

Happy 20 years anniversary

- **1992-1995 (LEP-I) : ALEPH (e+ e-)** -Tau lepton lifetime / Tracking software **1995-1996 (LEP-II): ALEPH** -Low-x scattering PDF / Luminosity monitor **1996-1998 (LHC): ATLAS (p-p)** -Jet algorithm, Jet performance for TDR / Hadron calorimeter **1999-2004 (RHIC): PHOBOS (Au-Au)** -Particle elliptic flow phenomenon / Software engineering 2004-2007: -Computational physics on EM, Medical, Display, ... / Teaching **2007-present (LHC): CMS (p-p, Pb-Pb)**
 - -QCD Jet study / More management work
 - Today's talk

QCD Physics menu

With pp

- -Low-pT QCD
 - Min Bias Physics
 - Charged hadron spectra
- -Mid-pT QCD
 - Multiple parton interaction
- -High-pT QCD
 - Hadronic jet shape
 - Inclusive jet
 - Di-jet de-correlation
- -Photon Physics
- -Forward Physics

With HI

- -QGP
 - hot & dense matter
 - jet queching, flow, HBT

Les Parks

Got interested at the LHC energy

□ Standard parton shower generation

- -HERWIG, PYTHIA
 - jet developing with small angle gluon emission, Angular Ordering
 - carrying longitudinal momentum fraction x ~ O(1)

At Tevatron

- -dominant LO QCD processes
- -well described by collinear emission (HERWIG, PYTHIA) + NLO

At LHC

- -emission not collinearly ordered become not negligible
 - non collinear emission
- -coherence effects : space-like partons carry "x<<1"
 - coherence with space-like branching

F. Hautmann & H. Jung, Nucl. Phys. B 186 (2009) 35-38

Menu in CMS-QCD at LHC

Situation in 2009:

- QCD Subgroup analyses
 - QCD High PT subgroup contents
 - Dijet Azimuthal Decorrelations in pp Collisions at 10 TeV
 - Transverse Energy Distribution within Jets in pp collisions at 14 TeV
 - Pseudorapidity distributions of charged hadrons in minimum bias p-p collisions at 14 TeV
 - Hadronic Event Shapes at CMS
 - Study of jet transverse structure using the second moment of Pt radial distribution
 - Measurement of inclusive jet cross sections with CMS at LHC
 - many more , almost all studies were on-going
- -no rooms were available!

- Quantum Chromodynamics: High Energy Experiments and Theory (Chap 11)
 - G. Dissertori, I. Knowles, M. Schmelling
- **Color coherence in multi-jet final states**
 - F. Hautmann, H. Jung, Nucl. Phys. B 186, 35-38 (2009)
- □ A summary of recent color coherent results
 - Nikos Vareles, arXiv hep-ex:980919 (1998)
- Color coherent radiation in multijet events from ppbar Collisions at sqrt(s)=1.8TeV

Les Parks

Color coherence observables

Intra-jet color coherence

-fragmentation function \rightarrow intra-jet coherence

□ Inter-jet color coherence

- -distribution of particles lying between jets \rightarrow Inter-jet
- -usually with three jets : see the string effect

Something between?

- -a new measurement
- -help other physics

http://www-cdf.fnal.gov/physics/new/top/2009/mass/meatv3_p19_public/index.html

Les Parks

Coherence effect in intrajet

- □ High P_T processes → hadronic final states, jets -understanding color interaction
- □ Main tool to describe the jet production is pQCD
 - -However, relies on phenomenological models to explain the partonic cascade
- Pictures implemented in MC simulation
 - -hard process
 - -parton shower
 - pQCD, gluon & quark emission
 - until a cut-off k_T scale ($Q_o \sim 1 \text{GeV} >> \Lambda_{QCD}$)
 - -Fragmentation, hadronization
 - non-perturbative
 - cluster the partons into the final state hadrons
 - described by phenomenological fragmentation models
 - need to be tuned to the data

LUND String model, Cluster fragmentation model, etc.

Theoretical understanding

- A purely analytical approach giving quantitative predictions of hadronic spectra is based on the concept of LPHD (Local Parton Hadron Duality)
 - -key assumption: conversion of partons into hadrons occurs at the order of hadronic masses, ~ 200MeV
 - independent of the scale of the primary hard process
 - i.e. involves only low momentum transfers
 - -results obtained for partons apply to hadrons as well
 - -only two parameters are involved
 - QCD scale Λ_{QCD} , transverse momentum cut-off Q_0
 - -Within the LPHD approach, pQCD calculations have been carried out in DLA(Double Log Assumption) or in MLLA (Modified Leading Log Approximation)

□Intrinsic property of QCD

- -well established in early 80' e+e- experiments
- It arises from interference between <u>the soft gluons radiated</u> <u>from quarks</u> and <u>gluons</u>
 - should be observed after hadronization (predicted by LPHD)

□Intrajet coherence

- -color coherence in partonic cascade
- -AO (Angular Ordering)
 - emission angle decreases \rightarrow cone shape
 - hump-backed shape of particle spectra in jets

□Interjet coherence

- -string/drag effect
- angular structure of soft particle flow for >3 jet $\theta_1 > \theta_4$

Angular Ordering

MLLA prediction

□ A striking prediction of pQCD/LPHD/MLLA

- -depletion of soft particle production
 - Hump-Backed Plateau
 - approximately Gaussian shape in the variable ξ

Intrajet results in ee,ep

ZEUS 1994-97 Preliminary

(a) Evolution of the $1/N dn/d \log(1/x_p)$ distributions with Q. The curves are MLLA fits.

(b) Evolution of the peak position $log(1/x_p)_{max}$ with Q.

intrajet results in pp

(a) Evolution of ξ with jet opening angle, Θ , for $M_{\rm JJ} = 390$ GeV.

(b) Evolution of the peak position with $M_{\rm JJ}\Theta$.

Coherence effect in interjet

Interjet coherence effects in pp

- □ In pp, coherence effects becomes complicate
 - -colored constituents in both the initial and final states
 - -transfer of color between interacting partons
 - -interference effects in the initial states, in the final states, between the initial and final states

Interjet Coherence Results

Typical analysis with multijets

- -Using 3-jet events
 - define J1, J2, J3 (E1>E2>E3)
 - J3 in R around J2 (0.6 < R < $\pi/2$)
 - define beta angle

Interjet analysis results

D0 Collaboration, Phys. Lett. B 414 419 (1997)

Acting as a MC model killer

