Heavy-Ion Meeting (HIM 2012-12) Chonnam National University, Gwangju, Korea, 7-8 December, 2012

> Recent Heavy-lon Results from CMS

> > Byungsik Hong (Korea University)

Collaboration

Outline

- 1. Introduction
 - CMS detector
 - Heavy-ion runs at LHC
- 2. Experimental data
 - Two-particle correlations
 - High- p_T dihadron correlation and dijet behavior
 - Dijet production
 - Angular Correlation and momentum imbalance
 - Modification of jet fragmentation and shapes
 - Quarkonium production
 - Prompt J/ψ , Non-prompt J/ψ , and $\psi(2S)$
 - $\Upsilon(1S), \Upsilon(2S), \text{ and } \Upsilon(3S)$
- 3. Summary

- 1. MinBias trigger: Coincidence of BSC and HF signals ($\epsilon = 97 \pm 3\%$)
- 2. Dimuon trigger: Two tracks in muon detector
- 3. Jet trigger: Uncorrected jet $E_T > 35$, 50 GeV
- 4. High- p_T trigger: $p_T > 12$ GeV
- 5. Photon trigger: Uncorrected photon $E_T > 15$ GeV

High-p_T Dihadron Correlation

KOREA UNIVERSITY

High-p_T Dihadron Correlation

- v_3 (and also v_4) vanishes for $p_T > 20$ GeV/c
- Weaker correlations of path length and Ψ_3 (and Ψ_4) plane

KOREA

Theory: B. Betz, M. Gyulassy, arXiv:1201.0281

 Data can constrain the path-length dependence of the energy loss and different initial conditions (Glauber vs. CGC)

$$\Delta E \sim L^{\alpha}$$

 $\alpha = 1$ for pQCD, collisional
 $\alpha = 2$ for pQCD, radiative
 $\alpha = 3$ for AdS/CFT

- Azimuthal correlation at high p_T near the jet components
 - Reflects the path-length dependence of parton energy loss
 - Quantitative constraint on various jet quenching models
 - Flow (v_2-v_4) from LR correlation needs to be subtracted for jet

 Need to subtract event-plane related correlations (v₂-v₄) from dihadron correlation
 CMS PAS HIN-12-010

Dijet Behavior from High-p_T Correlation

7-8 December 2012

Now turn to the full jet reconstruction!

KORE

Dijets in PbPb are more imbalanced than PYTHIA except the most peripheral events

p_T-Dependence of Dijet Imbalance

- Energy loss is apparent except the most peripheral events
- Energy loss is larger for more central collisions
- No significant dependence on jet p_T

Nuclear Modification of Jets

Angular correlation

arXiv:1205.0206

Photons serve as an unmodified energy tag for the jet partner

- Ratio $x_{J_{\gamma}} = p_T^{jet}/p_T^{\gamma}$: direct measure of the jet energy loss

arXiv:1205.0206

KORE

KOREA UNIVERSITY

Comparison of R_{AA}

KOREA

b-Jet Quenching

particles at large angles relative to the away side jet axis.

 The jet fragmentation functions of leading and subleading (quenched) jet in PbPb are essentially unmodified within systematic errors for p_T > 4 GeV/c.

 \Rightarrow This statement was based on 6.7 µb⁻¹ !

Modification of Jet Fragmentation?

- Changes from 2010 to 2011 data analysis
 - ~20 times more statistics
 - Simplified jet selection: inclusive jet with $p_T > 100$ GeV/c
 - Lower p_T tracks down to 1 GeV/c

Modification of Jet Fragmentation?

- Changes from 2010 to 2011 data analysis
 - ~20 times more statistics
 - Simplified jet selection: inclusive jet with $p_T > 100$ GeV/c
 - Lower $p_{\rm T}$ tracks down to 1 GeV/c

CMS PAS HIN-12-013

CMS PAS HIN-12-013

Modification in Jet Shapes

CMS PAS HIN-12-013

KOREA UNIVERSITY

Modification in Jet Shapes

CMS PAS HIN-12-013

Integrated Jet Shape

 $\Psi(r)$: average fraction of jet p_T inside the cone of radius r

More than 95% of the jet energy deposited in r < 0.2 \leftarrow

Anatomy of a Jet in PbPb

CMS Preliminary

1.5

PYTHIA 100 GeV inclusive jet Anti-k_T R=0.3 jet Charged particle energy fraction

State

dy' (2S)

Quarkonium in Heavy Ions

- Large mass: a large momentum transfer needed in hard gg scattering at early stage
- Color screening: various quarkonium states melt at different temperatures
- Important signature of the QGP formation

[Matsui & Satz, PLB 178, 416 (1986)]

1/1/ (1S)

Juli		φ (15)	$\chi_{c}(1)$	φ (23)
m (GeV/c ²)		3.10	3.53	3.68
<i>r</i> 0 (fm	ı)	0.50	0.72	0.90
Υ (1S)	χ_b (1P)	Υ´ (2S)	χ'_{b} (2P)	Ϋ́ (3S)
9.46	9.99	10.02	10.26	10.36
0.28	0.44	0.56	0.68	0.78

(1D)

 \mathbf{v}

A. Mocsy, EPJC 61, 705 (2009)

31

- CEM, CSM, NRQCD or COM, etc.
- No satisfactory model to explain the cross section and the polarization simultaneously in pp

- Cold nuclear matter (CNM) effects
 - Can be studied in pA (or dA) collisions
 - Essential to understand hot, dense nuclear matter effect
 - Errors are still very large, e.g., $\sigma_{\text{Breakup}} = 2.8^{+1.7}_{-1.4}$ mb by the EKS model fit to PHENIX R_{dAu}(J/ ψ) [PRC 77, 024912 (2008)]

J/ψ at Lower Energies

R ≜

 Two puzzles

 At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC

J/ψ at Lower Energies

- Two puzzles

 At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC
 More suppression at
 - 2) More suppression at forward rapidity, while density must be lower

J/ψ at Lower Energies

- Two puzzles

 At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC
 - 2) More suppression at forward rapidity, while density must be lower
- Two possibilities

 Cold: shadowing, saturation brings the forward yield down
 - 2) Hot: recombination of uncorrelated *cc̄* brings the midrapidity yield up

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/dp_T d\eta}{< T_{AA} > d^2 \sigma_{NN}/dp_T d\eta}$$

J/ψ suppression can not be satisfactorily explained by models.

 J/ψ at Lower Energies

• LHC data with higher temperature and density will help to resolve the J/ψ puzzles.

μ⁺μ⁻ Invariant Spectrum

Prompt J/ψ

- CMS measures J/ψ at high $p_T > 6.5$ GeV/c - Factor 5 suppression for the most central 10%
- CMS, ALICE, PHENIX and STAR measure different phase space
 Require more systematic study for definite conclusions

• CMS measures J/ψ at high $p_T > 6.5$ GeV/c

- Factor 5 suppression for the most central 10%

- **\blacktriangleleft** No need for the regeneration component at high p_T
- Treatment of quarkonia energy loss similarly as open flavor energy loss, without color-octet included, is not supported by data

More on Recombination

- Models are sensitive to $d\sigma_{c\bar{c}}/dy$
- The transport models are sensitive to the rate equation controlling the J/ψ dissociation and regeneration –For the most central collisions, recombination component is ~50%

Preliminary theoretical calculations: Ferreiro et al., BNL and EMMI Workshops in 2011

• CNM for traditional $2 \rightarrow 2 (gg \rightarrow J/\psi + g)$ - Different parametrizations of nPDF (EKS and nDSg)

Ferreiro et al., BNL and EMMI Workshops in 2011

- CNM effect from CEM NLO before k_T smearing
 - Different parametrizations of nPDF (nDSg and EKS)
- pPb run next year will help to understand the CNM effect

- Secondary J/ψ from B decay suppressed strongly
 - Factor ~3 suppression for the most central collisions
- *b*-quark energy loss in medium at low p_T

- Secondary J/ψ from *B* decay suppressed strongly
 - Factor ~3 suppression for the most central collisions
- *b*-quark energy loss in medium at low p_T

Non-prompt J/ψ

CMS PAS HIN-12-014

Non-prompt J/ψ

CMS PAS HIN-12-014

Model Comparison

Model with only radiative energy loss and CNM fails to describe the data.

- Vitev: J. Phys.G35, 104011 (2008) + private communication
- Horowitz: arXiv:1108.5876+ private communication
- Buzzatti & Gyulassy: arXiv: 1207. 6020 + private communication
- He, Fries, Rapp: PRC 86, 014903 (2012) + private communication

- $R_{\psi(2S)}$: raw yield ratio of $\psi(2S) / J/\psi$
- For 6.5 < p_T < 30 GeV/c and |y| < 1.6 $R_{\psi(2S)}$ in 0–20% PbPb ~ 2 times smaller than in pp

 $R_{\psi(2S)}$ in 0–20% PbPb ~ 5 times larger than in pp with LARGE systematic errors

• Probability to obtain the measured value, or lower, from the background fluctuation is 0.9% (2.4 σ effect)

KORE

Y(2S) and Y(3S)

arXiv:1208.2826

• Observation of $\Upsilon(2S+3S)$ relative suppression (>5 σ effect)

Y(2S) and Y(3S)

Centrality integrated

- Υ states are suppressed sequentially $R_{AA}[\Upsilon(3S)] < R_{AA}[\Upsilon(2S)] < R_{AA}[\Upsilon(1S)]$
- $\Upsilon(2S)$ is suppressed even in the most peripheral bin.

Y(1S) and Y(2S)

• If the feed-down contribution from χ_b , $\Upsilon(2S)$, and $\Upsilon(3S)$ is ~50%, R_{AA} of inclusive $\Upsilon(1S)$ is consistent with the suppression of excited states only.

Model Comparison

• Centrality dependence of the $\Upsilon(1S)$ and $\Upsilon(2S)$ yields can be reproduced by the models.

KOREA

Summary

- 1. Long-range dihadron correlation and dijet behavior
 - Jet enhancement at low p_{T} and deficit at high p_{T}
 - The effect is larger on the away side
- 2. Dijet correlations
 - Dijet energy is largely unbalanced, which is compensated by $low-p_T$ particles over large angles.
 - Jet fragmentation and shape is modified at large r and low $\ensuremath{p_{T}}$.
- 3. Quarkonium production
 - Prompt and non-prompt J/ψ are suppressed.
 - $\psi(2S)$ are more (less) suppressed than J/ψ at high (low) p_T.
 - $\Upsilon(2S)/\Upsilon(1S)$ in PbPb is suppressed by about a factor of five.
 - Upper limit on $\Upsilon(3S)$ double ratio is measured.
- More results in our web page <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN</u>

7-8 December 2012

Eskola et al., hep-ph/0902.4154v1

Kinematic Coverage

