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@ Nuclear symmetry energy is important for understanding not only the structure of
nuclei but also many critical issue in astrophysics like as formation of neutron star.
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@ Nuclear symmetry energy is important for understanding not only the structure of
nuclei but also many critical issue in astrophysics like as formation of neutron star.

@ Energy per nucleon

E(o,a) = E(0,aa=0) + Esym(g)oz2 + O(a4)

o: total baryon density, a: asymmetric parameter QPZQ"

@ Symmetry energy: Energy difference between symmetric matter and asymmetric
matter
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matter
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@ Nuclear symmetry energy is important for understanding not only the structure of
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E(o,a) = E(0,aa=0) + Esym(g)oz2 + O(a4)
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@ Symmetry energy: Energy difference between symmetric matter and asymmetric
matter

@ Density dependence of symmetry energy is not yet known.
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@ From AdS/CFT, we can calculate the symmetry energy(D4/D6)
JHEP 1106(2011)011: Younman Kim, YS, Ik Jae Shin, Sang-Jin Sin

o S, ~ ol/?
@ Is this behavior universal?
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AdS/CFT correspondence

@ String theory

Open Strings || Closed Strings

massless excitation

massless excitation
Gauge Filed Ay,

Graviton G
D-branes Curved spacetime

low energy limit

low energy limit
N =4,D =4SYM

10d Supergravity

Large N limit

Near horizon limit
Super conformal Theory

AdSs x S°
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AdS/CFT correspondence

@ String theory

Open Strings || Closed Strings

massless excitation

massless excitation
Gauge Filed Ay,

Graviton G
D-branes Curved spacetime

low energy limit

low energy limit
N =4,D =4SYM

10d Supergravity

Large N limit

Near horizon limit
Super conformal Theory

AdSs x S°

@ There is Open-Closed string duality
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AdS/CFT correspondence

Lo }

AdS; x 8%

N, D3 branes

o Weak coupling limit (A << 1): N =4, D =4, SU(N¢) SYM
@ Strong coupling limit (A >> 1): Classical gravity in AdSs x S°

@ From calculating classical gravity, we can obtain some quantities in gauge theory
with strong coupling.
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AdS/CFT correspondence

o AdS/CFT dictionary

Gauge Theory(boundary) | Gravity(bulk)
Operator O Field ¢
(Energy momentum tensor T, ) (Graviton guu )
Source J Non-normailzable mode ¢,
Expectation value < O > Normalizable mode
Conformal dimension A, mass of field mg,
Flavor degrees Probe brane
Global symmetry Gauge symmetry

@ In asymptotic region (r — oo)

<O >

ro

o~ J+

@ It is far from realistic QCD, we need something more...
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AdS/CFT correspondence

9 Finite Temperature
@ Black Hole Geometry(In Euclidean)

dr?
ds® = f(r)dt® + — + - - -
A ey
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AdS/CFT correspondence

9 Finite Temperature
@ Black Hole Geometry(In Euclidean)

2
ds® = f(r)dt® + % 4
Near horizon
f(r)y=f(rm) + (r—rm)f' (r) 4+ - = (r — r)f (rn)

New coordinate

2Vr—r,
V' (rw)

dt’> + dp?® = dp* + p°db>

p=

’H(rh)2
ds?® = 2"
s® =p n
f’(l’h)
2

df = dt
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AdS/CFT correspondence

9 Finite Temperature
@ Black Hole Geometry(In Euclidean)

d2
ds> = F(r)dt® + — 4 ...

f(r)
Near horizon
f(r)y=f(rm) + (r—rm)f' (r) 4+ - = (r — r)f (rn)
New coordinate
_2Vr—n
VAo
f’ 2
ds? = pzﬁdtz +dp® = dp® + p°d6?
f‘/
do = (2"’) dt
To avoid conical singularity at origin, the period of 6 should be 27
! 1 !
gz g 1 F(m)
2 B A
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AdS/CFT correspondence

9 Finite Temperature
@ Black Hole Geometry(In Euclidean)

d2
ds> = F(r)dt® + — 4 ...

f(r)
Near horizon
f(r)y=f(rm) + (r—rm)f' (r) 4+ - = (r — r)f (rn)
New coordinate
2/r—ry
P=—F—
V' (rh)
f’ 2
ds? = pzﬁdtz +dp® = dp® + p°d6?
f‘/
do = (2"’) dt
To avoid conical singularity at origin, the period of 6 should be 27
! 1 !
gz g 1 F(m)
2 B A
@ Schwartzschild black hole in flat space-time
2M 1
f=1—-——>T=—
r 8mM

Schwartzschild black hole in AdSs
2 4
r r h
f==(1-2) 5 T7=—"2
R2 ( r4> mR2
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AdS/CFT correspondence

@ Finite Temperature
@ Black Hole Geometry(D4 brane)

UN3/2 3/2
d® = (E) (FW)de + d=* + o) 2
U\3/4 27N,
6 v - 3 _ _T 3 _ 3
e = & (R) , Fa= Q. f(ry=1 ( U R = g NI
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AdS/CFT correspondence

@ Finite Temperature
@ Black Hole Geometry(D4 brane)

U\ 3/2 3/2
d® = (E) (FW)de + d=* + ax]) + 2
U\3/4 27N,
* = = , Fi= es, f _1——T R® = mgN,|,
e e(z)  R=Tra 0 (U e
@ Geometrical structure
A t X4
Urf— — — — ™ _ —

@ t=t+8, x4 =x4+27Ry
@ Black hole horizon at U = U7 ~ T (temperature)

@ Deconfined phase
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AdS/CFT correspondence

@ Confinement
@ Double Wick rotation t <> ixg, x4 <> iT

2 U\ 3/2 w v 2 R\3/2 ( dU? 2 A2
ds? = (E (nuvaxtax” + F(U)d] ) + o U
U\3/4 Uk \ 3
s u o KK 3 _ 3
e = g (R) , f(U)=1 (—U ) ., R =g NP
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AdS/CFT correspondence

@ Confinement
@ Double Wick rotation t <> ixg, x4 <> iT

U\?3/2 R\3/2 [ dU?
2 v wov 2 ~ 2 142
d® = (R) (nuvaxtax” + F(U)d] ) + (U) U
U\3/4 Ukk \ 3
6 v 4 KK 3 _ 3
e = gs<R> , f(U)=1 (—U ) ., R =g NP
@+ Geometrical structure
Y T X4
U — 4,

Uk b - - _ N _ _

@ Arbitrary radius of time circle (zero temperature)
@ Geometry end at U = Uk (scale in the theory)

@ confined phase
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AdS/CFT correspondence

@ Adding flavor(Probe brane)
o y(p) ~ Mg+ =5p= 4.
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AdS/CFT correspondence

@ Adding flavor(Probe brane)
o y(p) ~ Mg+ <Tg=
@ Adding density (or chemical potential)

@ Gauge symmetry on probe brane <+ Global symmetry
@ U(1) on brane A, <+ Global current < J* > = < iy*ep >

@ Ag o <Py >=<yiy>=<Q >(number density)

‘At/\/l[’+<u;j#+...
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AdS/CFT correspondence

@ Adding flavor(Probe brane)
o ¥(p) ~ My + gz

@ Adding density (or chemical potential)
@ Gauge symmetry on probe brane <+ Global symmetry
@ U(1) on brane A,, ++ Global current < J* > = < pyHep >
s Ay & < Py > = < Ty > = < Q >(number density)
@ At~ p+ ﬂ# + e

@ Sources

@ End points of fundamental strings (quarks)

@ Baryon vertex

N, fundamental strings
——

D5
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Symmetry energy in hQCD

@ Energy per nucleon
E(p,a) = E(p,a = 0) + Eaym(p)a? + O(a*)

p: total baryon density, a: asymmetric parametry

@ Symmetry energy

1 6%E(p, o)
Eorm(P) = 53302

a=0
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Symmetry energy in hQCD

@ Energy per nucleon
E(p,a) = E(p,a = 0) + Exym(p)a® + O(a*)

p: total baryon density, a: asymmetric parametry

@ Symmetry energy

1 9°E(p, a)
Eorm(P) = 53302

a=0

@ Two probe Dy branes with U(1) charges  myi(m,) = my(my)
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Symmetry energy in hQCD

@ Energy per nucleon
E(p,a) = E(p,a = 0) + Exym(p)a® + O(a*)

p: total baryon density, a: asymmetric parametry
@ Symmetry energy
1 8E(p, @)

Eom(p) = 5

a=0

@ Two probe Dy branes with U(1) charges  myi(m,) = my(my)
@ D4 brane background

[ o 1 2 3 4 5 6 7 8 9J]q[d]
| D4 || . . . . . | | |
D2 . . . 2 1
D4 . . . . . 4 2
D6 ° . . . . ° ° 6 3

@ D3 brane background
[ o 1 2 3 4 5 6 7 8 9J]q[d]
(D3 e = + = ]
D3 0 . . 0 3 1
D5 . . . . . . 5 2
D7 . . ] . . . . . 7 3
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Symmetry energy in hQCD

@ Free energy

Frotal(Q) = (Q)+7:D (Q1)+7D (@),
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Symmetry energy in hQCD

@ Free energy

Frotal(Q) = (Q)+7:D (Q1)+7D (@),

9 Total charge and asymmetric parameter

QA -Q@ Qz
S Q

Q=A@+ Q, &
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Symmetry energy in hQCD

@ Free energy

Frotal(Q) = (Q)+7:D (Q1)+7D (@),

9 Total charge and asymmetric parameter

QA -Q@ Qz

Q=A@+ Q, & 9

@ Expansion around o =0

]:total(o) = E() +6{E1 +6¢2E2 + ..

o Ey = F(Q)+2Fpq (%) Free energy for symmetric matter

& E1 =0
* (1)

B QZ 82]:Dq(Ql)

E(Q) = (T) T

Q1=Q/2
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Symmetry energy in hQCD

@ Free energy

Frotal(Q) = (Q)+7:D (Q1)+7D (@),

9 Total charge and asymmetric parameter

QA -Q@ Qz

Q=A@+ Q, & 9

@ Expansion around o =0

]:total(o) = E() +6{E1 +6¢2E2 + ..

o Ey = F(Q)+2Fpq (%) Free energy for symmetric matter

& E1 =0
* (1)

B QZ 82]:Dq(Ql)

E(Q) = (T) T

Q1=Q/2

@ Symmetry energy in hQCD
Ex(Q)

525 Q
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Symmetry energy in hQCD

@ DBI action of Dy brane
Spq = g / do9tle=® det(g + 2ma/ F),
@ Induced metric on Dy brane
dsp, = —Gudt® + GudX5 + Gppdp® + GaadQl 4 ;.
9 Legendre transformation
Fpg(Q) = /dp\/ Gt Gpp + e 20G4.Ga,,

(n=qg—d-1)
@ Symmetry energy

Q+/Gi:Gypoe 29 G G
52 :27’q/dp Q tPpp xx Q9

(@2 + 4e-20 GgXGSgQ)3/2 '
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)

@ Repulsion to probe brane — Chiral symmetry is broken
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)

@ Repulsion to probe brane — Chiral symmetry is broken

@ Baryon vertex plays role of source — Nuclear matter system
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)

@ Repulsion to probe brane — Chiral symmetry is broken

@ Baryon vertex plays role of source — Nuclear matter system

] P

my
D(8—p)

Dp
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)

@ Repulsion to probe brane — Chiral symmetry is broken

@ Baryon vertex plays role of source — Nuclear matter system

] P

my
D(8—p)

Dp

Baryon vertex
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Symmetry energy in nuclear matter system

@ Confining geoemtry

@ D4 brane: Double Wick rotation between time and one spatial direction
@ D3 brane: Non-trivial dilaton field (Gubser)

@ Repulsion to probe brane — Chiral symmetry is broken

@ Baryon vertex plays role of source — Nuclear matter system

] P

mg

D(8—p)

Dp

Q2

Baryon vertex

Baryon vertex
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Symmetry energy in nuclear matter system

@ D4 brane background

U\ 3/2 R\ 3/2 du?
2 1L v 2 2 2
ds = — dxtdx” + f(U)dx; +<—> — + UdQ,
D4 (I?) (n“” o 4) U f(U) 4
U\ 3/4 27N, U, 3
6 v B c _ 4 (UYkk 3 _ 3
e? = g;(R) » Fa= e fU)=1 (T ) R =mehe (1)
= 2 U = 2aMc P, R = M X = g2y N,
8s = 2701 Ne My i KK = 9 KKs» = Y 5 = 8ypmNe

@ Baryon vertex (spherical D4)

Fov = [ doy/wil(€2 + €2) /Do) +5in0,

@ Probe brane

. A 4(d—
Fo, :?q/dp\/wj_/3(1+ v2)1/ @2 + p2re3 Y,

n=qg—d—19=6,4,2d=3,21
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne+1 Ne-1 Ne-1 N +1
2 2 2 2

i —
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne+1 Ne-1 Ne-1 N +1
2 2 2 2

i —

Q— @ =N, — N,, Qi+ Q= Q = NgNc,

Q—Q  Ny— N,
Q1+ @ NcNg -’

N, — N, 2 N, — N,\? E
FE=(2"") = () . 2,
NcNg Ns N2

&=
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne+1 N¢
2 2

AN 7 §

Qi+ Q= Q = NgNc,

1 Ne-1 Ne+1
2 2

Q— @ =N, — N,,

Q—Q  Ny— N,

)

o = =
Q1+ @ NcNg

N, — N, 2 N, — N,\? E
FE=(2"") = () . 2,
NcNg Ns N2

é _
€k 1 Q\/ W4/3(1 + Yz) 3 K
N¢ R _ 3/2 :
+

@ Symmetry energy

o/
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne-1 1 1 Ne-1
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne-1 1 1 Ne-1

=

Q1 — Q2 = (N¢ — 2)(N, — N,), Q1+ Q2 = NcNg.

u
d

Q—Q  (Nc—2)(N, — N»)
@+ Q NcNg

e = (M) (e 2
Ng N2

& = ,

E>.
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Symmetry energy in nuclear matter system

@ Proton and Neutron for N > 3

Ne-1 1 1 Ne-1

=

Q1 — Q2 = (N¢ — 2)(N, — N,), Q1+ Q2 = NcNg.

u
d

Q—Q  (Nc—2)(N, — N»)
@+ Q NcNg

N, — No\2  (Ne —2)?
a252:<f’ ")»(C VE,
Ng N2

& = ,

@ Symmetry energy

_ A g n A(d—1)
o _ G (Nc—2) /d Qw1+ Y2) pw?
D = . p .

3/2
A O PO T
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Symmetry energy in nuclear matter system

o A =18, My, = 1GeV, N, =3

D6 brane D4 brane
SiMeV) S(MeV)
140

2000

1500]

— mesvev
60
100 . metoMev
w0 . m=0iMev
500 — mEiGev
20p . me45Gev
oleo . ; . . = olo
10 2 4 3 8 10

s D6 brane(3+1): S» = So(0/00)'/2, where 27MeV < Sy < 36MeV
@ D4 brane(2+1): linear
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Symmetry energy in nuclear matter system

@ D3 background

D7 brane D5 brane

D3 brane
s,
1
12
10
8
— Y.=01
6 -~ — =
P Vool
~ — v.ss
4 P -
Z — Y.=10
2 — Y.=50
2 4 6 8 10 Q

o D7 probe(3+1): 0.21QY3 < 47a’S; < 0.31QY/3
s D5 probe(2+1):0.34QY/? < 4ra’S, < 0.5Q/?
@ D3 probe(1+41): linear
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Symmetry energy in quark matter system

9 Deconfining geoemtry
@ Black hole geometry
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Symmetry energy in quark matter system

9 Deconfining geoemtry
@ Black hole geometry

@ Fundamental strings play role of source — Quark matter system
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Symmetry energy in quark matter system

9@ Deconfining geoemtry
@ Black hole geometry

@ Fundamental strings play role of source — Quark matter system

g

\
)

Fundamental m,
Strings.

Dp
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Symmetry energy in quark matter system

9@ Deconfining geoemtry
@ Black hole geometry

@ Fundamental strings play role of source — Quark matter system

g

\
)

Fundamental m,
Strings.

Dp

M,

Black hole
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Symmetry energy in quark matter system

9@ Deconfining geoemtry
@ Black hole geometry

@ Fundamental strings play role of source — Quark matter system

g

\
)

Fundamental m,
Strings.

Dp

M,

Black hole

Black hole

Yunseok Seo Heavy lon Meeting 2012



Symmetry energy in quark matter system

@ D4 brane background

D6 bran¢ D4 brane
4ra's, 'S,

u )

"

. ,

s

.

2

3 ) s s
@ D3 brane background
D7 brant D5 brane D3 bran¢

s
10| ‘/
.
5| ,"‘
4| /
.
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Universality classes

@ Mg — o0, @ = 0 limit
s Y=0
@ Background geometry

dsjy = Z,/?(—df® + d%o) + Z)/2d%]

3—p
624) — Zp 2
@ Symmetry energy
A 20
L1
s = 2Tq/dp L 7 = ar,
(Qz +a Zn)
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Universality classes

Table: D4 brane background

[ [o 1 2 3 4 5 6 7 8 9[]qg[d[q—d-1] S [2v=n/d]
[Di[e o o o o [ [ | | | |
D2 o o . 2 |1 0 O(1) -
D4 . . . . . 4 2 1 Q 1/2
D6 e o o o o o 6 | 3 2 Q2 2/3
Table: D3 brane background
[ [O 1T 2 3 4 5 6 7 8 9J]qg[d[gq—d-11 S [2v=n/d]
[D3[[e o o o [ [ ] I | |
D3 o o e o 3 1 1 Q 1
D5 ° . . ° ° 5 2 2 Q/? 1
D7 . . . . . . . 7 3 3 QY3 1
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Conclusion and Discussion

9@ We calculate density dependence of symmetry energy by using D-brane
configuration

@ Symmetry energy seems to have power law depends on the dimensionality of probe
brane and boundary space:

1
S ~ QT

@ Symmetry energy is not so sensitive to the background geometry
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Conclusion and Discussion

9@ We calculate density dependence of symmetry energy by using D-brane
configuration

@ Symmetry energy seems to have power law depends on the dimensionality of probe
brane and boundary space:

1
S ~ QT

@ Symmetry energy is not so sensitive to the background geometry

@ Origin of symmetry energy

@ D-brane point of view: U(1) repulsion between sources

@ Boundary point of view: Palui exclusion
JHEP 1003:074,2010: Youngman Kim, YS, Sang-Jin Sin

Yunseok Seo Heavy lon Meeting 201.



Conclusion and Discussion

9@ We calculate density dependence of symmetry energy by using D-brane
configuration

@ Symmetry energy seems to have power law depends on the dimensionality of probe
brane and boundary space:

1
S~ QT T
@ Symmetry energy is not so sensitive to the background geometry

@ Origin of symmetry energy

@ D-brane point of view: U(1) repulsion between sources

@ Boundary point of view: Palui exclusion
JHEP 1003:074,2010: Youngman Kim, YS, Sang-Jin Sin

9@ Fermi gas model for nuclei
3 1
E/A= Zer + Zepa® + O(a?),
5 3
If we naively extrapolate the relation Sy ~ ef, So ~ p/" means the dispersion

relation becomes € ~ k@/n

@ D3 brane background: relativistic fermions
@ D4 brane background: non-fermi liquid
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Conclusion and Discussion

Thank you !l
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