18 fitting data from resonance saturation model Epelbaum et al. (2002)

- * N_c -shifting: considered factor $N_c + 2/N_c$ for $g_A^{(k)triplet}$, $g_{dV}^{(k)triplet}$ etc.
- * practical comparing will be meaningful on the stage for studying observables with this set of values

Summary

- Outline of the process
 - pre. AdS/CFT, D4/D8/ $\overline{D8}$, holographic baryon, ...
 - 1. 5d meson and baryon with cubic interactions
 - 2. down into 4d and carrying out cubic couplings \boldsymbol{g}
 - 3. integrating out mesons
 - 4. non-relativistic reduction (+constraints)
 - 5. matching 4N operators with ${\sf LECs}$
- LECs were derived directly: structures and systematic process
- Some intrinsic problems for these type of approaches
- More relevant and qualitative tests can be done for studying observables (e.g: *NN* scattering phase shifts)