ALICE activities by Yonsei

Ju Hwan Kang (Yonsei University)

Heavy Ion Meeting 2012-12 Dec. 7 - 8, 2012, Chonnam National University, Gwangju

Students

- Total 8 PhD program students
- 3 students at CERN for ALICE
- 1 student at BNL for PHENIX
- 4 students at Yonsei (ALICE or PHENIX)

Analysis efforts made by the following students staying currently at CERN will be introduce

- Beomkyu Kim: 1) dN/dEta of p+p, 2) Diffractive Physics, 3) "maybe" high multplicity p+p events
- Myunggeun Song: Flow Measurement of High Pt Particle
- Minwoo Kim: Modification of Fragmentation Function

Central barrel $\frac{1}{N_{event}} \frac{dN_{ch}}{d\eta}$

Beomkyu Kim

dN/dEta data in previous papers

5

• New results for 2.76TeV, 7TeV(INEL, NSD) and 8TeV

- Data update : dN/dEta for all energies with INEL,NSD and INEL>o
- Extending the pseudo-rapidity interval from $\eta = \pm 1.4$ to ± 1.8 to approach to the FMD acceptance range.
- Diffractive tuned MC is used to correct data

Diffractive tuned pythia and phojet

- PYTHIA and PHOJET were tuned to be consistent with ALICE and previous data on diffraction
 - If there does not exist a official tuned pythia and phojet, a post tuning method was used for a default pythia and phojet by using these functions,

AliGenPythia::CheckDiffraction()

AliGenDPMjet::CheckDiffraction()

- First role : modifying the diffractive rates
- Second role : modifying the diffractive mass distribution for single diffractive events (Changing the single diffractive event cross-section corresponding the steeper $1/M_x$ distribution to be more fit to the measured result)

200

2.76 TeV	Default pythia	Tuned pythia
SD(%)	20.6	13.3
DD(%)	12.8	12.8

Result @ 900GeV

- Final dN/dEta with the total systematic errors @ 900GeV
- Comparable data : UA5 and CMS's data

Result @ 2.76TeV

- Final dN/dEta with the total systematic errors @ 2.76TeV
- Larger systematic error for NSD because MC is not fully tuned

Result @ 7TeV

• Final dN/dEta with the total systematic errors @ 7TeV

Result @ 8TeV

- Final dN/dEta with the total systematic errors @ 8TeV
- MC of 8TeV was tuned with the diffractive information of 7TeV

- INEL $\propto s^{0.103}$, NSD $\propto s^{0.116}$, INEL>0 $\propto s^{0.117}$
- The results of 2.36TeV are from the published ALICE paper

- New data points update @ 2.76 & 8TeV
- Update all INEL and NSD data points by using tuned MC
- Eta range was extended to ±1.8

\sqrt{S}	INEL	NSD	INEL>0	
900GeV	2.975±0.001±0.037	3.650±0.001±0.095	3.797±0.001±0.045	
2.76TeV	3.823±0.001±0.087	4.631±0.001±0.237	$4.873 \pm 0.001 \pm 0.093$	
7TeV	4.725±0.001±0.159	5.839±0.002±0.141	6.148±0.001±0.082	
8TeV	4.871±0.001±0.119	6.007±0.002±0.140	6.327±0.001±0.044	

Diffractive physics

Beomkyu Kim

연세대학교 YONSEI UNIVERSITY

Physics motivation

 Double-Pomeron (color singlet) exchange restricts quantum numbers of the centrally produced system(exclusive production)
 e.g single ρ(770) with J^{PC}=1⁻⁻ is forbidden while f₀(980) and f₂(1270) with o⁺⁺ and

2⁺⁺ , respectively, allowed

- Color-singlet exchange assumed to be pomeron dominated at high energies
 - Gluon-rich environment
 - Possible production of pure glueballs according to predictions(lattice QCD, QCD sum rules), mass of the lightest scalar glueball between 1.0GeV and 1.7GeV

Results from other experimental group

CDF Run II Preliminary

Mike Albrow, STAR, Diff 2012 sept 2012

Mike Albrow, Fermilab, Diff 2012 sept 2012 300,000 2track

Central diffractive events in pp collisions

Central-diffractive event(theoretic) = double gap event(experimentally)

Hadronic activity in the central barrel(-0.9<η<0.9)
 involved detectors : SPD, TPC and TOF
 Two gaps(no activity) outside of central barrel

(A-side : 0.9<η<5.1, C-side : -3.7<η<-0.9) involved detectors : Vo, FMD, SPD and TPC

All events of double gap events for 7TeV

Data	LHC10b,c,d,e pass2		LHC10f6(phojet)		LHC10f6a(pythia6)	
Double gap	Events	Fraction	Events	Fraction	Events	Fraction
None(Min bais)	271X10 ⁶		62X10 ⁶		105X10 ⁶	
Vo, FMD, SPD, TPC	0.13X10 ⁶	0.05%	7X10 ³	0.01%	4.5X104	0.04%

- All pp data
- Phojet contains central diffraction, pythia6 doesn't
- LHC10b,c,d,e are all 7TeV data

decay channel involved

- Events scans with this decay channel
 - With the help of displaced vo vertices, we expect that the signal will be clean. However there is the bad possibility that 4 prong events are very small.
 - If events selection is finished, pulling out meaningful results is straight-forwards

FLOW measurement with V0 Detector

Myunggeun Song

Motivation

- Measure Flow of High Pt particle with EP(SP) Method using V0 detector
 - EP(SP) method have advantage when we measure
 High Pt particles having low statistics
 - V0 detector placed in forward region can get rid of jet bias effect of event plane measurement
- The measurement of High Pt particle (from Jet) can help to study path dependence of jet

Flow in Heavy ion collision

- A geometry shape of overlap region may generate collective motion in particle production
- Particle distribution in transvers direction with Fourier transformation called FLOW

$$\begin{aligned} \frac{dN}{d\phi} &= \frac{x_0}{2\pi} + \frac{1}{\pi} \sum_n \left(A_n \cos n\phi + B_n \sin n\phi \right) \\ &= \frac{x_0}{2\pi} + \frac{1}{\pi} \sum_n \left(v_n \cos n\Psi_n \cos n\phi + v_n \sin n\Psi_n \sin n\phi \right) \\ &= \frac{x_0}{2\pi} + \frac{1}{\pi} \sum_n v_n \cos n(\phi - \Psi_n) \\ &= \frac{x_0}{2\pi} + \frac{1}{2\pi} \sum_n 2v_n \cos n(\phi - \Psi_n) \end{aligned}$$

Figure: overlap region(red) after heavy ion collision

Event plane Method

- In EP method
 - 1. Measure event plane with Flow Q-Vector (P. Danielewicz, G. Odyniec, Phys. Lett. 157B, 146 (1985))

The event flow vector Qn is a 2d vector in the transverse plane

$$Q_{n,x} = \sum W_i \cos(n\phi_i) = Q_n \cos(n\psi_n)$$
$$Q_{n,y} = \sum W_i \sin(n\phi_i) = Q_n \sin(n\psi_n)$$

– 2. Measure Flow(Vn) with event plane

 $v_n = \langle \cos n(\phi - \psi_n) \rangle$

- 3. Correct Flow(Vn) with Resolution (Error when measure event plane)

$$\begin{aligned} v_n^{obs} &= \langle \cos n(\phi - \psi_n^{obs}) \rangle \\ &= \langle \cos n(\phi - \psi_n + \psi_n - \psi_n^{obs}) \rangle \\ &= \langle \cos n(\phi - \psi_n) \rangle \langle \cos n(\psi_n - \psi_n^{obs}) \rangle \\ &= v_n \langle \cos n(\psi_n - \psi_n^{obs}) \rangle \end{aligned}$$

$$v_2 = \frac{v_2^{obs}}{\operatorname{Res}\{\Psi_n\}}$$

EP Method in ALICE

- And past HIM meeting 2012 @ Pyungchang, Myunggeun Song shows, Event Plane measurement with V0 detector which place in forward direction can remove non-flow effect from jet
- But measure event plane with V0 detector can cause another problem related to resolution. Because V0 detector has only 8 sector in azimuthal direction.
- And, in EP method, if resolution is not perfect, Flow value is not <Vn>. It is somewhat between <Vn> and rms of Vn

Limit of EP method

- In EP method we assume Flow and Fluctuation(resolution) is independent
- But, in reality, there some relation between them. In case of very low resolution limit, we have to treat resolution correction as two particle correlation

$$v_n = \frac{\langle \cos n(\phi - \Psi_n^{measured}) \rangle}{Res}$$

= $\frac{\langle v_n \overline{v_n} \rangle}{\sqrt{\langle \overline{v_n^2} \rangle}} = \sqrt{\langle v_n^2 \rangle}$

- In this limit, measured flow is not mean flow (<vn>), is rms of flow
- And, what we get with EP with low resolution is somewhat between <vn> and rms vn

V0 detector and SP Method

- V0 detector
 - VOA: $2.8 < \eta < 5.1$
 - VOC : -3.7 < η < -1.7
 - Divided in 8 Sectors and 4 rings

• V0 detector has low resolution due to its design, so EP method is not available to measure Flow. So now we introduce SP method which is using magnitude of Flow Q-vector when average flow.

$$v_n = rac{\langle |Q_n| \cos n(\phi - \Psi_n^{measured})
angle}{ar{Q}_n}$$

AMPT Simulation result

- Before detector smearing (High resolution)
 - Statistical error is not calculated
 - Use 2sub event method to calculate resolution
- Result with SP Method and EP Method are almost same

AMPT simulation result

- After detector smearing (low resolution)
 - Statistical error is not calculated
 - Use 2sub event method to calculate resolution
- Result with SP method is about 10% lower then result of EP method

Motivations

Modification of Fragmentation Function - Hadrons

Modification of Fragmentation Function -Hadrons

Minwoo Kim

Motivations

Modification of Fragmentation Function - Hadrons

- Particle correlation measurements are good tool to
 - ✓ Study the jet properties in p+p
 - ✓ Probe jet medium interaction in Heavy Ion collisions (Di-Hadron tomography)

Motivations

Modification of Fragmentation Function – ID particles

- Baryon over Meson ratios differ significantly between AA and pp collisions
 Attributed to radial flow and coalescence / recombination
 - Attributed to radial flow and coalescence / recombination
 Llow do those ratio holescence in a jot in AA collisions?
- How do these ratio behave in a jet in AA collisions?
 - \checkmark Medium-modification of the parton shower can result in significant changes in jet hadrochemistry
- To explore this topic, we need to have

1. Independence from Flow **2. Good PID performance for wide p_T** 3. Jet Reconstruction

Which method will be chosen?

- The list of various PID methods which have been checked
- ✓ Default PID : few people use it currently because of poor performance
- ✓ Bayesian method : calculate Bayesian Probability by combined detector & select P_i >0.90
- \checkmark n- σ method : Used in PID Flow analysis

 $\checkmark \Delta_{detector}$ method : Δ_{TPC} used in High $p_T R_{AA}$ analysis and commonly used in PWG-CF

PID Methods

How to choose : An Example of the comparison between methods

Minwoo Kim (Yonsei University)

HIM 2012

34 / 8

The Procedure of Corrections

PID QA

Discrepancy between Real data and MC – pion mass assumption

- Data sample : LHC10h AOD049
- MC sample : LHC11a10a_bis AOD090
- Track cuts : hadronCut = 0 (Default) , $|\eta| < 0.8$
- PID cuts : without cut to see the distribution from all charged particles
- 0~10% centrality in below plots

PID QA

Correction for shifted center in Real Data

By 2D Gaussian Fit on Δ_{TPC} - Δ_{TOF}

from Proton mass assumption, $3 p_T$ bins

- Two dimensional Gaussian fits have been done for each centralities, each p_T bins and each particle species (different mass assumption)
- The information about shifts of the centers and corresponding sigma have been extracted from Gaussian fits for correct PID in real data
- At very high p_T region, the fitting failed because of overlapping with other particles

Performance

PID : Pions and Protons by 2σ cut from TPC+TOF

Minwoo Kim (Yonsei University)

HIM 2012

Summary and Future Plan

• A variety of PID methods has been tested for quality assurance to find the way which gives the highest purity with reasonable efficiency in wide p_T range

 2-σ cut on TPC+TOF combine PID becomes final and the corrections using two dimensional Gaussian fit are done to resolve the discrepancy between MC and Real data

• TPC+TOF combined PID method provides clean candidates which have high purity for further analysis

• Based on this PID method, the flow analysis with forward detectors of ALICE will be done to estimate the contributions only from the bulk particles

• Understanding of the flow of identified particles and reconstructed jets will be important ingredients for the analysis about "Jet Fragmentation into identified particles in Pb-Pb collisions"