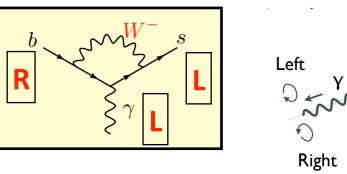
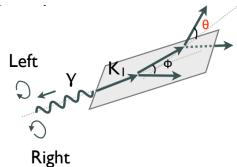
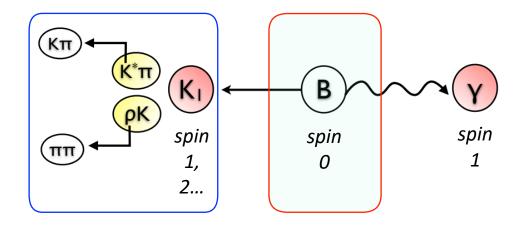
Monte-Carlo generator development on the $B \rightarrow K_{res}\gamma \rightarrow K\pi\pi\gamma$ decay

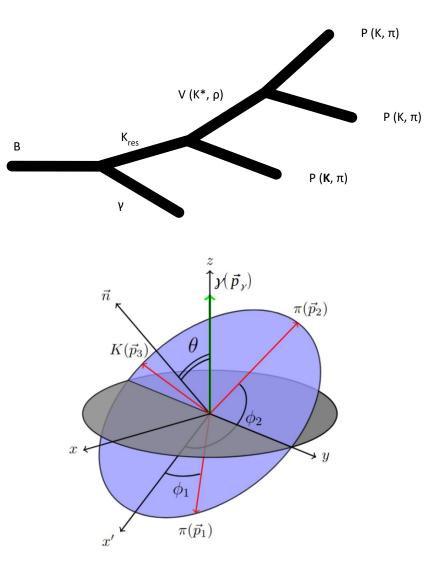
LAU Tak-5hun in collaboration with Emi KOU and François LE DIBERDER


26^{+h} April 2023

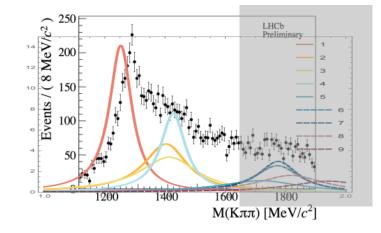

5th Radiation Decays @LHCb Workshop (Valencia)


Motivation

- To measure the photon polarisation in $b \rightarrow s\gamma$ process, which a good probe of BSM (Beyond Standard Model).
- The polarisation of photon is the same as the polarisation of the K_{res} . The photon is predominately left-handed, up to small corrections of the order m_s/m_b .
- Measuring the angular distribution from the K_{res} decay can give the polarization information.
- To have the angular information, 3-body decay is necessary. The $B \rightarrow K\pi\pi\gamma$ process gives us an opportunity to look for it.

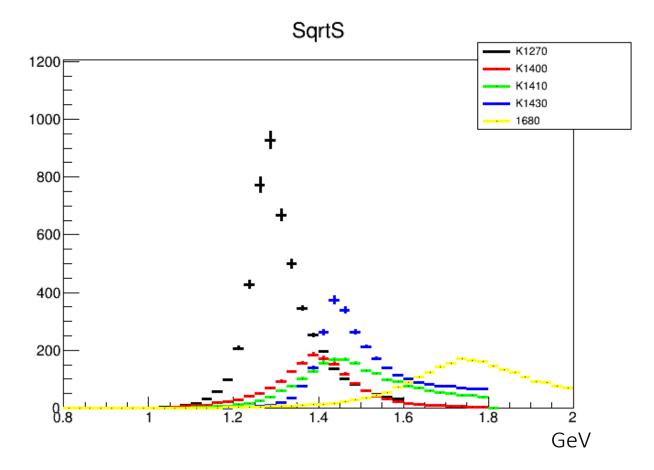

Photon polarisation = Recoiling K_{res} polarisation \rightarrow measure it from K_{res} decay angular distribution

Gronau, Grossman, Pirjol, Ryd, Measuring the Photon Polarization in $B \rightarrow K \pi \pi \gamma$, PRL 88.051802


The Monte-Carlo generators

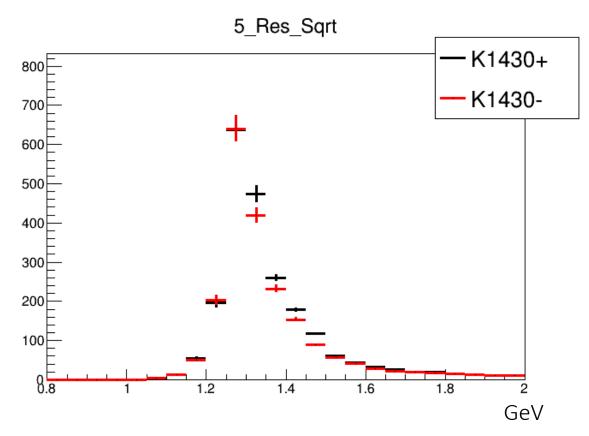
- MINT II generator: using "covariant-tensor" method. (LHCb?)
- GamPola generator: using "Form Factor" method, developed by B. Knysh, a former IJC Lab PhD student.
- Due to some difficulties of maintenance of Gampola, and the limited development potential of Gampola by the code structure, we are now developing a totally new Monte-Carlo generator, but with the same "Form Factor" method.
- In our generator, the events are firstly generated in the K_{res} rest frame, then boosted back to the B-meson rest frame. Then will be rotated randomly finally (the same rotational method as EvtGen).

The Monte-Carlo generator


- There are a dozen of Kaonic resonances (K_{res}) identified below 2 GeV. Among them, the lightest five are well established (mass, width, decay to Kππγ...), K(1270), K(1400), K(1410), K(1430), and K(1680).
- 5 resonances are planned to be included in our generator, which allows us to use the energy range of 1.1-1.6 GeV.
- In our generator, few mixing effects are included:
 - 1. The hadronic form factor of K(1270) and K(1400).
 - 2. Interference between difference K_{res} .
 - 3. Interference between the isobar decays.

One should aware that this plot is NOT on scale, but just an illustration.

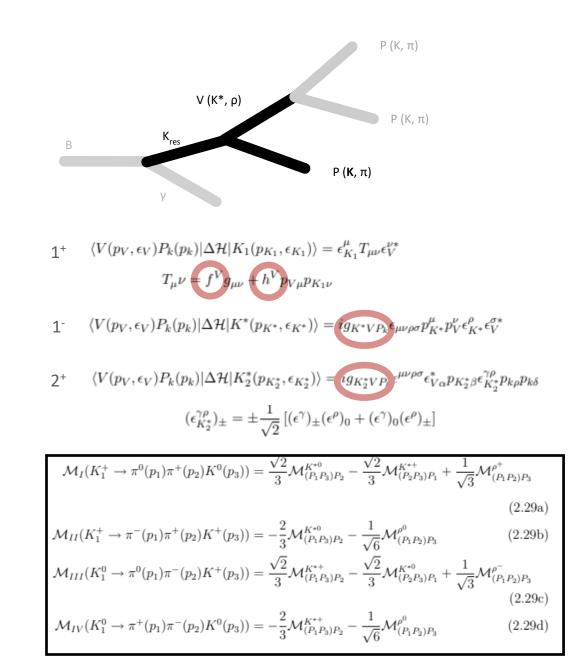
	Name	JP	mass	width	Br(pK)%	Br(πK*)%	others
1	K(1270)	1+	1253±7	90±20	42±6	16±5	28±4% (Κ ₁₄₃₀ π) 11±2 (Κω)
2	K(1400)	1+	1403±7	174±13	3±3	94±6	
3	K(1410)	1 ⁻	1414±15	232±21	<7	>40	6.6±1.3% (Kπ)
4	K(1430)	2+	1427.3±1.5	100.0±2.1	8.7±0.8	24.7±1.5	49.9±1.2% (Kπ)
5	K(1680)	1 ⁻	1718±18	322±110	$31.4^{+0.5}_{-2.1}$		38.7±2.5% (Kπ) 13.4±2.2 (K*ππ)
6	K(1770)	2-	1773±8	186±14			Kππ seen
7	K(1780)	3 [.]	1776±7	159±21			Kππ seen
8	K(1820)	2-	1819±12	264±34			Kππ seen
9	K(1980)	2+	1943±50	307 ⁺⁵⁰ -31			Kππ seen


The Kaonic resonances *K*_{res}

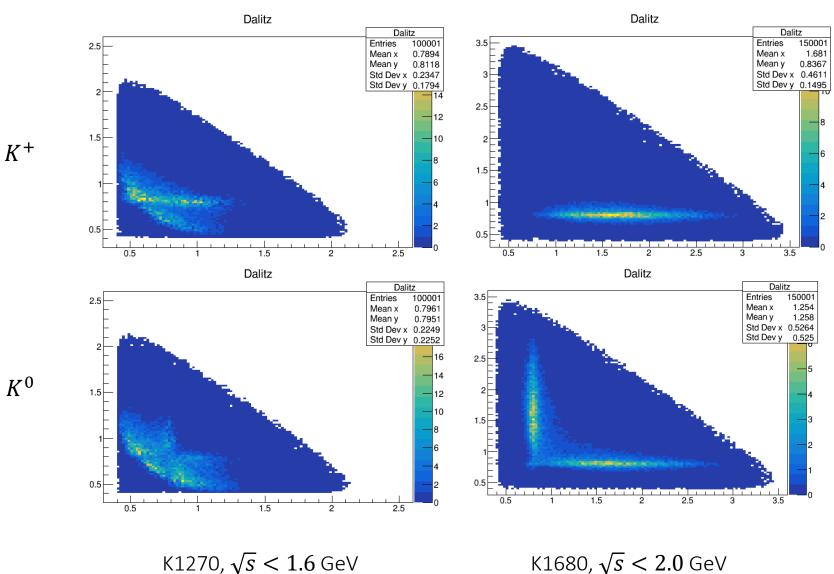
K _{res}	Signal strength c_i
K(1270)	1.
K(1400)	1.
K(1410)	1.
K(1430)	1.
K(1680)	1.

• The 5 histograms are generated separately, each with signal strength equals to one.

The Kaonic resonances *K*_{res}


Currently we confine ourselves in only using real numbers.

- $P_{NoInt} \sim \sum_i c_i^2 \left| A_{res}^i \right|^2$
- $P_{WithInt} \sim \left|\sum_{i} c_{i} A_{res}^{i}\right|^{2}$
- If you generate the sample without accounting the interference effect, the 2 histograms should be the same.
- Now since our generator takes the interference into account, we can see the 2 histograms have different behaviours.

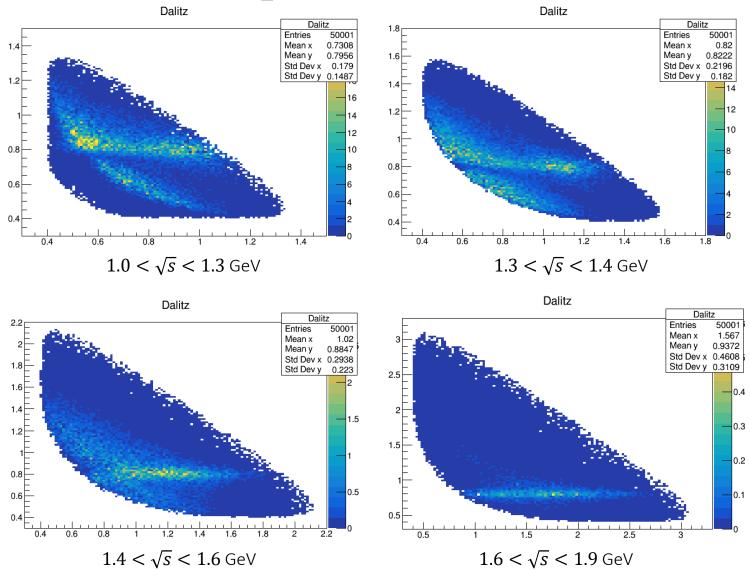

K _{res}	Signal strength c_i	K _{res}	Signal strength c_i
K(1270)	1.366	K(1270)	1.366
K(1400)	-0.366	K(1400)	-0.366
K(1410)	0.1	K(1410)	0.1
K(1430)	0.3	K(1430)	-0.3
K(1680)	0.1	K(1680)	0.1

The K_{res} decay

- For the K_{res} we planned to include, they are either 1⁺, 1⁻, or 2⁺.
- The form factors of K(1270) and K(1400) are related by the mixing angle (theoretically).
- In our new MC generator, the strength of K(1270) and K(1400) can be set separately.
- The strength of K(1410), K(1430), and K(1680) could be set manually also.
- The isobar decays detail are included.

Dalitz plots

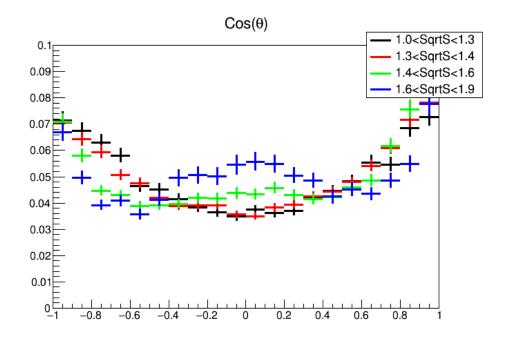
• In the left hand-side, they are Dalitz plots with x-axes are s_{13} [GeV²] and y-axes are s_{23} [GeV²].

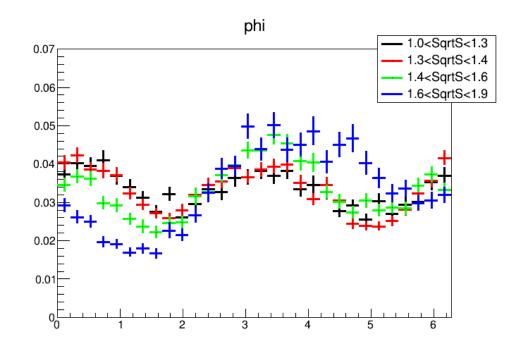

$$\begin{split} K^+_{\rm res} &\to \quad \left\{ \begin{array}{c} K^{*+}\pi^0 \\ K^{*0}\pi^+ \\ \rho^+ K^0 \end{array} \right\} \to K^0\pi^+\pi^0 \\ \left\{ \begin{array}{c} K^{*0}\pi^+ \\ \rho^0 K^+ \end{array} \right\} \to K^+\pi^+\pi^- \end{split}$$

- The charged kaon K^+ doesn't have the s_{13} line, which is expected.
- The K1680 also doesn't show the $s_{12} \rho$ decay line because of our setting, which is calculated from the particle data group.

, ,

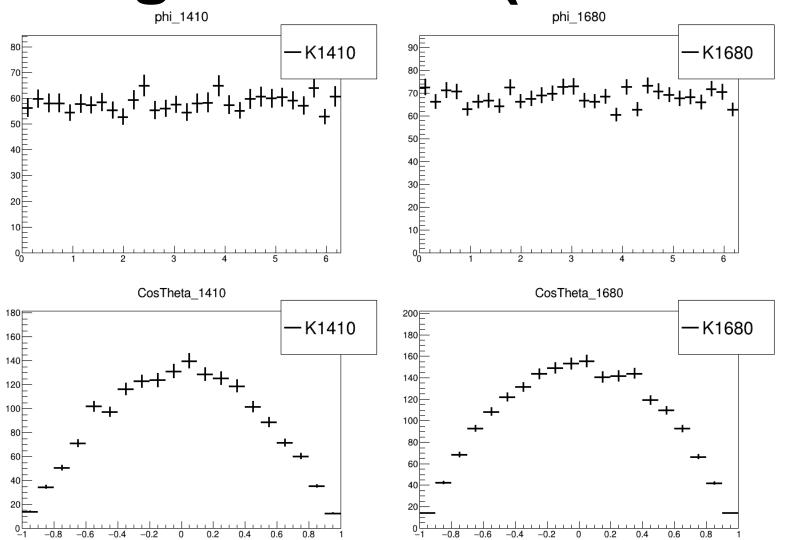
LAU, Tak-Shun (IJC Lab)

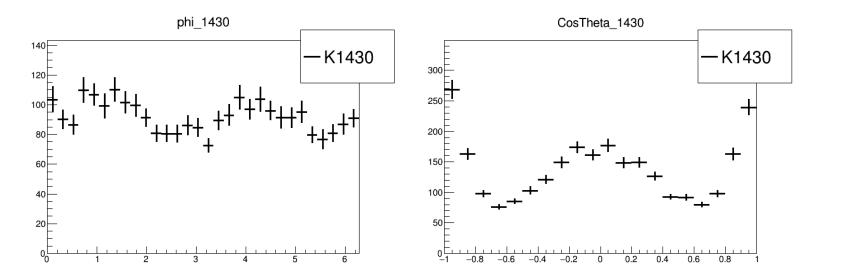

Dalitz plots



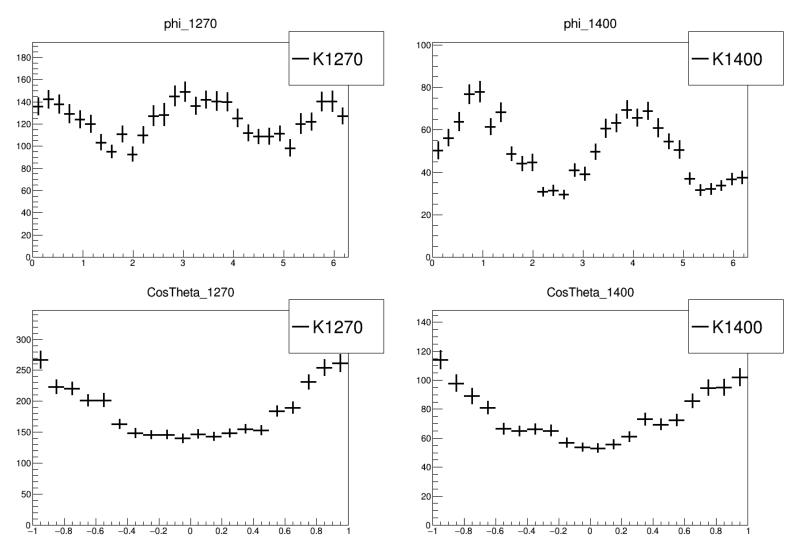
- In the left hand-side, they are Dalitz plots with 5 kaonic resonances.
- Only charged kaon K^+ .
- Generated separately in different center-of-mass \sqrt{s} range.
- The signal strength of the 5 K_{res} is shown in the following table.

K _{res}	Signal strength c_i
K(1270)	1.366
K(1400)	-0.366
K(1410)	0.1
K(1430)	-0.3
K(1680)	0.1


Angular plots


- The above angular plots are 5 kaonic resonances.
- Only charged kaon K^+ .
- Generated separately in different center-of-mass \sqrt{s} range.

Angular Plots (The P-Wave)


- For P-wave decay, we have K(1410) and K(1680).
- constant ϕ is expected
- $-x^2$ shape is expected for $\cos(\theta)$
- The generation range of K(1410) is $\sqrt{s} < 1.8$ GeV.
- For K(1680), it is $\sqrt{s} < 2.0$ GeV.

Angular Plots (The D-Wave)

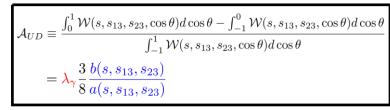
- For D-wave decay, we have K(1430)
- Both the shape of $cos(\theta)$ and ϕ is not trivial before numerical computation.
- The generation range of K(1430) is $\sqrt{s} < 1.8$ GeV.

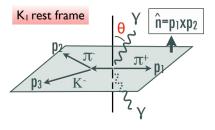
Angular Plots (The mixing Kaons)

- K(1270) and K(1400) are mixed.
- In the mixing, both s-wave and d-wave are included.
- The shape of $\cos(\theta)$ is expected to be $+ x^2$ liked.
- While the shape of ϕ is not trivial before numerical computation, highly depends on the mixing setting.
- The generation range of K(1400) is $\sqrt{s} < 1.8$ GeV, while K(1270) is $\sqrt{s} < 1.6$ GeV.

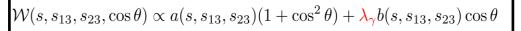
Current Status of the generator

- Five *K_{res}* are included, which are K(1270), K(1400), K(1410), K(1430), and K(1680).
- Both neutral mode Kaon and charged mode Kaon are included.
- Next step : to implement the generator to EvtGen.
- Once our generator is implemented, the $B \rightarrow K\pi\pi\gamma$ event in EvtGen (below 1.6 GeV) has to be removed in order to avoid double counting.
- For the right-handed and left-handed polarisation, it is already in the generator, but we want to further checking the details carefully.
- The Lorentz boosted and randomly rotation are also implemented.

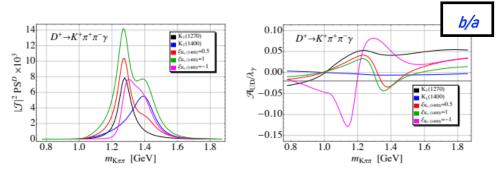

Conclusion


- The study of $B \rightarrow K\pi\pi\gamma$ decay give us an opportunity to probe into BSM via photon polarization.
- Different K_{res} are involved in this channel. And they interfere with each other.
- We are developing a new Monte-Carlo generator such that the interferences between different K_{res} can be included.
- Our target is to finish this generator in a few months, and to implement it in EvtGen.

Appendix


- With the information in hand, we may use a measurable called "up-down asymmetry" to get the K_{res} information.
- "up-down asymmetry" is to count the number of events with photon above/below the K_{res} decay plane and subtract them.
- And this provides a very first step for us to test on polarisation.

"up-down asymmetry" :



Angular distributions:

 $K_1^{+}_{(1270,1400)} \rightarrow K\pi\pi$ is studied in detail at ACMMOR experiment. By performing amplitude analysis, the a& b functions are obtained. The result has been shown for D decay (but it is the same for B decay).

N. Adolph, G. Hiller, A. Tayduganov, *Testing the standard model with D(s)* \rightarrow *K1*(\rightarrow *K* $\pi\pi$ $\eta\gamma$ *decays*, 1812.04679

Appendix : more about angular distributions

It is worth notifying that:

- K(1270) and K(1400) affects only
 c₁ and c₂.
- K(1430) affects all c_1 , c_2 , and c_3 .
- K(1410) and K(1680) only affects *c*₃.

The different amplitudes with various spin-parity can be expressed as

 $\mathcal{M}_{(P_i P_j) P_k}^V = \left[c_1 \vec{p_1} - c_2 \vec{p_2} + c_3 (\vec{p_1} \times \vec{p_2}) \right] \cdot \vec{\epsilon}_{K_{res}},\tag{1}$

where $c_1(s, s_{13}, s_{23})$, $c_2(s, s_{13}, s_{23})$, and $c_3(s, s_{13}, s_{23})$ are the functions containing the Kaon information.

In the rest frame of kaonic resonance, $\vec{p_1} + \vec{p_2} + \vec{p_3} = 0$, we find

 $\vec{\epsilon}_{Kres}$

$$\vec{p}_{1,2} = |\vec{p}_{1,2}| \left(\cos\theta\cos\phi_{1,2}, \sin\phi_{1,2}, -\sin\theta\cos\phi_{1,2}\right),\tag{2}$$

and

$$=\frac{1}{\sqrt{2}}(1,\,\lambda i,\,0),$$
 (3)

where $\lambda = \pm 1$ for right-handed and left-handed polarisation.

$$|\mathcal{M}_{(P_i P_j) P_k}^V|^2(\lambda) = \frac{1}{4} \Big(2a - (a + a_2 \cos 2\phi + a_3 \sin 2\phi) \sin^2 \theta + \lambda b \cos \theta \Big) \\ + \frac{1}{2} a_4 \sin^2 \theta \tag{15}$$

+ $(\tilde{a}_1 \cos \phi + \tilde{a}_2 \sin \phi) \sin \theta \cos \theta + \lambda (\tilde{b}_1 \cos \phi + \tilde{b}_2 \sin \phi) \sin \theta$,

where

$a = c_1 ^2 \vec{p_1} ^2 + c_2 ^2 \vec{p_2} ^2 - 2\Re(c_1 c_2^*) \vec{p_1} \vec{p_2} \cos \delta,$	(16)
$a_2 = (c_1 ^2 \vec{p_1} ^2 + c_2 ^2 \vec{p_2} ^2) \cos \delta - 2 \Re(c_1 c_2^*) \vec{p_1} \vec{p_2} ,$	(17)
$a_3 = (c_1 ^2 \vec{p_1} ^2 - c_2 ^2 \vec{p_2} ^2) \sin \delta,$	(18)
$b = -4\Im\mathfrak{m}(c_1c_2^*) \vec{p_1} \vec{p_2} \sin\delta,$	(19)
$a_4 = c_3 ^2 \vec{p_1} ^2 \vec{p_2} ^2 \sin^2 \delta,$	(20)
$\tilde{a}_1 = (\mathfrak{Re}(c_1c_3^*) \vec{p}_1 ^2 \vec{p}_2 - \mathfrak{Re}(c_2c_3^*) \vec{p}_1 \vec{p}_2 ^2)\cos{(\delta/2)}\sin{\delta},$	(21)
$\tilde{a}_2 = (\mathfrak{Re}(c_1 c_3^*) \vec{p}_1 ^2 \vec{p}_2 + \mathfrak{Re}(c_2 c_3^*) \vec{p}_1 \vec{p}_2 ^2) \sin(\delta/2) \sin\delta,$	(22)
$\tilde{b}_1 = -(\Im \mathfrak{m}(c_1 c_3^*) \vec{p}_1 ^2 \vec{p}_2 - \Im \mathfrak{m}(c_2 c_3^*) \vec{p}_1 \vec{p}_2 ^2) \cos(\delta/2) \sin\delta,$	(23)
$\tilde{b}_2 = -(\Im \mathfrak{m}(c_1 c_3^*) \vec{p}_1 ^2 \vec{p}_2 + \Im \mathfrak{m}(c_2 c_3^*) \vec{p}_1 \vec{p}_2 ^2) \sin(\delta/2) \sin\delta.$	(24)