Isotope Shifts to Search for New Light Bosons

Cédric DELAUNAY

LAPTh | CNRS-USMB

CERN

Phys. Rev. D 96, 093001 (2017) w/ Ozeri, Perez, Soreq
Phys. Rev. Lett. 120, 091801 (2018) w/ Berengut, Budker, Flambaum,
Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, Soreq
Phys. Rev. Res. 2, 043444 (2020) w/ Berengut, Geddes, Soreq

CERN QTI | 2-3-2023

Light New Physics

- The SM does not completely describe Nature ($m_{\nu}, \eta_B, \Omega_{\rm DM}$)
- The Higgs sector points to NP scales ~TeV or (much) heavier, but no experimental hint of it so far (LHC, direct detection..)
- The motivation for light NP (below ~GeV) is plenty:
 - Alternative solutions to the hierarchy problem? (like relaxion)
 - Axions
 - Light mediators for dark matter
 - ...
- If such NP couples significantly to electrons/nucleons, for m~[eV,MeV] the atom is the natural place to search for it

The Precision Atomic Frontier

• AMO techniques allow measurements of atomic frequencies with ultra high precision

Optical clock transitions

 $\nu_{467nm} = 642\,121\,496\,772\,645.36(25)$ Hz

 $u_{\nu} = 3.9 \times 10^{-16}$

Huntermann et al. (2014)

The Precision Atomic Frontier

• Precision on frequencies is not limited by technology, but by our definition of the second from the Cesium clock:

 $1 \text{ Hz}^{-1} = 1 \text{ second} = 9192631770$ oscillations between the 2 hyperfine levels of the Cs 133 ground state. 10-10 Fractional uncertainty in Yb atom Fractional uncertainty demonstrated at the 10^{-18} level 10-13 Huntermann et al. (2016) 10-16 Microwave Bean Present record at 7.6×10^{-21} Microwave Fountain ▲ Optical Atom 😣 Optical Ion with lattice clock of 100 000 Sr atoms Optical Lattice 2020 1980 2000 2010 1970 1990 19501960Year **Sharma** et al. (2020) Bothwell et al. (2022)

Why isotope shifts?

- Atomic lines are well measured, but theory is not accurate (~1%)
- Frenquencies are set by the charge of the nucleus **Z**
- Hence dominant contributions from EM cancel out in frequency differences between isotopes: $(\nu \nu')/\nu \sim 10^{-6}$
- Spin-independent NP couples to the entire nucleus **A** and thus is only mildy suppressed in isotope differences: $(A A')/A \sim 0.1$
- Yet isotope shifts are also challenging to calculate...

Isotope Shift Theory

 Isotopes (same Z, different A) have the same atomic lines up to small nuclear effects:

$$\nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'} = \frac{K_i \,\mu_{AA'}}{F_i \,\delta \langle r^2 \rangle_{AA'}}$$

- Mass shift (MS) due to change in the nuclear mass $\mu_{AA'} \equiv m_A^{-1} m_{A'}^{-1}$ modifying the global atomic center-of-mass (normal MS) and the electronelectron repulsion terms (specific MS)
- Field shift (FS) due to change in the nuclear charge distribution ~ size, which typically dominates for heavy elements

King Linearity King (1963)

 $m\nu_2$

• Combining 2 transitions to eliminate the poorly known $\delta \langle r^2 \rangle$ yields a linear relation among modified IS, $m\nu_i^{AA'} \equiv \nu_i^{AA'}/\mu_{AA'}$:

$$m\nu_{2}^{AA'} = F_{21} m\nu_{1}^{AA'} + K_{21}$$
$$\equiv F_{2}/F_{1} \qquad \equiv K_{2} - F_{21}K_{1}$$

- Linearity follows from having only 2 independent nuclear parameters
- $K, F, \delta \langle r^2 \rangle$ are not needed to test it experimentally (only masses must be known)

New Physics breaks linearity

 New Physics comes with its own independent nuclear/electronic parameters:

$$\nu_i^{AA'} = K_i \,\mu_{AA'} + F_i \,\delta\langle r^2 \rangle_{AA'} + \alpha_{\rm NP} X_i \gamma_{AA'}$$

thus inducing nonlinearities (NL):

$$m\nu_2^{AA'} = F_{21} m\nu_1^{AA'} + K_{21} + \alpha_{\rm NP} X_{21} h_{AA'}$$

with invariant measure : $\vec{m\mu} = (1, 1, 1)$ NL = det $(\vec{m\nu}_1, \vec{m\nu}_2, \vec{m\mu})$

Bounding NP

• Solving King equation for the NP coupling gives:

$$\alpha_{\rm NP} = \frac{\det(\vec{m\nu_1}, \vec{m\nu_2}, \vec{m\mu})}{\det[X_1 \vec{m\nu_2} - X_2 \vec{m\nu_1}, \vec{h}, \vec{m\mu}]}$$
NL in data

NL predicted by theory

$$= \epsilon_{ij} F_i X_j \times \det(m\delta \vec{\langle} r^2 \rangle, \vec{h}, \vec{m\mu})$$

Electronic alignment \rightarrow strong suppression for large $m_{\rm NP}$: $X_i \propto F_i$ Nuclear alignment \rightarrow suppression of $\delta m_A^{\max}/m_A \sim \mathcal{O}(10)$ for NP coupling $\propto A$

New Yukawa-like force

- KL is sensitive to new spin-independent interaction between electron and neutron (e-p and e-e cancel out in the IS)
- Consider a new boson ϕ with y_e and y_n couplings
- ϕ -exchange in the atom gives rise to a new force described by the non-relativistic Yukawa potential:

$$V_{\phi}(r) = \frac{(-1)^{s+1}}{4\pi} y_e y_n (A - Z) \frac{\exp(-m_{\phi}r)}{r}$$
$$\alpha_{\rm NP} \qquad \gamma_{AA'} = A - A'$$

10

Ca+ Example

Gebert-Wan-Wolf-Angstmann-Berengut-Schmidt | Phys. Rev. Lett. 115, 053003 (2015)

based on broad transitions precision ~ 100kHz ~ IS/10⁴

Recent Ca+ results

Solaro-Meyer-Fisher-Berengut-Fuchs-Drewsen | Phys. Rev. Lett. 115, 123003 (2020)

narrower transitions~ 20Hz accuracy (from DtoD)

consistent with linearity within uncertainties

NP bound from Ca+

Resulting bound is weaker than

1) Hydrogen-Deuterium IS from a direct comparison between theory and measurements (purple) CD-Frugiuele-Fuchs-Soreq (2017)

2) combination of bounds from electron g-2 and nuclear scattering (orange)

Nonlinear Yb+ results

Counts-Hur-Aude Craik-Jeon-Leung-Berengut-Geddes-Kawasaki-Jhe-Vuletic | Phys. Rev. Lett. 125, 123002 (2020)

narrow quadrupole transitions precision ~ 300Hz

nonlinearities observed at 3σ