

+ SOME MORE FROM ALICE

@ HIM2012-12

Pusan Nat'l Univ. In-Kwon Yoo

Global Variables and Correlations (Hyppolyte, Rischke) High pT and Jets (Solana, Milov) EW Probes (L. Ruan) Summary

Phys. Rev. Lett.108, 252301 (2012)

IP-Sat. Glasma

INITIAL CONDITIONS AND FLUCTUATIONS...

 cross roads: state-of-the-art modeling of initial conditions meets extremely precise experimental measurements of fluctuations !

Initial energy density (arb. units)

Spectacularly good level of agreement:

1. Hadron suppression

HIM2012-12

"Re-discovery" of suppression

Suppression at RHIC and LHC

Suppression at high- p_T

Summary of hadron R_{AA}

Suppression turns on at around √s_{NN} = 30 GeV

At high Vs_{NN} for p_T>10 GeV/c all particle species are equally suppressed

Suppression reaches minimum at ~ 7GeV/c

LHC results are consistent between experiments

At minimum, suppression at LHC is ~50% larger than at RHIC A combination of elastic and inelastic processes can provide a consistent picture for RHIC to LHC

Many uncertainties in medium models still remain.

2. Jet suppression

HIM2012-12

Jet R_{AA} at LHC

Using track-jets for ALICE

B-jet suppression

Di-jet correlation

PRL 105 (2010) 252303

High p_T hadron and jet v_2

3. CNM effects

HIM2012-12

Enhancement in dAu

Potentially Devastating Consequences

- IF these preliminary data are confirmed:
 Change in min-bias data demands a new nPDF fit (eps 09 used the older data)
 It is very hard to imagine how to incorporate the peripheral enhancement into an nPDF with any reasonable s₁ dependence (educated opinion of K. Escola and I. Helenius)
 This would mean that collinear factorization approach
 - to nuclear effects does not apply to pT as high as 30 GeV!

This is a basic assumption of all high pT calculations

 This behavior could persist in p-Pb collisions at the LHC at very high pT (~ 100 GeV).

The experimental results

Outline:

- Heavy flavor: D, B, and their decayed e and μ
- Quarkonia: J/ψ , Υ and their excited states
- Controlled Probes: W, Z, and γ
- Thermal di-leptons and photons: γ, e⁺e⁻, and μ⁺μ⁻

The measurements presented at QM2012

Experiment	Heavy flavor	Quarkonia	Electroweak
PHENIX	μ: 1.2< y <2.2 e: y <0.35	J/ψ, Υ → μμ J/ψ, Υ → ee	γ, di-electron
STAR	e, D: y <1	J/ψ, Υ → ee	di-electron
ALICE	μ: 2.5< y <4 e,D: y <0.9 B→J/ψX→eeX	J/ψ→ μμ J/ψ→ ee	γ
ATLAS	μ: y <1.05, p _T >4 GeV/c		γ: y <1.3, E _⊤ (45-200 GeV) W→μν: η ^μ <2.7,p _T (μ)>7 GeV/c Z→μμ (ee): y <2.7 (y <2.5)
CMS	Β→J/ψΧ→μμΧ	J/ψ→μμ: y <2.4, p _T >6.5 GeV/c Ƴ→μμ y <2.4	γ: y <1.44, E _T (20-80 GeV) W→μν: η ^μ <2.1,p _T (μ)>25 GeV/c Z→μμ: y <2.1

Surprising results at QM2012

J/ψ results in A+A: centrality dependence

 N_{part} dependence of J/ ψ R_{AA} : less suppression at LHC compared to at RHIC in central collisions

- interplay between CNM, color screening and ccbar recombination
- consistent with more significant contribution from ccbar recombination at LHC energies
 HIM2012-12

J/ψ results in A+A: p_T dependence

Υ results in A+A

Now is the perfect time to study color screening features of hot, dense medium in light of RHIC and LHC precise quarkonium measurements.

RHIC di-lepton results at last QM

The discrepancy is in 0-20% central Au+Au collisions. The 0-20% HBD results will be important to clarify the discrepancy experimentally.

Energy dependence of di-electron spectra

Direct photon spectra and elliptic flow v_2

Low p_T direct photon elliptic flow measurement could provide direct constraints on QGP dynamics (η /s, T, t_0 ...).

Excess of direct photon yield over p+p: T_{eff} =221 ± 19 ± 19 MeV in 0-20% Au+Au;

substantial positive v_2 observed at $p_T < 4$ GeV/c.

- Excess of direct photon yield over p+p at $p_T < 4 \text{ GeV/c: } T_{eff} = 304 \pm 51 \text{ MeV}$ in 0-40% Pb+Pb.
- Di-lepton v₂ versus p_T & M_{II}: probe the properties of the medium from hadron-gas dominated to QGP dominated. (R. Chatterjee, D. K. Srivastava, U. Heinz, C. Gale, PRC75(2007)054909)

The objectives of heavy-ion physics

OBJECTIVES

• EXTEND THE STANDARD MODEL OF PARTICLE PHYSICS (SM) TO DYNAMICAL COMPLEX SYSTEM OF FINITE SIZE

OBJECTIVES

- EXTEND THE STANDARD MODEL OF PARTICLE PHYSICS (SM) TO DYNAMICAL COMPLEX SYSTEM OF FINITE SIZE
- UNDERSTAND HOW MACROSCOPIC PROPERTIES OF MATTER EMERGE FROM THE FUNDAMENTAL MICROSCOPIC LAWS OF PARTICLE PHYSICS

OBJECTIVES

- EXTEND THE STANDARD MODEL OF PARTICLE PHYSICS (SM) TO DYNAMICAL COMPLEX SYSTEM OF FINITE SIZE
- UNDERSTAND HOW MACROSCOPIC PROPERTIES OF MATTER EMERGE FROM THE FUNDAMENTAL MICROSCOPIC LAWS OF PARTICLE PHYSICS
- STUDY THE QGP, THE STATE OF MATTER BETWEEN THE ELECTROWEAK PHASE TRANSITION (T ~ 100 GEV) AND THE HADRON PHASE TRANSITION (T ~ 170 MEV)

A Large Ion Collider Experiment

THE STANDARD MODEL OF HEAVY-ION COLLISIONS: SM_{HIC}

HIM2012-12

A Large Ion Collider Experiment

WHERE DO WE START FROM AND WHERE TO WE END AT ?

HIM2012-12

TEST THE INITIAL STATE

- pQCD processes + soft interactions + shadowing models ____
- Saturation models in difficulty
 ?

arXiv:1210.3615v1

TEMPERATURE: CHEMICAL FO

Al

- Particle abundance described by statistical thermal model: T = 152 MeV !!, µ_B = 1 MeV
- Extrapolation from lower energies ?
- Do final state interactions in hadronic phase modify the chemical composition ?

arXiv:1208.1974v1

TEMPERATURE: KINETIC FO

- Collective transverse expansion + hadronic FSI: $\langle \beta_T \rangle = 0.65, T_{kin} = 95 \text{ MeV}$
- Final state interactions in the hadronic phase may modify the chemical composition
- BB annihilation ?

arXiv:1208.1974v1

FSI: PROTON–ANTI-PROTON

- BB femtoscopy
- Large densities may suppress p and Λ by annihilation

QM2012

FSI: Λ–ANTI-Λ

- BB femtoscopy
- Large densities may suppress p and Λ by annihilation

QM2012

1

DIRECT PHOTONS

Peripheral PbPb

• pQCD direct photons

DIRECT PHOTONS

Central PbPb

- pQCD direct photons
- Thermal direct photons

QM2012

10³ $rac{1}{2\pi \ N_{ev}} rac{d^2 N}{p_T^d p_T^d p_T^d dy} \, (\text{GeV}^2 c^2)$ 0-40% Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 10² 10 ALICE PRELIMINARY Direct photons Direct photon NLO for μ = 0.5,1.0,2.0 p_T (scaled pp) Exponential fit: $A \times exp(-p_{T}/T)$, T = 304 ± 51 MeV 10 10^{-2} 10-3 10^{-4} 10⁻⁵ 10⁻⁶ 10⁻⁷ 14 10 12 p_T (GeV/c) ALI-PREL-27968

INITIAL TEMPERATURE

- T > 300 MeV
- Remember
 - ε > 15 GeV/fm³
 - V > 5000 fm³
 - т ~ 10 fm/c
 - $\mu_{\rm B} = 1$ MeV

QM2012

Learning about the properties of hot QCD matter EVERYTHING FLOWS (dynamics) EVERYTHING IS QUENCHED (transport)

QGP

Learning about the properties of hot QCD matter

EVERYTHING FLOWS

EVERYTHING IS QUENCHED

$$\frac{dN}{df} = \frac{N_0}{2\rho} \left(1 + 2v_1 \cos\left(j - \Upsilon_1\right) + 2v_2 \cos\left(\frac{j}{2} - \Upsilon_2\right) \dot{\vartheta} + \Box \right)$$

LIGHT FLAVOURS FLOW

40-50% centrality

Mass ordering $p_{\rm T} < 2.5~{\rm GeV}/c$

 \bullet

QM2012

QUARK SCALING

40-50% centrality

- Hydro flow at partonic level *p*_T < 2.5 GeV/c

- Quark coalescence
 p_T > 2.5 GeV/c

	More	
Minwoo Kim (Zhong Bao Yi	id flow) n (s & ms	3)

QM2012

CHARM FLOW

< 0.4 Pb-Pb √s_{NN}=2.76 TeV-Centrality 30-50% ALICE PRELIMINA 0.3 0.2 0.1 -0.1 Charged hadrons, EP, $|\Delta \eta| > 2.0$ D^0 , EP 2 $\Delta \phi$ bins D^+ , EP 2 $\Delta \phi$ bins D^+ , EP 2 $\Delta \phi$ bins -0.2 Empty box: syst. from data Filled box: syst. from B feed-down 2 6 8 10 12 14 16 18 p_{_} (GeV/c)

- c quarks produced in early stage of collision
- thermalize in the medium and hadronize via recombination ?

HIDDEN CHARM (J/Ψ) FLOW

 Hint for finite flow, an additional indication for charm recombination

QM2012

HIM2012-12

HADRONIZATION

- hydrodynamic flow
 p_T < 2.5 GeV/c
- recombination
 2.5 < p_T < 10 GeV/c
- parton fragmentation
 p_T >10 GeV/c

HIGH p_{T} ANISOTROPY **^** ALICE h⁺+h (10-50%) 0 0.3 $-Pb-Pb\sqrt{s_{NN}} = 2.76 \text{ TeV}$ $\pi^+ + \pi^- (10-50\%)$ p+p (10-50%) π^0 PHENIX (10-50%) π^0 WHDG LHC Extrapolation (20-50%) Anisotropy from jet quenching 0.2 \bullet $p_{\rm T} > 10 \; {\rm GeV}/c$ 0.1 Ē 2 6 8 12 16 10 14 p_T (GeV/c)

arXiv:1205.5761v1

QGP

ALICE

Learning about the properties of hot QCD matter

EVERYTHING FLOWS

EVERYTHING IS QUENCHED

$$R_{AA} = \frac{1}{\left\langle T_{AA} \right\rangle} \begin{matrix} \overset{\mathfrak{A}}{\varsigma} \frac{dN_{AA}}{dp_{\mathrm{T}}} \overset{\mathrm{O}}{\div} \\ \overset{\mathfrak{C}}{\varsigma} \frac{dP_{\mathrm{T}}}{dp_{\mathrm{T}}} \overset{\div}{\div} \\ \overset{\mathfrak{C}}{\varsigma} \frac{dS_{pp}}{dp_{\mathrm{T}}} \overset{\div}{\div} \\ \overset{\mathfrak{C}}{\vartheta} \end{matrix}$$

CHARGED HADRONS

• Energy loss in medium

Phys. Lett. B 696 (2011) 30-39,

IDENTIFIED HADRONS

- Identical quenching magnitude for baryons and mesons at high p_T
- Baryon to meson anomaly at low p_T

QM2012

рΑ

 The quenching effect is definitively a final state effect due to QGP !

http://arxiv.org/abs/1210.4520v1

 D^0

arXiv:1203.2160

HIM2012-12

arXiv:1203.2160

HIM2012-12

 D^0

D+

• D⁰

• D+

D*+

arXiv:1203.2160

- D⁰
- D+

D*+

arXiv:1203.2160

ALICE

- Heavy quarks suppressed as \bullet light quark and gluons !
- Color charge and mass dependence of parton transport?

arXiv:1203.2160

HIM2012-12

c, s **RECOMBINATION**

 c quarks from hard processes hadronize with s quarks from the QGP ?

QM2012

J/ψ transport in QGP

- Less suppression at LHC than at RHIC !
 - Suppression via Debye screening
 - Regeneration via cc̄ recombination

QM2012

HIM2012-12

J/ψ transport in QGP

ALICE

1.4 لا Inclusive J/ ψ , 2.5<y<4 Pb-Pb \ s_{NN}=2.76 TeV, L≈ 70 μb⁻¹ X. Zhao et al, NPA 859(2011) 114 1.2 ALICE global sys.= ±6% --- primordial REITMINAR — regeneration /// total • 0<p_<2 GeV/c 0.8 0.6 0.4 0.2 0 350 (N 50 100 150 200 250 300 0 400 part ALI-PREL-36125

- At low p_T suppression compensated by regeneration
- Remember finite v₂

QM2012

J/ψ transport in QGP

- At high p_T regeneration vanishes
- Debye screening, thermometer ?

QM2012

QM2012

HIM2012-12

JETS ARE QUENCHED AS WELL

- But this is a different story
- How is energy inside jet redistributed ?

QM2012

JET ANATOMY

1

Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, 0-10% central

MANY MORE RESULTS

LHC: pp, pA, AA, γA

0.5

10²

 $\langle N_{\rm part} \rangle$

10

HIM2012-12