#### Low p<sub>T</sub> NPE analysis from Run10 Au+Au 200 GeV

#### Kunsu OH 오근수 Pusan National University

Heavy Ion Meeting 2012-02 Feb. 21, 2012

#### Contents

- Motivation NPE and Analysis Scheme
- STAR experiment
- NPE Analysis in detail
  - Inclusive electron yield
  - Efficiency correction
  - Photonic background
- Summary

### Motivation

- Non-photonic electron
  - heavy-flavor semileptonic decays
  - to study heavy flavor production.
- PHENIC non-photonic electron results.



 $c \rightarrow e^+ + anything(9.6\%)$ 

 $B \rightarrow e^+ + anything(10.86\%)$ 

PDG2010

## NPE Analysis Scheme



The invariant mass of electron-positron pairs from photon conversions or Dalitz decays will be very small. Contributions from all other sources of photonic background combined are only a few percent of the total background and can be ignored when compared to systematic uncertainties.

#### The Solenoid Tracker At RHIC (STAR)



2.5 3

그럼 3.2: Cu+Cu 200GeV 충동에서의 운동량에 따른 dEdax 분포 및 이론적

1.5 2

예측값[31]

3.5

4 4.5

p (GeV/c)

Tuesday, February 21, 12

<P'

C Maria & Alex Schmah

p (GeV/c)

그림 3.3: Au+Au 62GeV 충돌에서의 운동량에 따른 1/8 분포[33].

#### Run10 Au+Au 200GeV MinBias



| Trigger: MinBias           | Cut       | Events size |  |
|----------------------------|-----------|-------------|--|
| Total                      |           | 226M        |  |
| Vz [cm]                    | (-40, 40) | 218M        |  |
| vpdVz - Vz [cm]            | (-3, 3)   | 200M        |  |
| Centrality(refmult) [%(#)] | 0-60(>41) | 154M        |  |

표 3.1: 이벤트 선택 조건

그림 3.7: 검출된 대전 입자 개수 분포



| yes             |  |
|-----------------|--|
| yes             |  |
| $\leq 1.0$      |  |
| $\geq 20$       |  |
| $\geq 0.52$     |  |
| ≥ 15            |  |
| (-0.025, 0.025) |  |
| (-0.5, 0.5)     |  |
| (0.2, 20)       |  |
|                 |  |

표 3.2: 생성된 모든 전자 전자 선택 조건

#### Electron identification



그림 3.8: 횡방향 운동량에 따른 nσ<sub>electron</sub> 분포(TPC)

- TOF 검출기로 부터 얻어진 1/beta 값이 1에 가까운(|1/beta-1| < 0.025) 경우, 질량이 매우 가벼운 입자이므로 1차적으로 전자를 골라냄.
- TPC 검출기로 부터 얻어진 dE/dx의 정보를 바탕으로 전자 식별.
- 횡운동량에 따른 dE/dx → n $\sigma_{\text{electron}}$ 분포로 나타냄.

#### pure Hadron's sample



그림 3.10: High purity hadron sample

- 강입자들의 분포는 가우시안
  이 아니므로 그들의 개수를 산
  출 하기 매우 힘듬.
- TOF 검출기로 부터 얻어진 Mass<sup>2</sup> 정보를 이용해서 순수한 강입자 모양을 이용해서 전자 의 개수를 산출 하는데 사용.

#### pure Electron sample



- 원칙적으로 nσ<sub>electron</sub>에서 전자의 횡 운동량에 대한 σ = 1, mean = 0인 가 우시안 분포를 가져야 하지만, 실제 로는 약간 차이가 있음.
- 측정된 모든 전자들 중, 각각의 이벤트 내에서 전자쌍을 만들고 그들중 불변질량이 0에 가까운 전자쌍을 이용해서 순수 한 전자의 분포를 이용.

그 립 3.11: Invariant mass of electron pair Vs.  $p_T$  and pure electron  $n\sigma_e$  Vs.  $p_T$  distribution.

#### Electron identification









 순수한 강입자의 분포와 순수한 전자의 분포를 이용해서 각각의 횡운동량에 따른 전자의 개수를 산출.

TPC Tracking Efficiency - track reconstruction efficiency and TPC acceptance efficiency



그림 3.14: TPC Tracking Efficiency for each centrality

- TPC tracking efficiency depend on centrality (Reference multiplicity).
- Positron embedding study
- same cut applied with real data analysis

TOF matching efficiency - TPC track and TOF hit matching efficiency and TOF matching efficiency



그림 3.15: TOF Matching Efficiency

- TOF matching efficiency depend on particle momentum.
- We expect p<sub>T</sub> dependency will be small effect for low mass particle (electron).
- From  $\pi$  and K efficiency, we decide TOF matching efficiency for electron is 60%.

ndEdxFitPts(number of dE/dx fit points) cut efficiency.



그림 3.16: ndEdxFitPts cut efficiency

- ndEdxFitPts (number of dE/dx fit points) cut efficiency is not included TOF tracking efficiency technically.
- We obtained to compare w/ ndEdxFitPts cut and w/o ndEdxFitPts cut in real data.

 $|1/\beta-1|$  cut efficiency.



그림 3.17:  $|1/\beta - 1|$  cut efficiency

- |1/β-1|조건 효율은 PID에서 |1/β-1| 조건 에 의해서 생김.
- ndEdxFitPts 조건 효율과 비슷한 방법으 로 얻을 수 있다.

#### Photonic Background



그림 3.19: 광자에 의한 배경

- We obtained *photonic electron yield* by electron pair invariant mass  $< 0.15 \text{ GeV}/c^2$ .
  - $\gamma \rightarrow e^+e^-$  photon conversion in the material in STAR detector.
  - $\pi 0 \rightarrow \gamma e^+ e^- (1.174 \pm 0.035)\%$
  - $\eta \to \gamma e^+ e^- (0.70 \pm 0.07)\%$
- Photonic electron needed partner finding efficiency.

#### Partner Finding Efficiency



그림 3.20: Partner finding efficiency

- 짝찾기 효율 얻고 이를 보정 함으로서 실 제 생성된 광자에 의한 배경을 얻을 수 있 음.
- 모의 광자를 실제 실험 결과에 끼워 넣어 (gamma embedding) 계산 할 수 있음.
- 끼워 넣은 모의 광자는 균일한 횡운동량
  의 분포를 가지고 있기 때문에 실제 광자
  의 분포 로 보정(weighting)이 필요.

### NPE p<sub>T</sub> Distribution



그 립 3.21: inclusive electron and photonic electron spectra with global/primary partner

- Global track
  - reconstructed from TCP information only
- Primary track
  - reconstructed from TPC + vertex position bias.
  - Low partner finding efficiency (~5%)
- In principle, it will be same with global and primary partner.
  - primary partner finding efficiency is too low, small fluctuation will be make large difference.
  - global partner will be better. Also, we need investigate study for global partner.

### Summary

- I obtained *non-photonic electron* yield in 200 GeV Au+Au collisions.
  - (*new*) PID method using TPC and TOF
  - low p<sub>T</sub> NPE yield
- To-do
  - investigate study for backgrounds
    - photonic backgrounds
    - hadron contamination
    - light vector meson di-electron/ Daliz decay



그림 4.1: Non-photonic electron spectra with Wie's and Wenqin's result

#### Thank you for attention.

## Backup

#### In the STAR environment, the inclusive electron sample consists of several sources of electrons:

- Photon conversions (γ → e+ + e−) in the detector material between the inter- action point and the TPC. There are several sources for the conversion photons: direct photons, photons from π0, η decays, etc.
- $\pi 0, \eta, \text{ etc. scalar meson Dalitz decays. } \pi 0 \longrightarrow e^+ + e^- + \gamma (1.198 \pm 0.032)\% \eta \longrightarrow e^+ + e^- + \gamma (0.60 \pm 0.08)\%$
- $\varrho, \omega, \phi$  vector meson Dalitz decays and/or di-electron decays.
- Kaon decays
- Heavy quark (charm and bottom) hadron semi-leptonic decays.
- Other possible contributions such as Dell-Yan, heavy quarkonium decay, thermal electrons, etc.

Reference: Xiaoyan Lin's PhD Thesis for STAR collaboration

#### Track cuts



| Cuts                   | Tagged e           | Global<br>partner 1 | Global<br>partner 2 | Global<br>partner 3 |
|------------------------|--------------------|---------------------|---------------------|---------------------|
|                        | Primary<br>partner |                     |                     |                     |
| Primary track?         | yes                | no                  |                     |                     |
| TOF hits matched?      | yes                | no                  | yes                 |                     |
| ylocal                 | (-1.9, 1.9)        | -                   | (-1.9, 1.9)         | -                   |
| zlocal                 | (-3.2, 3.2)        | -                   | (-3.2, 3.2)         | -                   |
| global DCA [cm]        | ≤ 1.0              | -                   | -                   | -                   |
| nFitPts [#]            | ≥ 20               |                     |                     |                     |
| nFitPts/nMax           | > 0.52             |                     |                     |                     |
| ndEdxFitPts [#]        | ≥15                |                     |                     |                     |
| p <sub>T</sub> [GeV/c] | (0.2, 20)          |                     |                     |                     |
| pseudo-rapidity        | (-0.7, 0.7)        | (-1, 1)             |                     |                     |
| 1/beta - 1             | (-0.025,<br>0.025) | -                   | (-0.025,<br>0.025)  | -                   |
| nSigE                  | +                  | (-1, 2)             |                     |                     |

#### **Conversion Position**



#### **Conversion Position**



 $\frac{GP2}{TPC + TOF matching + TOF PID} / \frac{GP1}{GP1} ratio$ 



# $\frac{GP2}{TPC + TOF matching + TOF PID} / \frac{GP1}{GP1} ratio$



# $\frac{GP3}{TPC + TOF matching} / \frac{GP1}{GP1} ratio$



# $\frac{GP3}{TPC + TOF matching} / \frac{GP1}{GP1} ratio$

