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Short note for string theory

Quantum field theories and the gravity theories including super gravity
theories are point particle theories.

Point particle theories have UV infinity problem.

In field theory side, we have a method extracting physical quantities,
renormalization.

In gravity theory side, we don’t have any way regarding quantum
effect(Some Sugra theories, Loop quatum gravity, Horava gravity,.....).

But the point particle theory cannot avoid the UV divergence problem,
because the size of particles is zero.

The only way to avoid is eliminating all dimensionful couplings. We
have many successful examples in QFT.

We cannot do such a thing in gravity theory, because gravity theories
have the famous dimensionful coupling Planck’s constant.



Short note for string theory

So we may take some theory which have the extended objects(string,
membrane and so on.....) as fundamental particles.

An example of point particle theory
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Short note for string theory
String theory 8‘3 ~ Sda'drzj _d’tkaln +g B
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Short note for string theory

= Better Action ; Polyakov Action
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Short note for string theory

w Closed string -> periodic boundary condition

= Result
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Short note for string theory

D.B.C
-From the wave mechanics, we can see that the physical meaning of
such a B.C is related to existence of other object.

If there are some object at the end points of open strings, open string
ends can have generalized charges.
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Short note for string theory

D.B.C -> Some extended object -> “D-brane”
D(-1) brane world point instantonlike object
D0 brane  worldline particle like object

D1 brane world sheet string like object

D2 brame world volume membrane like object
D3 brane 3 dimensional object

It is well known that these object are really dynamical objects.



Short note for string theory

= Whatis effective action for D-p brane
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= Ramond fields: Generalized gauge fields sauced by D branes
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Short note for string theory

In order to eliminate tachyons, one may introduce super symmetry.

_M
S ~ Sl"g + Sh‘:rﬁ, ) lr ?a aa"I’H

Results

- No tachyon

- Consistent theories

--type I (D=10)

--type IIA (D=10)

--type [IB (D=10)

--Heterotic EB X E8 (D= 10+26)
--Heterotic SO(32) (D=10+ 26)
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Summary of string theory
= One supersymmetric black 3-brane solution
2 N 2 2 < /2 S
ts™= H (v) (—dx" B )“‘ HCr (e r AQ—,J_ )

Fl; = dx°Adx'A ""Ad)(:"AdH—lCH
H ) = [+ Ccongtant ) M K~ la
b

= Actually this blackhole-like 3 brane solution is same with D3 brane on
end point of open strings. (Polchinski)



Short note for string theory

So this is main difference from usual supergravity. In old supergravity,
this black brane solution has nothing to do with fundamental particle.s
[t is just a soliton solution in the supergravity.

5 =l 3 2 2L /2
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However, the supergravity theory as a low energy effective theory for
string theory has exact relation between the black brane soliton
solution and fundamental string.



Short note for AdS/CFT

Now we use the fact in the previous short note. Let’s consider N D3-
brane. The D-brane has two description, D-brane in string theory and
Black brane in supergravity.

D-brane in stringy picture
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Short note for AdS/CFT

D3 brane action becomes Non-abelian with some presciptions.
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Short note for AdS/CFT

The low enegy limit
The higher derivative terms can be ignored.
The Sugra fields are decoupled from Dbrane.

Then the action governing D3 brane turns out to be U(N) Super Yang-
Mill theory with 4 super-charges.
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Short note for AdS/CFT

= Super gravity point of view
2 N > 2 < /2
ts™= H (v) (-dx" £y - ) + He) (¢ rzAD_é )
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= The SUGRA is valid when two following quantities are large.

s = Lo VLPﬂmncch N



m |
i

)\

!‘l H'

H Jli

‘ l \I“

FEA tEV‘
g “y ~3 SUG] is b&.

Low - enery it

M
—1: '.'.‘I.B atn f\{"ﬂﬂ- S\'
'mylfrdsgﬂs with () (=2)




Short note for AdS/CFT

This super conformal YM is very strange theory which is very far from
real YM theory QCD. In order to make similar theory to real QCD, we
need to deform the conjecture.
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Short note for AdS/CFT

= Or we may think phenomenological model
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Short note for AdS/CFT

An example ; EKSS(]. Erlich, E. Katz, Dam T. Son and M. A. Stephanoyv,
05), model

TABLE I: Operators/fields of the model

AD: O(x) 5D: dix, z) P A (ms)?
gLy t%qr Al 1 3 0
qry"t"qn Af, 1 3 0
754’ (2/z) X8 0 3 3
o2 1 2 J T e ~ 5 — -2 -1 | 9 o
ds® = —(—d2” + dz¥dz,), 0<z<zy,. S = /ff T \/7 T1'{|DJL| +3IX[2 - 4{_3,-{}7:_ +ch3‘}

TABLE II: Results of the model for QCD observables. Model
A is a fit of the three model parameters to m,, fr and m,
(see asterisks). Model B is a fit to all seven observables.

Measured Model A Model B

Ohbservable (MeV) (MeV) (MeV)
M 139.6+0.0004 [8] 139.6° 141
mp 775.8+0.5 [8] TT5H.R 532
Ma, 1230440 [8] 1363 1220
fx 92.4+0.35 [8] 92.4* 84.0
F? 34548 [15] 329 353
Fd","':") 433413 [6, 16] AR6 440

o 6.03+0.07 [8] 4.48 5.20




Motivation

QCD is still mysterious region in physics.

In general, strong coupling behavior, density and temperature make
field theory difficult. We have no way to control these situations.
AdS/CFT gave us some possibilities for controlling the situations.

At least, for some super conformal field theories, we can overcome
these difficulties.

Although it is not clear whether this way can produce the quantitative
explanation for real QCD or not, we may extend the correspondence
due to a likelihood of qualitative explanations.



Motivation

The compact star(neutron star, white dwarfs, quark stars, strange
stars,...) is another interesting research topic, because they can tell us
the equation of state for some region in the phase space of QCD.

There are many interesting observations from neutron stars.

Since these objects are self bound objects with nuclear force and
gravity. there are two obstacles, the density and the gravity.

First one is already mentioned. It is well known that we can avoid this
problem by introducing bulk gauge field.

For the second one, we have to introduce the gravity degrees of
freedom in the boundary of AdS space. This is the source for boundary
energy-momentum tensor.

So it is also interesting to realize similar configuration in holographic
QCD. This is our motivation.



Gravity degrees of freedom in
gauge/gravity correspondence

Randall-Sundrum model was already considered for the gravity
degrees of freedom in our brane. The gravity strength is represented
by warping factor.

The first work investigating gravity wave functions is given by
Gherghetta et al, 05’ In the model, they considered a mass term for IR
brane and obtained composite graviton.

Another work is given by Kiritsis and Nitti 06. They considered
massless 4d gravitons in the Asymptotically AdS5 geometries.

Now I want to describe their idea.



Gravity degrees of freedom in
gauge/gravity correspondence

The original AdS/CFT correspondence was about correspondence
between two possible descriptions of a same object. One description
is a theory decoupled from bulk degrees of freedom, i,e. a field theory
on a flat spacetime. The other one is the string theory on a curved
geometry, AdS X Sphere.

If we take decoupling limit, there is no way to introduce gravity
degrees of freedom in the field theory system. Then the field theory
should be defined in a flat space time.

Um?




Gravity degrees of freedom in
gauge/gravity correspondence

So it is difficult to realize compact stars in usual AdS/CFT
correspondence. Because the compact star is a self bound
configuration with not only nuclear interaction but also gravity
interaction.
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In string theory point or view, this configuration is a bound state of
open strings(Field theory degrees of freedom) and closed strings
degrees of freedom(Gravity degrees of freedom).

We need closed string degrees of freedom for compact star, thus we
have to take an extension of usual AdS/CFT into account and we
should be very careful of the decoupled limit. It is not easy problem.



Gravity degrees of freedom in
gauge/gravity correspondence

If we introduce the gravity fluctuation in the AdS space with Poincare
coordinates.

a’(y) (14 20) dy* + 2A, dyda" + (1, + ) datda” |

Solving Einstein equation, this gravity wave function is not a
normalizable function., where y is from 0 to infinity.

Non-normalisable

s : Z=00
gravition wave function




Gravity degrees of freedom in
gauge/gravity correspondence

One idea for normalizable wave function is introducing cutoff and
suitable boundary condition for gravity wave function.

This make the existence of graviton on the boundary.

Normalisable
gravition wave
function

Z=00

So we can have gauge+gravity/gravity correspondence.



Simple compact stars and TOV
equation

Now we know how to construct existence of gravity d.o.f on the
boundary of AdS space.

Now we want to describe the compact stars with this construction.

For this, we summarize how the usual 4 dimensional Einstein gravity
consider for simplest perfect fluid stars.

G=T1

uv LV
Where the energy momentum tensor is perfect fluid energy

momentum tensor.
P
P
(r,)
P



Simple compact stars and TOV
equation

The metric is given by

2 (r )drz + grr(r )f”’z + goo(r) (d@z 1 sin? edqﬁ)

Where 1
2 .
St — —¢€ fe) s 8 = (1 an(r'}) » 8pp — !

2

;.
Then Einstein equation gives

;o m(r)+4mP(r)
fr)= (r—2m( ))

m( -1]1:/ p(r')




Simple compact stars and TOV
equation

If consider hydrostatic equation, we can obtain TOV

- m(r)+4
P(r) = ~(P(r)+p(r) ) _j;(f -

Thus we have to solve following tree equations

m( r) 4+ 4mr P(r)

(r—2m(r))

fi(r)=
m( -ht/ p(r')r ar’

P’{f'} P+ p(rnm(i ) +4mr’P(r)

r(r—2m(r))

We have only tree equations for four unknown ftns.



Simple compact stars and TOV
equation

Usual study needs one more equation, for example ,the equation of

tate. _
=< P(p)

If we know equation of state, we can solve the four equations.

Then we can see full function of mass, pressure and energy density.
From these, we can read the radius and the mass of a compact star.
This computation can be related to observation.

The EOS is from the microscopic nature of the nuclear matter, the
radius and mass are from the observation.

Thus the compact stars are good object to understand microscopic
physics from observation.

In this usual case, we have to assume or obtain EOS from QCD. But we
don’t know yet.



The simplest holographic model
without matter

If we believe possibility for existence of gravity degrees of freedom, we
may consider holographic model in a curved spacetime.

This is a deformation from the gauge/gravity correspondence.

In order to obtain first intuition, we had better take a simplest toy
model. So we are going to consider the Einstein-Hilbert action with
negative cosmological constantin 5 dimension.

] 6
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The general behavior already studied by Skenderis et al(2000).



The simplest holographic model
without matter

The summary of their work is as follows.
If we take the Fefferman-Graham coordinates,

, L, , -
ds* = — (dz” + g (x,2)dx"dx")

The general behavior of metric is

£
. . 7 () r (2] (4 (n) ¢ 5
g (x,2) = Ay (x)271082" + g (x) +2° g (x) +2 g () + Y Zguv (x)

n=>3

The expectation value of energy-momentum tensor is

4 1

P : , : 5 - 1
(Ti5) = mﬁ'um — ggzmrj[ﬁrfl‘gr_z';}z — Tl'.@'{g_;_ -
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E(Q[zg;}ij + Eg[zjijTrg{E_]_



The simplest holographic model
without matter

Again, the bulk metric is

| L )y (0), » (2), @), . e on (),
guv(x,2) = hyy u'_]:“ilagz‘ +;;}N X))+ 278 (X) +:4;;m- (x)+ Z :”,ii"m,- (x)

n=>5

The first term is related to conformal anomaly and scheme dependent
term, when we consider holographic renormalization. For simplicity,
we assume that this term vanishes.

The second term is interpreted as the metric of boundary system.
Usually, this is taken as flat metric. In our case we will put nontrivial
non-flat metric into this boundary metric.



The simplest holographic model
without matter

Since we will take star object into account, we assume that our metric
has rotational symmetry. Then our ansatz for bulk metric is

o (x.2)ddx" = on (r.2)dt” + grr(r.2)dr* + gee(r.z) (d0* + sin® 0do?)
L ' ' s

From this ansatz, we may solve the bulk equation.

1 6
Ry — Em;ﬁ — EHU



The simplest holographic model
without matter

Now we take a star metric as the boundary metric.

(0) 2 f(r) (0) 1 (0) >
By = €7 Brr = .~ Bgg =T
(1 - _-.rnl_r,l)

r

o
P v 4 2 0y, 2 (2} 4 (4, (n), -
g (x.z) = hyv(x)z 1082 + gy (X) + 278w (X) + 278w (x) + Ez",ﬁm- (x) .
n=>5

Then we can solve the bulk Einstein equation order by order in z.
Up to zeroth order equation, g*(2) is given in terms of g”(0).



The simplest holographic model
without matter

Up to second order, the metric must satisfy following constraint
equation.

0= —3m(r)® +r (—4r + 6m(r) + rm'(r)) m'(r) + 2r? (v — 2m(r))m"(r) — 2r (202
+ (=57 4 3m(r)) m(r) + (=37 + 4m(r) + rm/(r)) m'(r) + 2% (r — 2m(r)) m"(r)) £'(r)
+ 7 {'L":lr"'1 + (=32r + 29m(r)) m(r) + r (—4r + 6m(r) + rm/(r)) m'(r)
+2r% (r — 2m(r)) m"(r)) £'(r)? + 2r° (r — 2m(r)) (=3¢ + 5m(r) + rm'(v)) f'(r)>
+ 7t (r—2m(r))? () — (472 (v — 2m(r)) (—r + m(r) + rm(r))
—47% (r — 2m(r)) (—m(r) + rmd(v)) £'(r) + 2r* (r — 2m(r) }f f r]g) ()

4 R Y. Y. Chesd [ i i _--.2 . " LU i A
+rt(r—2m(r)? "(r)? — 2% (r — 2m(r))? (=1 +rf' (1) " (7) (A1)

In other words, If the boundary metric satisfies this equation, then the

full bulk metric is solution of the bulk Einstein equation up to second
order.



The simplest holographic model
without matter

We take one more assumption. If the boundary metric is a perfect fluid
star, we have to consider following constraints.

_m(r)+ 4 P(r)

fir)=

rir—2mi(r))
r ]
m(r)=4n / p(rr'"=dr’
Jo

TR Py Com(r) +4nrP(r)
P(r)=—(P(r)+plr))— :

rir—2m(r))

(0) 2/ 0 1 (0 _ 2
= —g=i = - g
S &rr (] N _“'.r:r[r]) Bon

r

These come from the boundary Einstein equation and TOV equation.
Then previous complicate constraint becomes simple.

/() — (P(r)+p(r)) (3m(r) —4nrip(r))
P = r(r—3m(r)—4nriP(r))




The simplest holographic model
without matter

If we solve the following equations
m(r) =4n rplﬁr';:]r'cdr"
]

o om(r)+4nrP(r)
P(r) = —(P(r) + p(r))— )

rir—2m(r))

(P(r)+p(r)) (3m(r) —4nrp(r))
r(r—3m(r)—4nrP(r))

p'(r) =

with initial condition P(0),rho(0) and m(0)=0, then we can obtain
pressure and energy density as functions of the radial coordinate.



The simplest holographic model
without matter

Indeed, these equation can be solved, the solution is well known
uniform density solution.

SklP 4 _
Ep{}{ei“' ] Lsx 10 | P(N‘[ETJ']
xllr [
310 | Lox10° |
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Figure 1: Energy density and pressure for a uniform density star
This is a simplest toy model, so we expect that more realistic model
can give more realistic equation of state.



The simplest holographic model
without matter

Main reason for this determination comes from our rotation symmetry
and the bulk Einstein equation. The bulk Einstein equation has more
component than the boundary Einstein equation. Such a extra degrees
of equation can make following constraint equation.

0 = —3m(r)? +r (—4r + 6m(r) + rm/(r)) m'(r) + 2% (r — 2m(r)) m"(r) — 2r (20
+ (=57 + 3m(r)) m(r) + (=37 + 4m(r) + rm'(r)) m'(r) + 207 (r — 2m(r)) m" (r)) f'(r)
+ 7 {g,-.-f + (=32r + 20m(r)) m(r) + r (—4r + 6m(r) + rm/(r)) m'(r)
+272 (r = 2m(r))m" (r)) f'(r)? + 2r* (r — 2m(r)) (=3¢ + 5m(r) + rm/(r)) f'(r)®
+ ot (r—2m(r))? f'(r)* - {-lr'f (r—2m(r)) (—r + m(r) + rm’(r))

3

—473 (r = 2m(r)) (=m(r) + rm'(v)) f'(r) + 27" (r — 2m(r))” f'(r) )f”l_rf..

+rt(r—2m(r)? () — 27 (r — 2m(r))? (=1 + £ (1)) £ (r) (A1)



Adding neutral scalar to the
model

Now we move to more realistic configuration.
First one we can think is giving a simplest matter to the system.
So we have to add a neutral scalar bulk field as follows.

| 6 .
Riy— E_GIJ[ R+ F] =T

,, - - i en D 9 iy
Iy = H-f); pdjo — —lﬂi.,r-:_ (Jo)” + mzo”)

Eom for matter fields
(V2 — mi}-r_u =10

2 a7l
my = —3/L



Adding neutral scalar and gauge
field to the model

The ansatz for the matter field is as follows.

e
B(r,z) = E On(r)2"

=0

The metric ansatz is same with the previous case.

guv(x,z)dx*dx" = g (r,2)dt* + g (r,2)dr? + gos (1,2) [d(—)z + sin? Hdd)zj

We can solve the Einstein equation and the equations of motion for
matter field near boundary(z=0) of the AdS5 order by order in z.



Adding neutral scalar and gauge
field to the model

w For the matter fields, we can obtain the result

dp(r) = do(r) = dy(r) =0,

» Again a complicate equation for metric

0= %T'Gél('?'}i + 273 (-m{*."]l —r(r —2m(r)) f"{;}) e;i‘q(-r}g
— 2t (r = 2m(r)) (2 + 7 f'(r)) b1(r) By () — 3r° (r — 2m(r)) &) (r)?
— 3-??1{:"]2 +r [—-—1*." + 6m(r) + rm'(s ]) '(r) + 272 (r —2m(r))m"(r) — 2r (2-‘;'2
(=57 + 3m(r) m(r) + (=37 + dm(r) + rd (1)) m () + 202 (v — 2m(r)) " () ' (7)
+ 72 (9-‘;'2 + (—32r 4+ 29m(r)) m(r) +r (—4: + 6m(r) + rm'(s }) m'(r)
+2r2 (r — 2m(r )) m (:)) f’(r']g + 273 (r — 2m(r)) ( 3r + 5m(r) + :i'm."{'r)) f"('r')a’
+ 1 (r —2m(r ]] ' ) 47> (r —2m(r)) ( r+m(r)+rm'(r })
~4r® (r = 2m(r)) (=m(r) +rm/(r)) £'(r) +2r* (r = 2m(r))? £'(r)?) £"(r)
)2

+ 7l (r—2m(r))* f"(r )2 —2r3 (r — 2-1?1{':']] (—1 + :i'f"{:i')) " (r) (A.3)



Adding neutral scalar and gauge
field to the model

And for the scalar field
0=r2¢1(r)3 + (me{r] + (=2r +3m(r) + rm/(r) —r (r — 2m(r)) f'(r)) £'(r)
—r (r —2m(r)) f'(r)) ¢1(r) + 3 (=2r + 3m(r) + rm/(r) — r (r — 2m(r)) £'(r)) &} (r)
— 3r (r — 2m(r)) &7(r) (A.2)

If we give perfect fluid metric condition and TOV equation to these

solution 1
_m(r)+4mnr P(r)

fr)= r(r—2m(r))

r 5
m(r) = 4?1:[ p(r')r'~dr’
J0

m(r) +4]‘U‘3P(F}

r(r—2m(r))

P'(r)=—(P(r)+p(r))



Adding neutral scalar and gauge
field to the model

= The two equations become much simpler

#(r) = (261 (r)? — 4rr61(r) BP(r) — p(r)

3r (r — 2m(r)) |
—6 (r—m(r) + 2713 (P(r) — p{:]}) oi(r))  (3.5)

(=7 (—rou(r)* + 861(r)e (r) + 61 (r)°

1
)= 32mr(—r + 3m(r) + 4nr3P(r))
+167rP(r)p1(r) (¢1(r) + 1) (r))) + 32 (—3m(r) + 4Tr'."3P[-r}} p(r)
+12m(r) (—STTP(?'} + 1oy (1) (c}l(f] + o) (f}}) + 1281«‘.*2?'3,0(?']2) _._

(3.6)



Adding neutral scalar and gauge
field to the model

w Thus the equations we have to solve are

1

21 (13 — 7261 (1 (3P(r) — o7
3?. {.;._2,”1['?,))(; {.Dl["') "1“ '0].[: }(BP( ) P( ]I}

— 6 (r—m(r) + 2113 (P(r) — p(r))) ¢1(r))  (3.5)
(= (=rén(r)" +8¢1(r)1 (r) + 6r¢) (r)?

#r) =

1
- 327mr(—r + 3m(r) + 473 P(r))
+167rP(r)d1(r) (¢1(r) + rdi(r))) + 32m (—3m(r) + Arr3P(r)) p(r)
+12m(r) (=8rP(r) + r¢1(r) (81(r) + ré(r))) + 1287°r°p(r)?) ,

¢ (r)
(3.6)

.
m(r) = 4w [ p{r;]-;r""gd-;r"'
' D

m(r) + 4wr3 P(r)
r(r—2m(r))

P'(r) = —(P(r) + p(r))



Adding neutral scalar and gauge
field to the model

By regularity condition of the star metric, the relevant parameter for
this solution are P(0), rho(0), phi_1(0)

1

H ) = g gmayy ¢ 91 — 461 (BP() — p(r)
— 6 (r —m(r) + 23 (P(r) — p(r))) ¢1(r))  (3.5)
p(r) ! (=12 (—rdi(r)* + 81 (r) B (1) + 61 (r)?

- 32mr(—r + 3m(r) + 473 P(r))
+167rP(r)oy (1) (¢1(r) + rd] [:])) + 327 (—3m(r) + 4?TT'3P[}'}} p(r)
+12m(r) (=87 P(r) + réi(r) (¢1(r) + roi(r))) + 1287:2':'3;}{':')2) ,  (3.6)

m(r) = 4m / p{r;]r"gdr"
J0

m(r) + 4mr3 P(r)

P'(r) = —(P(r) + p(r)) r(r — 2m(r))

[f we give thess parameters, we can obtain holographic star solutions.



Adding neutral scalar and gauge
field to the model

Now we add one more assumption at surfaces of stars to eliminate the parameter
¢1(0) whose physical meaning is not clear. At the surface of a star, the pressure P(R)
vanishes with very small energy density p(R), where R is the radius of the star. So we may
take P(R) = p(R) = 0 as a first approximation. Then our parameter space becomes two
dimensional space parameterized by (P, p.) giving clear physical meaning as center values
of the pressure and the energy density. !. In this two dimensional space, we have obtained
the resulting mass and radius shown in table.1. For every point in the parameter space,
we can generate equation of state. We have shown the energy densities, the pressures and

the equations of state for one case in Fig.2.

13 IPT - n 4
E p(MeV?) 0t P(MeV')

2k 1P 25l F

B 20010 |
LSl F

Lo 10P [
: 10w 107 F

5.0 1A F . -E

* 505 10 pl{MeVd']

P T SRR TSR T S S S TP LT L LLL 1

5000 100 1.0 1ig? 1.5 10® 2.0 10P 250 1P

Figure 2: Energy density, pressure and equation of state for p. = 2.5713 x 10°MeV*?, P. =
3.2141 x 108MeV*#, This configuration gives the radius 11.66 km and the mass 1.26 M,



Adding neutral scalar and gauge
field to the model

pe(8.5704 x 105MeV?) | 3 4 5 6 7 8 9 10
Pe(8.5704 x 10°MeV?) [ 1 x3 | x4 | Ix5|1x6|Ix7|ix8]|Lx9|lx10
Mass(Mz) 243 | 211 | 1.89 | 1.72 | 1.59 | 1.49 | 140 | 1.33
Radius(km) 13.33 | 11.54 | 10.32 | 942 | 873 | 816 | 7.70 | 7.30
pe(8.5704 x 105MeVY) | 3 4 5 6 7 8 9 10
P.(8.5704 x 10°MeV?) | 1 x3 [ g x4 | x5 1x6| 1x7][1x8|1x0]1x10
Mass( M) 2.00 | 1.81 | 1.62 | 148 | 1.37 | 128 | 120 | 1.14
Radius(km) 13.04 | 11.29 | 10.10 | 9.22 | 853 | 7.98 | 7.53 | 7.14
pe(8.5704 x 105M eVY) | 3 4 5 6 7 8 9 10
P.(8.5704 x 10°MeV?) | £ x3 | x4 | x5 | +x6 | Fx7|+x8|4x9|Lx10
Mass( M) 181 | 1.57 [ 140 | 128 | 1.19 | 1.11 | 1.05 | 0.99
Radius(km) 12.69 | 10.99 | 9.83 | 897 | 831 | 7.77 | 7.32 | 6.95
pe(8.5704 x 108MeV?) 3 4 5 6 7 8 9 10
Pe(8.5704 x 10°MeVh) | 1 x3 | I xda | tx5|dix6|Ix7|1x8]|Lxo|lxi0
Mass(Mz) 159 | 1.38 | 1.23 | 1.12 | 1.04 | 097 | 092 | 087
Radius(km) 12.33 | 10.68 | 9.55 | 8.72 | 8.07 | 7.55 | 7.12 | 6.75
pe(8.5704 x 105MeV?) | 3 4 5 6 7 8 9 10
P.(8.5704 x 10°MeV?) | 2 x3 | Ixda | tx5|ix6|ixT7|ix8]Lx0]Lx10
Mass( M) 126 | 1.09 | 097 | 0.80 | 0.82 | 0.77 | 0.73 | 0.69
Radius(km) 11.66 | 10.10 | 9.03 | 825 | 7.64 | 7.14 | 6.73 39

Table 1: Mass and Radius
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Adding neutral scalar and gauge
field to the model

By holography, one can obtained equation of state depending on some
paremeters.

The back reactin was included in our construction. But we are still
trying to undet stand this point.

And we can make a situation whose surface energy density does not
vanish.

wsw P (MeV)

Figure 3: Energy density, pressure and equation of state for p. = 2.5713 x 10°MeV* and P, =
3.2141 x 108 M eV* with surface energy density 3.26 x 10°MeV*. This configuration gives the radius
11.45 km and the mass 1.26 M (slightly smaller than Fig.2). In the third figure, we compare this
equation of state to the equation of state of Fig.2. The empty diamonds are non-vanishing surface
density eonfiguration and the dots correspond to Fig.2.

In this case, we can interpret the scalar field parameter as a parameter
related to surface energy density.



Summary and discussion

In order to consider compact stars, we have deformed boundary metric
which is not flat.

To embed the compact star geometry, we have taken rotational symmetry
on the metric.

Since the bulk Einstein equation gives more degrees of freedom than the
boundary Einstein equation, our system gives one complicate constraint.

By taking perfect fluid star as the boundary metric, the constraint becomes
very simple we can solve.

The simplest solution is well-known uniform density star.

We think that this simple structure is from the simplicity of the model.
Thus we introduced other matter fields.

Another toy model gave more realistic configuration.

As a next step, we will study full bulk geometry by solving partial
differential equation with boundary metric, then we can understand which
IR condition is relevant for this configuration.

Then we can compare the IR condition to the already known cutoff and
boundary conditions.



