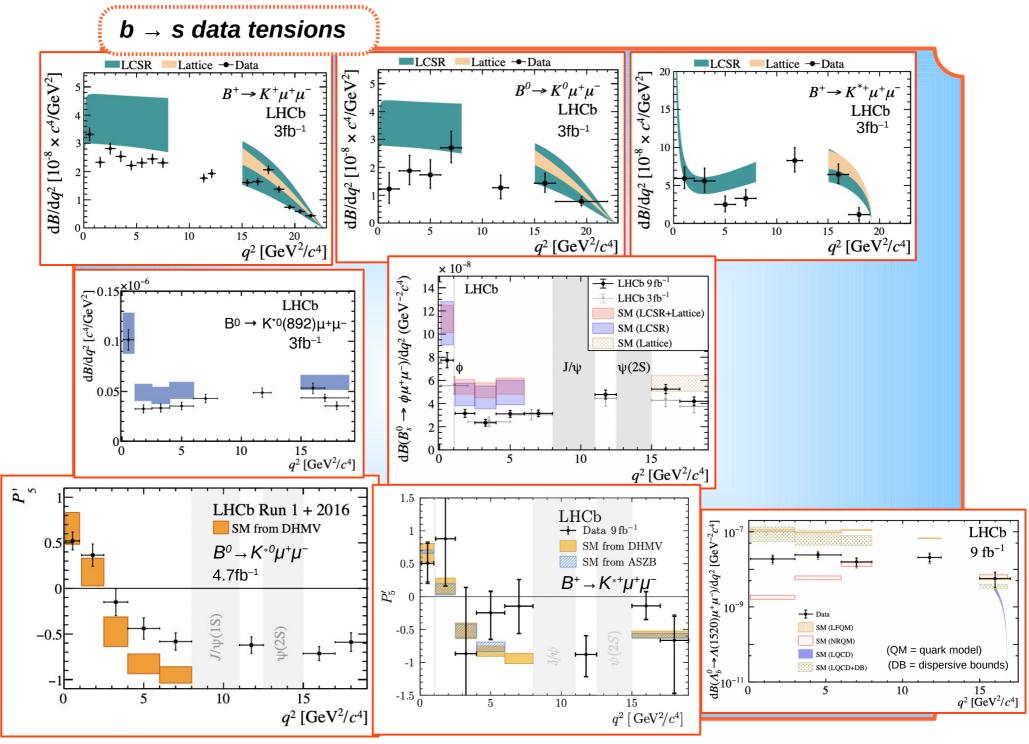
$B_{d,s} \rightarrow \mu^{+} \mu^{-} \gamma$ phenomenology

- overview -

Diego Guadagnoli CNRS, LAPTh Annecy

A novel, short-term way to cross-check the existing tensions ("anomalies") in $b \rightarrow s \mu\mu$ data



D. Guadagnoli, RAD@LHCb, 26 April, 2023

• The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• High-q² $B_s \rightarrow \mu\mu \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed

- The additional photon lifts chirality suppression
 - For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude
- High-q² $B_s \rightarrow \mu\mu \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \rightarrow \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \rightarrow \ell \ell$. Plus, it probes them at high q^2

- The additional photon lifts chirality suppression
 - For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude
- High-q² $B_s \rightarrow \mu\mu \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \rightarrow \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \rightarrow \ell \ell$. Plus, it probes them at high q^2
- With Run 3 (\Box hopefully comparable e and μ efficiencies), $B_s \rightarrow ee \gamma$ no more science fiction

$$B_s \rightarrow \mu \mu \gamma$$
 from $B_s \rightarrow \mu \mu$

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

$B_s \rightarrow \mu\mu\gamma$: "indirect" method

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

$B_s \rightarrow \mu\mu\gamma$: "indirect" method

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\nu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

• Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset

$B_s \rightarrow \mu\mu\gamma$: "indirect" method

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\nu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

- Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset
- ... to access $B_s \rightarrow \mu\mu\gamma$, that probes any $\mu\mu$ "anomaly"
 - more thoroughly (more EFT couplings)
 - in a different, not well tested, q² region
 - with a completely different exp approach

[thanks F. Dettori]

Pros (besides those already stated)

• No need to reconstruct the γ (factor-of-20 loss in efficiency)

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

• Signal is a shoulder, not a peak as in several semilep. *B* decays

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak as in several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak as in several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \,\mu\mu$ But better than full γ reco

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

- Signal is a shoulder, not a peak as in several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \,\mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS

[thanks F. Dettori]

Pros (besides those already stated)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

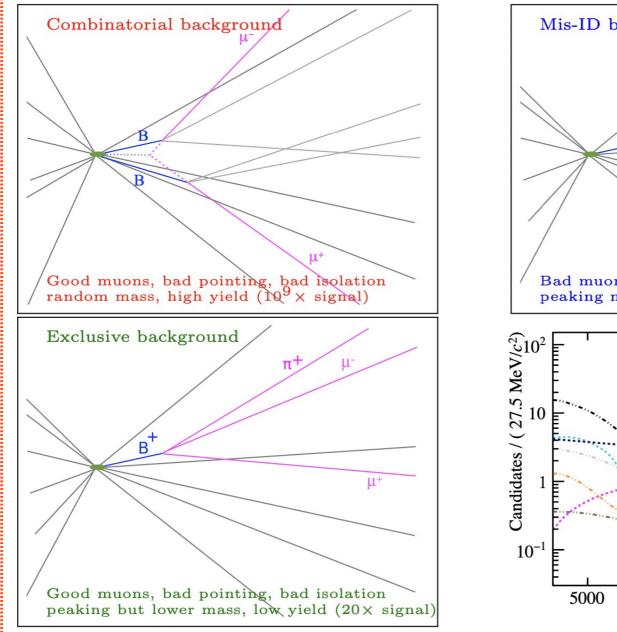
Cons

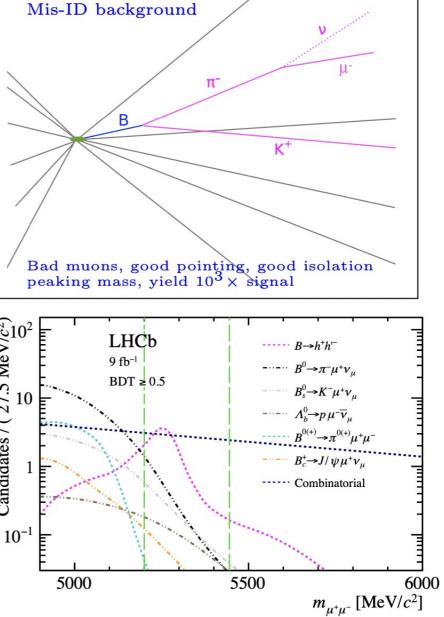
- Signal is a shoulder, not a peak as in several semilep. *B* decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \,\mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS
- Calibration not trivial no "analogous" channel

Backgrounds

[thanks F. Dettori]

[LHCb-PAPER-2021-007] [LHCb-PAPER-2021-008





Results Results Results Compared by the series of the series

$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(3.09 \substack{+ \ 0.46 \ + \ 0.15 \ 0.43 \ - \ 0.11}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(1.2 \substack{+ \ 0.8 \ - \ 0.7} \pm 0.1\right) \times 10^{-10} < 2.6 \times 10^{-10} \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \ \text{GeV}} &= (-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9} \\ \text{No significant signal for } B^0 \to \mu^+ \mu^- \text{ and } B_s^0 \to \mu^+ \mu^- \gamma, \text{ upper limits at } 95\% \\ \text{First world limit on } B_s^0 \to \mu^+ \mu^- \gamma \text{ decay} \end{split}$$

D. Guadagnoli, RAD@LHCb, 26 April, 2023

[thanks F. Dettori]

The elephant in the room (FFs)

رور المراجع الم

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_{γ}

[RM123, '15] [1st application (K₁₂), RM123, '17]

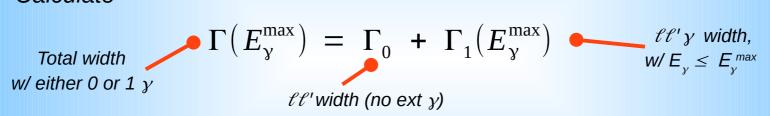
Novel method to define an IR-safe LQCD correlator

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Small E_{γ}

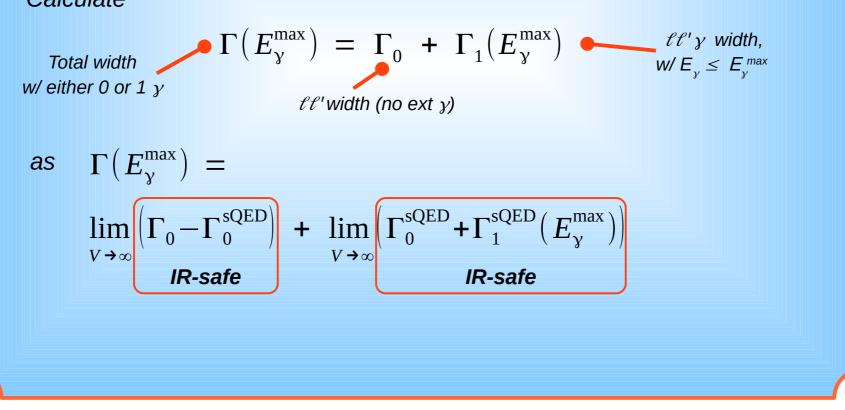


Novel ideas & applications, both at low q^2 (large E) and high q^2 (small E)

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Small E_{γ}

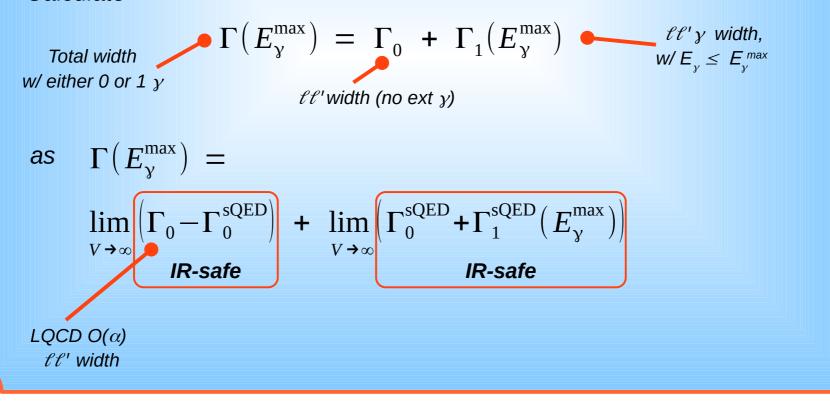


Novel ideas & applications, both at low q^2 (large E) and high q^2 (small E)

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Small E_{γ}

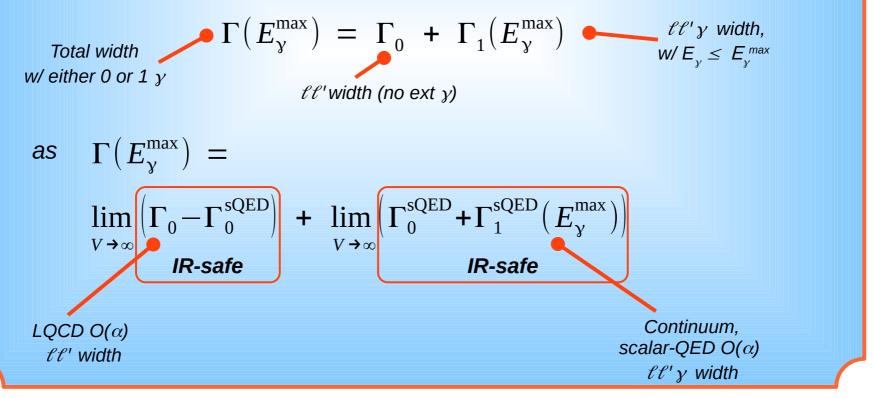


Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Small E_{γ}



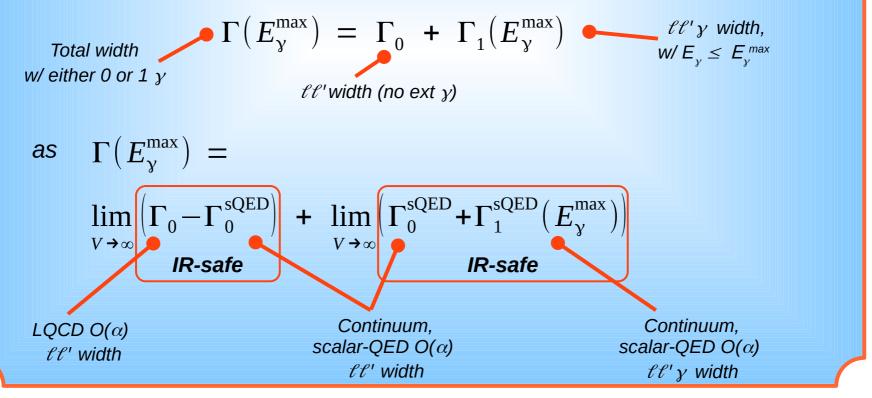
Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

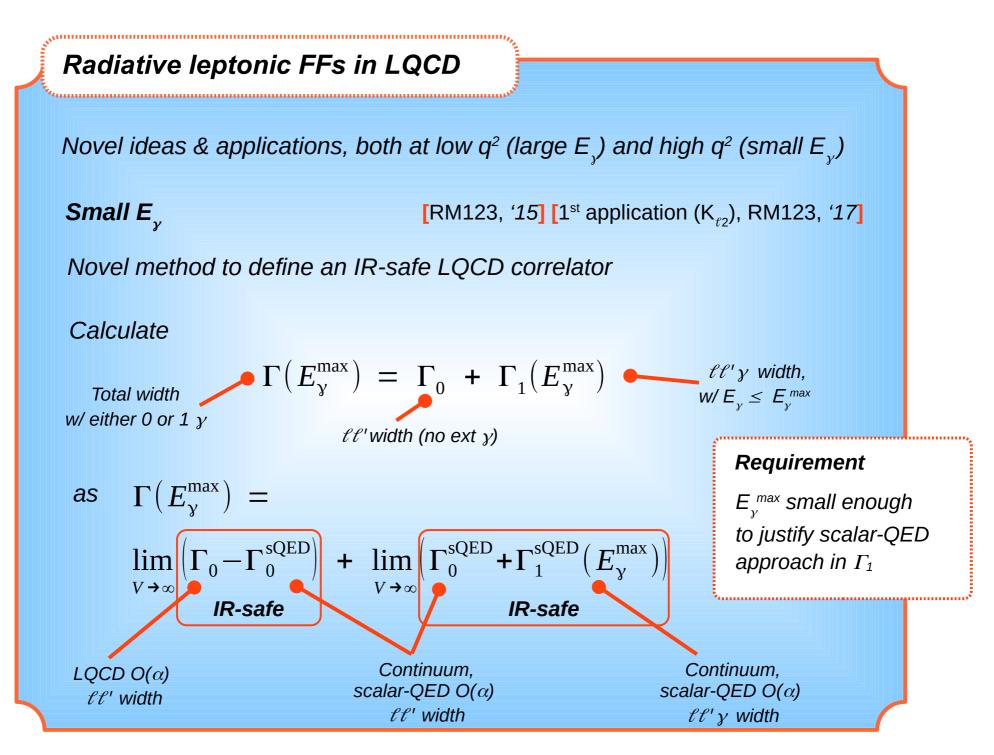
[RM123, '15] [1st application (K_{t2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator



Small E_{γ}





FFs at low q^2

within factorization

[Beneke-Bobeth-Wang, '20]

• For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_{\gamma}$

$B_s \rightarrow \mu\mu\gamma$ with energetic γ

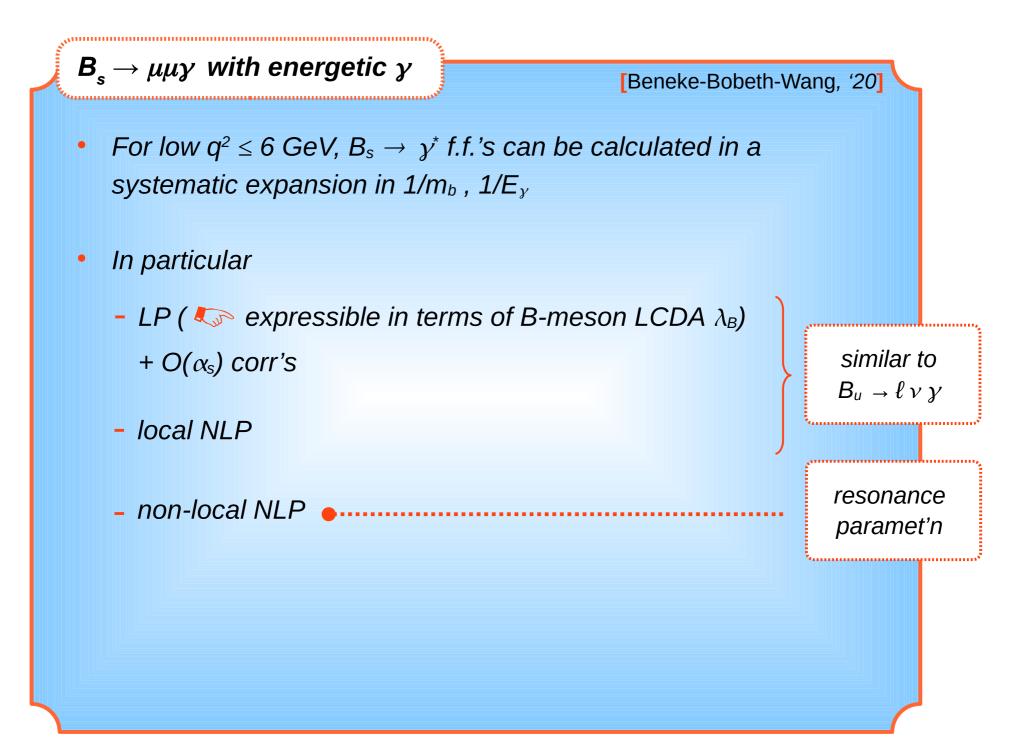
[Beneke-Bobeth-Wang, '20]

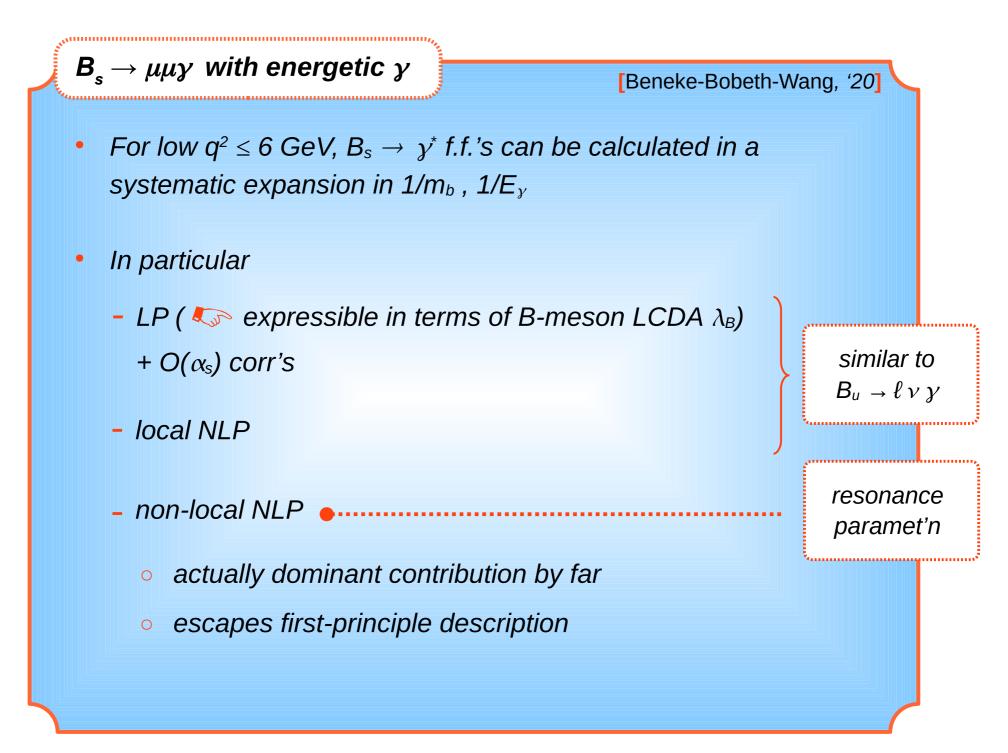
- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_{\gamma}$
- In particular
 - LP (\triangleleft expressible in terms of B-meson LCDA λ_B) + O(α_s) corr's

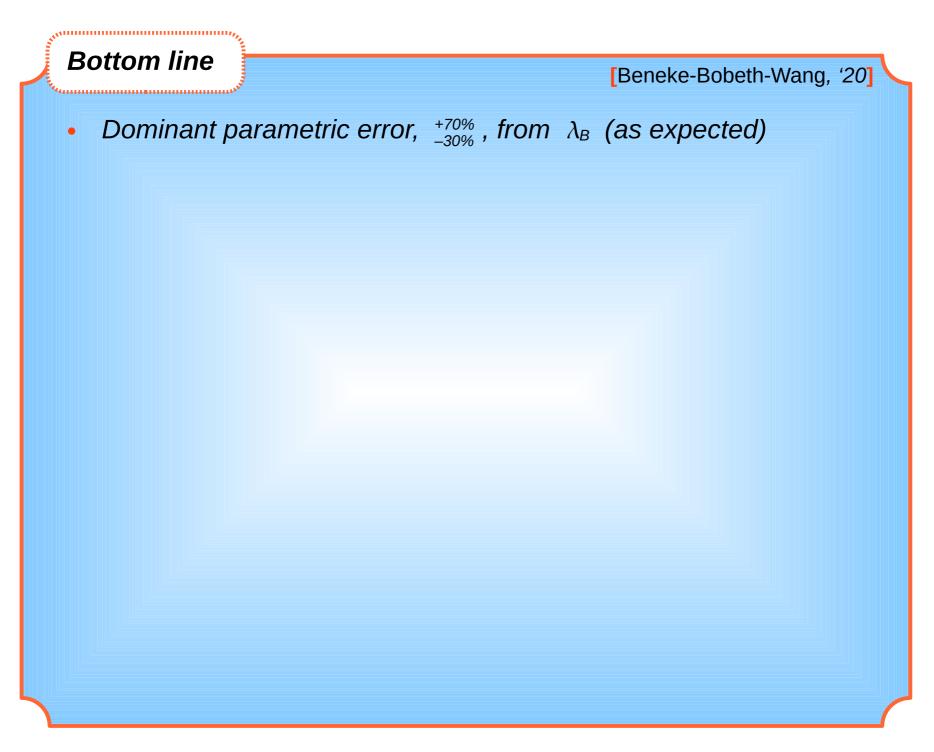
 $B_s \rightarrow \mu\mu\gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_{\gamma}$
- In particular
 - LP (\triangleleft expressible in terms of B-meson LCDA λ_B) + O(α_s) corr's
 - local NLP







[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)

Bottom line

\...................................

.......................

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \rightarrow \mu \overline{\mu} \gamma$ prediction at low q^2

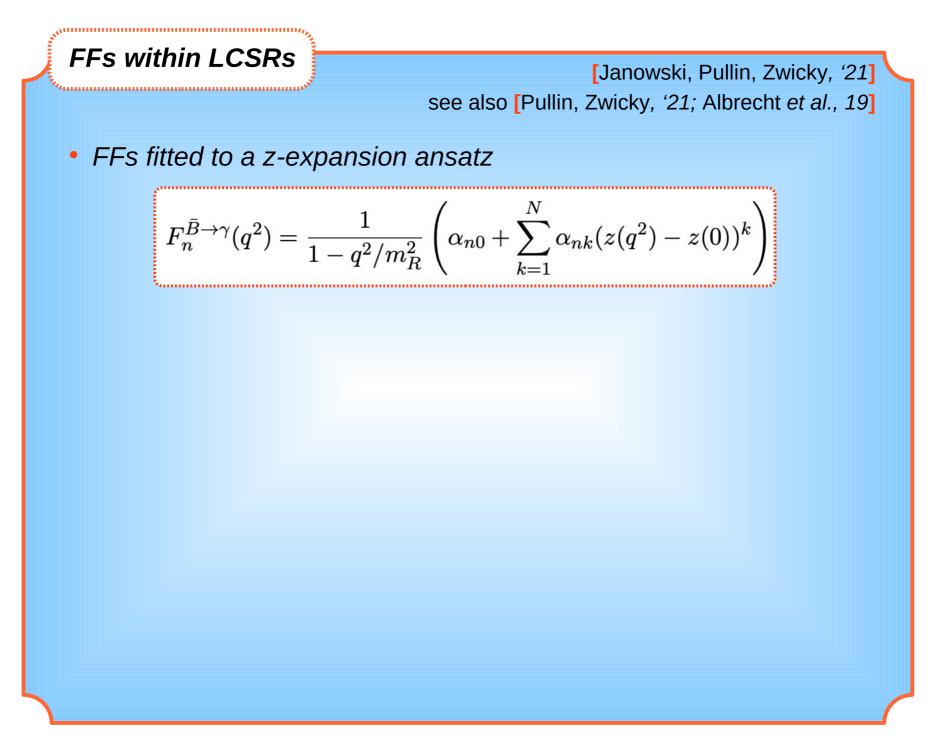
Bottom line

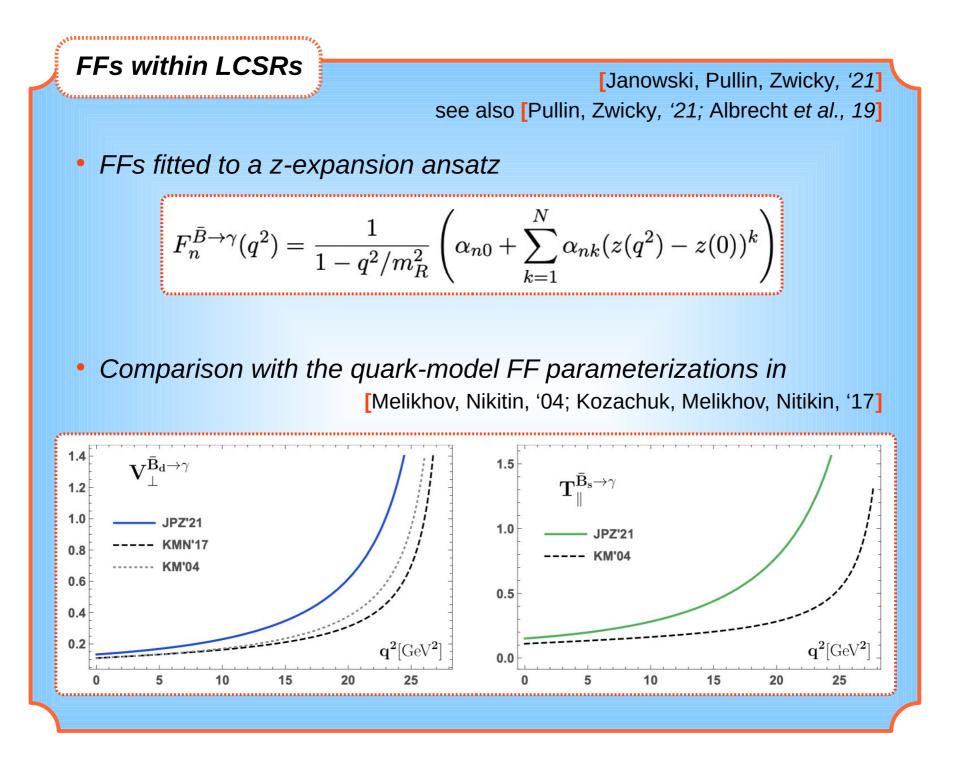
[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \rightarrow \mu \overline{\mu} \gamma$ prediction at low q^2
- Prediction

 $\langle \mathcal{B} \rangle_{[4m^2_{\mu}, \, 6.0]} = \left(12.51^{+3.83}_{-1.93}
ight) \cdot 10^{-9}, \quad \langle \mathcal{B} \rangle_{[2.0, \, 6.0]} = \left(0.30^{+0.25}_{-0.14}
ight) \cdot 10^{-9}$

i.e. ϕ region gives 97.6% of the BR



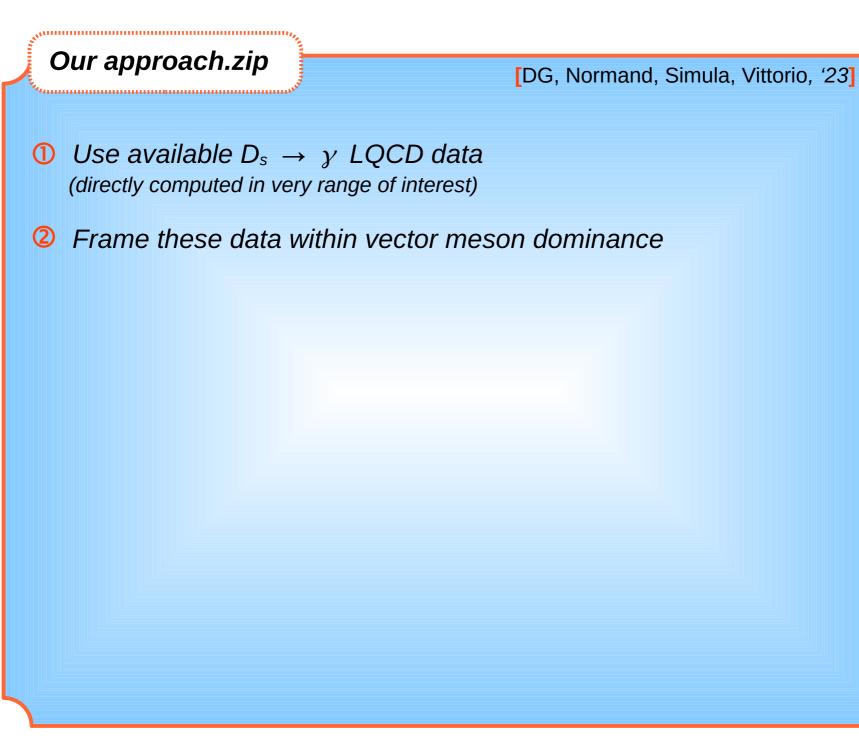


FFs at high q²

A phenomenological approach using LQCD and heavy-quark symmetry

[DG, Normand, Simula, Vittorio, '23]

① Use available $D_s \rightarrow \gamma$ LQCD data (directly computed in very range of interest)



[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow \gamma$ LQCD data (directly computed in very range of interest)
- **②** Frame these data within vector meson dominance
- **3** Such description obeys well-defined heavy-quark scaling
 - \Box

Scale up from the D_s to the B_s

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow \gamma$ LQCD data (directly computed in very range of interest)
- **②** Frame these data within vector meson dominance
- **3** Such description obeys well-defined heavy-quark scaling
- Scale up from the D_s to the B_s
- Validate as much as possible

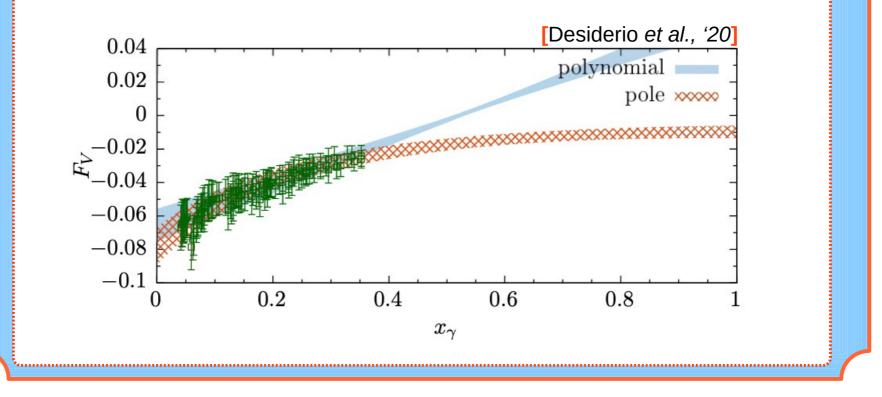
$\bigcirc \quad \textbf{Use } D_s \rightarrow \gamma \ LQCD \ data$

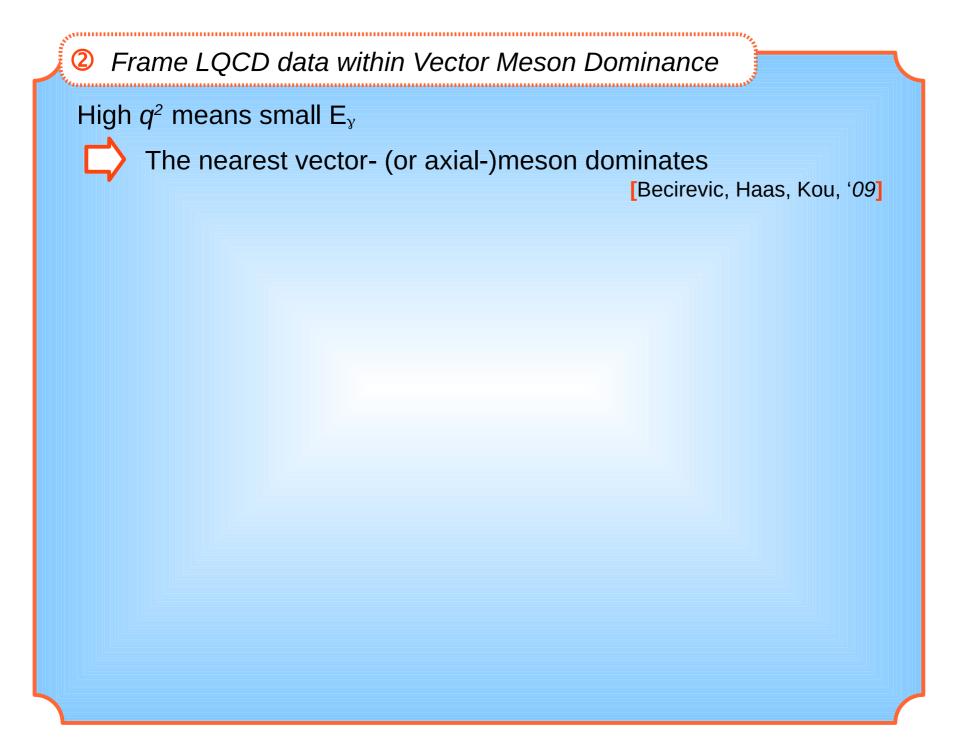
Our region of interest is high $q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$ In precisely this region, LQCD has directly computed $D_s \rightarrow \gamma$ FFs **1** Use $D_s \rightarrow \gamma$ LQCD data Our region of interest is high $q^2 \in [4.2, 5.0]^2$ GeV²

In precisely this region, LQCD has directly computed $D_s \rightarrow \gamma$ FFs

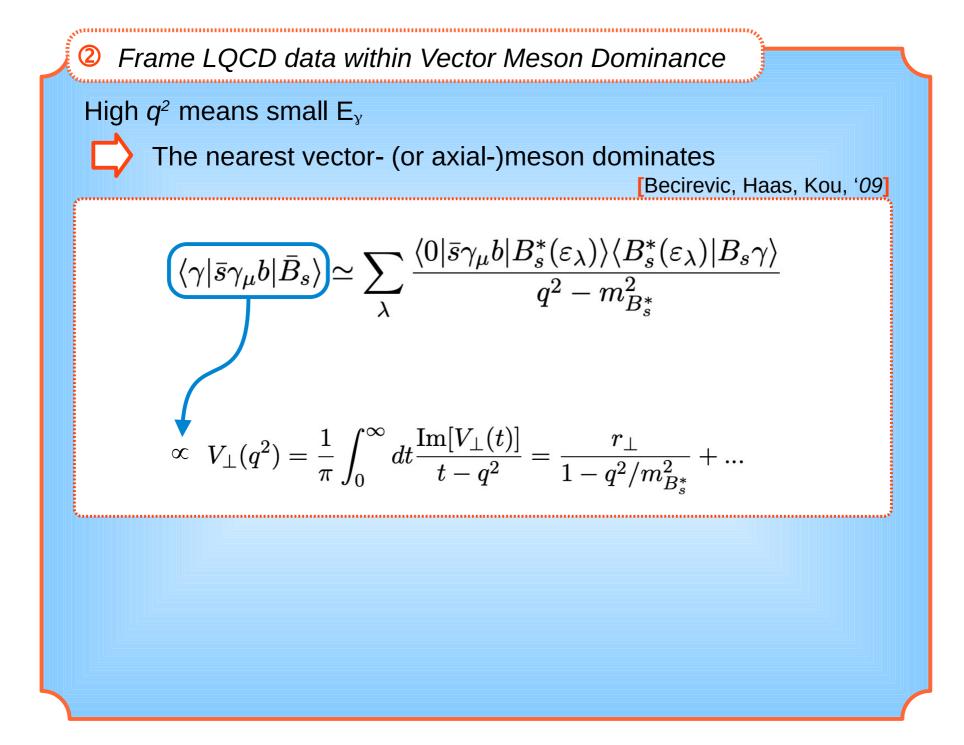
• High q² means low $x_{\gamma} \equiv 1 - q^2 / m_{Ds}^2$

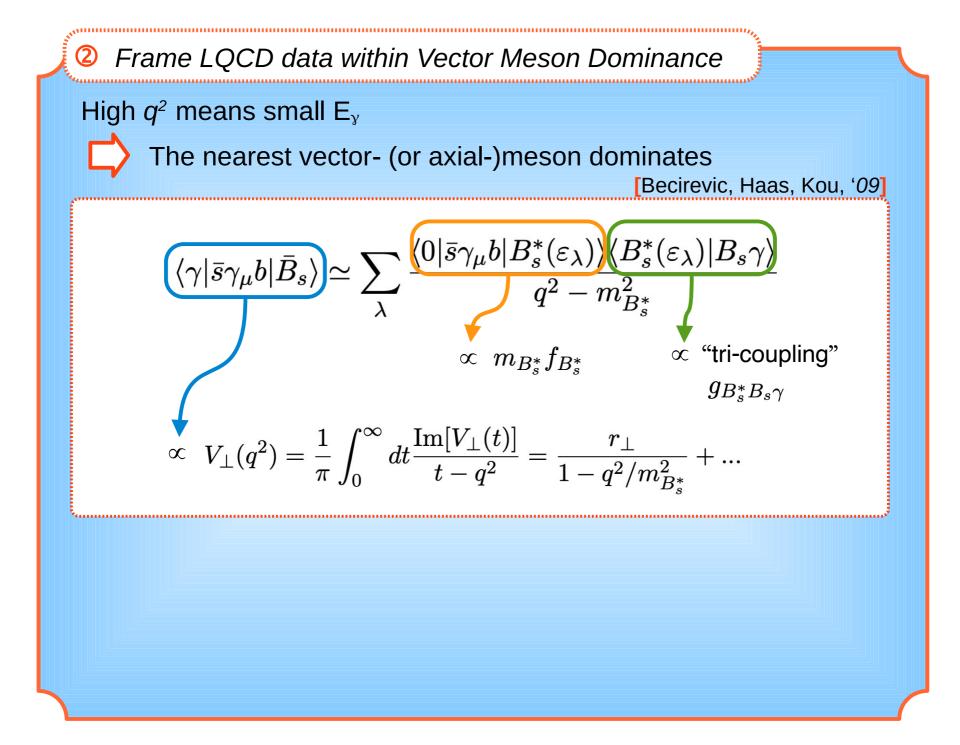
 $q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$ $x_{\gamma} \in [0.39, 0.13]$

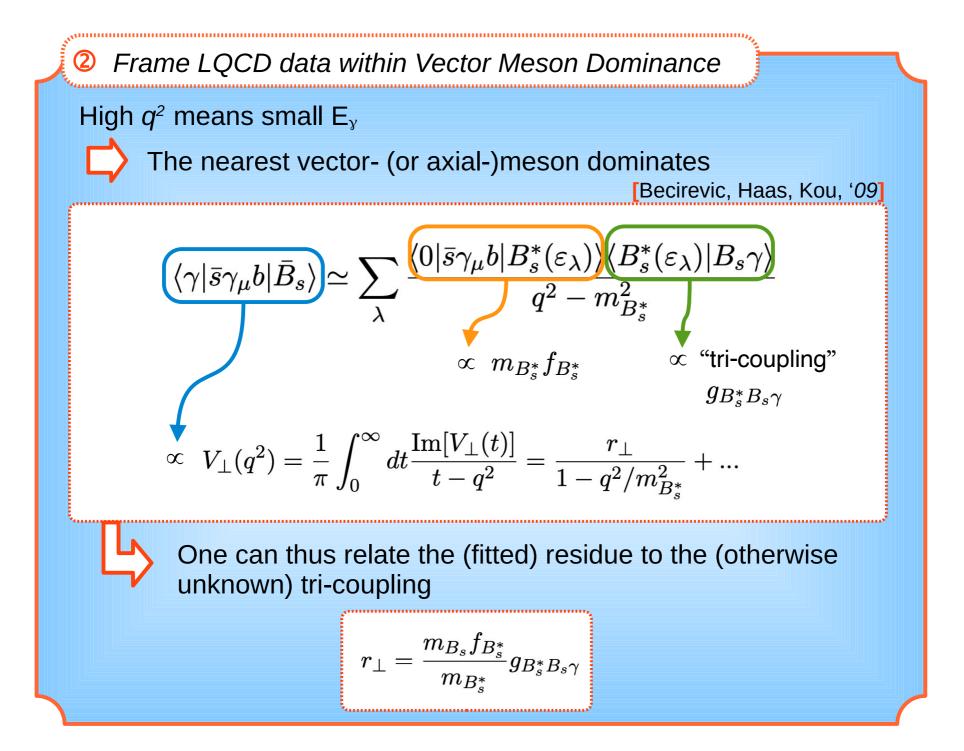




Frame LQCD data within Vector Meson Dominance
High q² means small E,
The nearest vector- (or axial-)meson dominates
Becirevic, Haas, Kou, '09
$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_s \rangle \simeq \sum_{\lambda} \frac{\langle 0 | \bar{s} \gamma_{\mu} b | B_s^* (\varepsilon_{\lambda}) \rangle \langle B_s^* (\varepsilon_{\lambda}) | B_s \gamma \rangle}{q^2 - m_{B_s}^2}$$





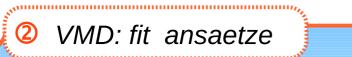


VMD: fit ansaetze

(2)

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

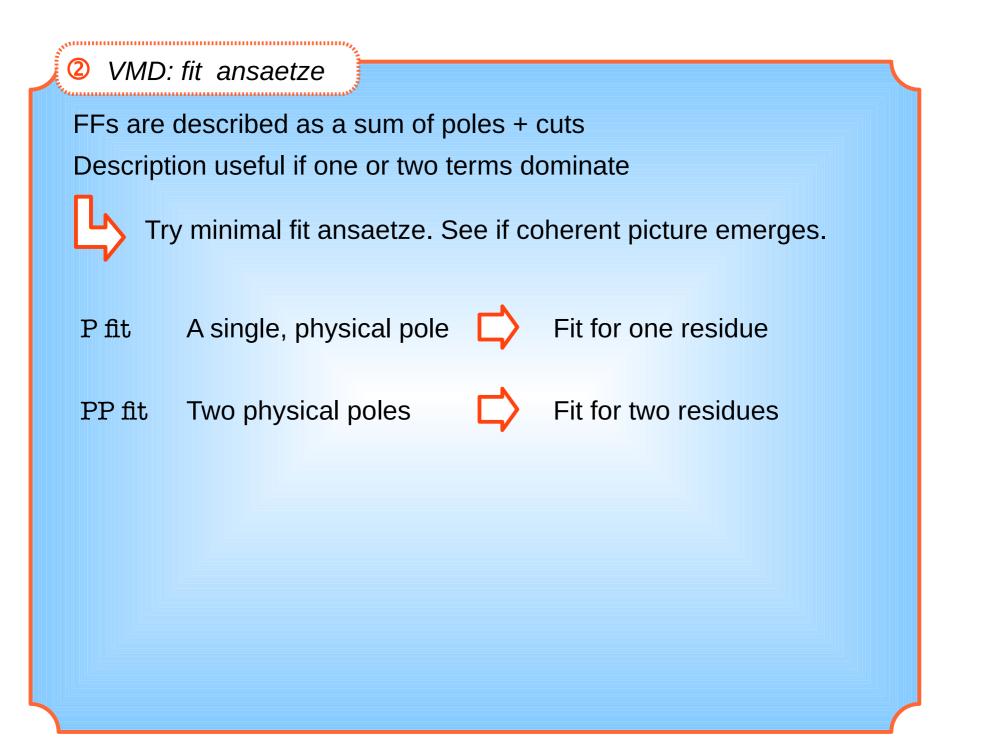
Try minimal fit ansaetze. See if coherent picture emerges.



FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

Try minimal fit ansaetze. See if coherent picture emerges.

P fit A single, physical pole 🚺 Fit for one residue



VMD: fit ansaetze
 FFs are described as a sum of poles + cuts
 Description useful if one or two terms dominate
 Try minimal fit ansaetze. See if coherent picture emerges.

- P fit A single, physical pole 🚺 Fit for one residue
- PP fit Two physical poles
 - Fit for two residues

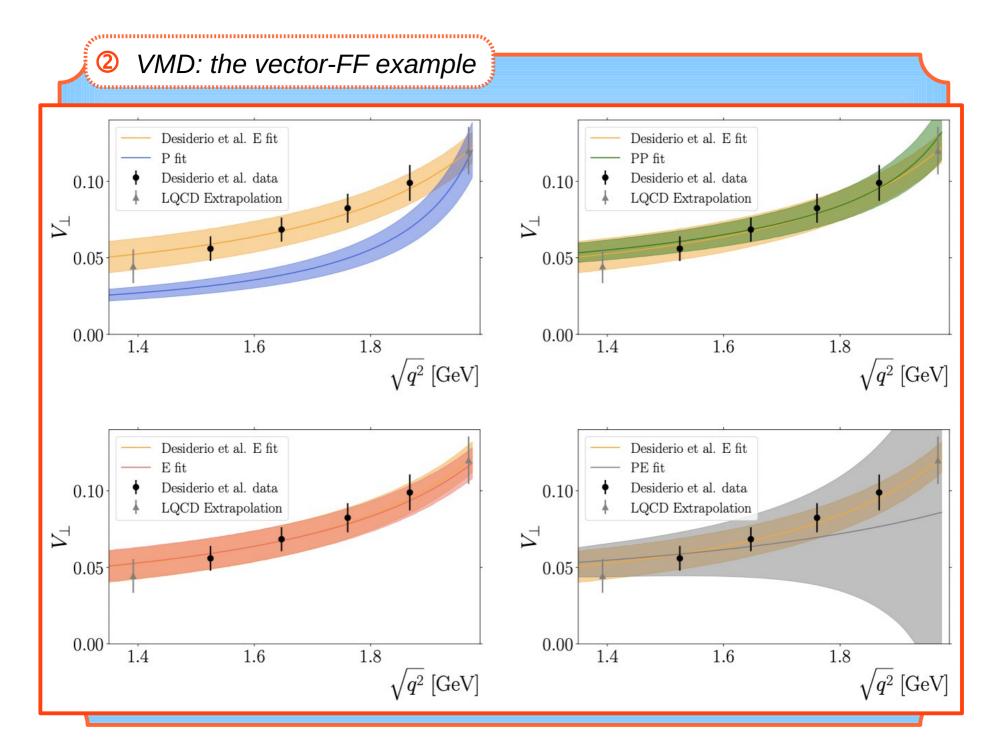
- E fit One effective pole
- Fit for residue & pole mass

VMD: fit ansaetze

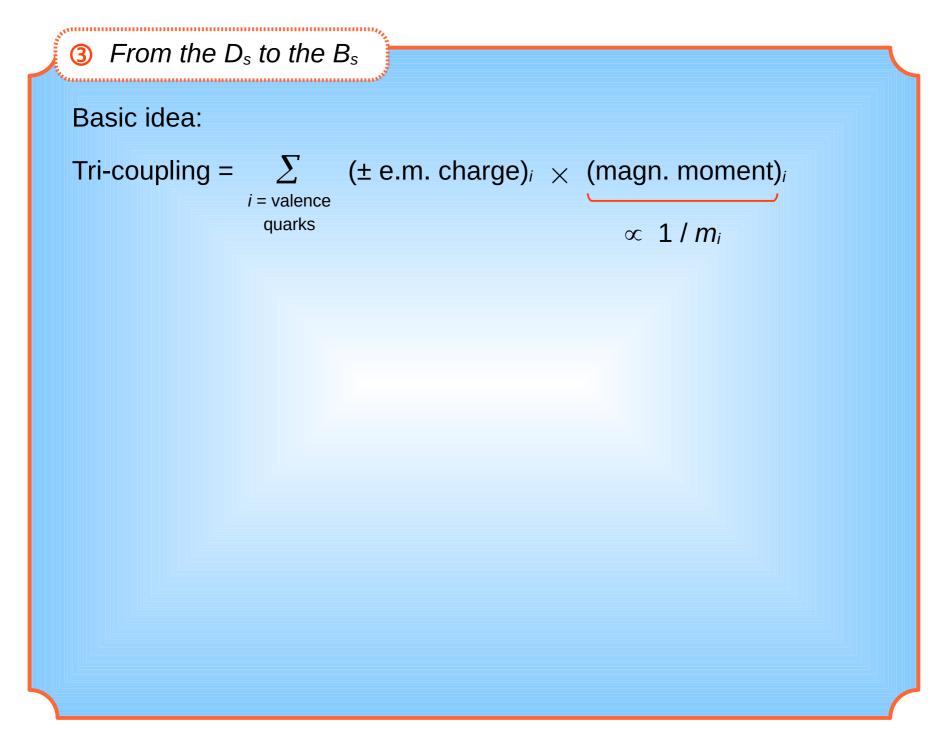
FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

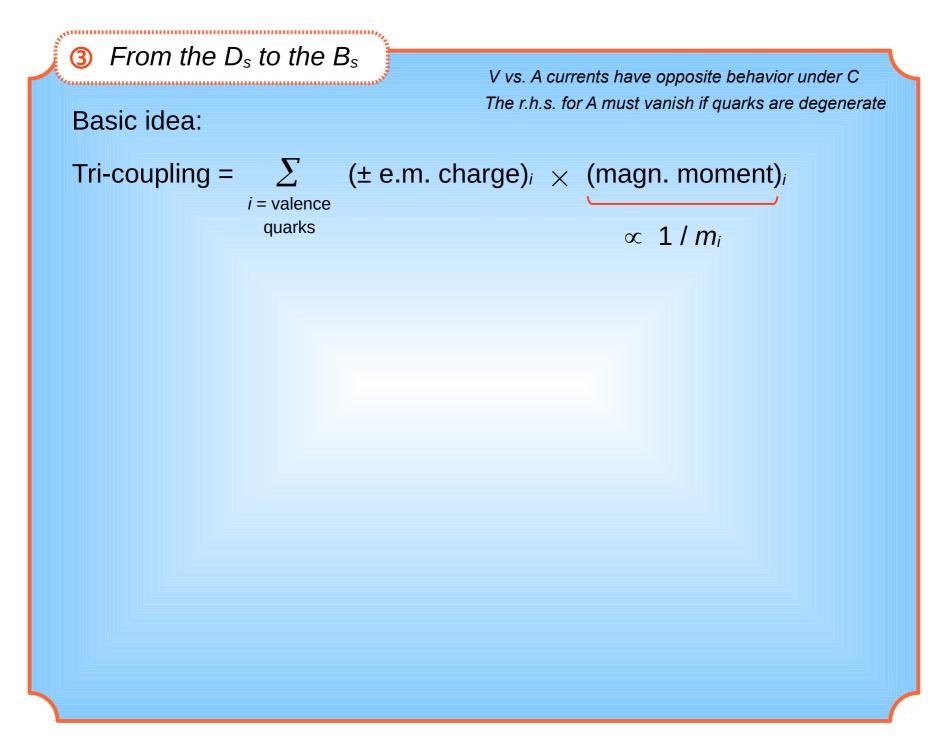
Try minimal fit ansaetze. See if coherent picture emerges.

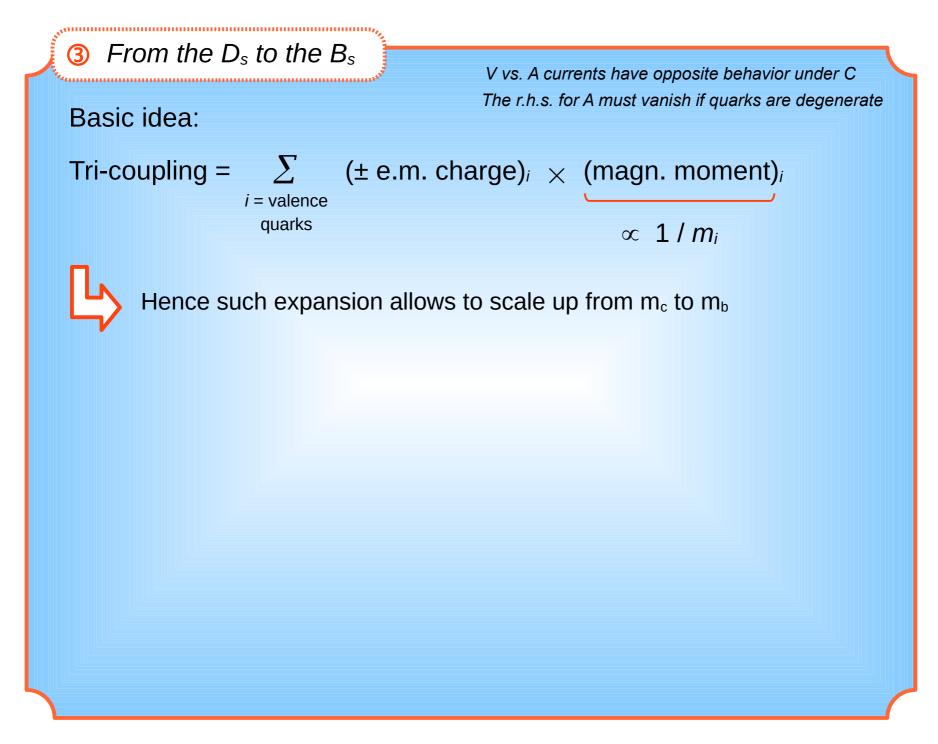
- P fit A single, physical pole 🖒 Fit for one residue
- PP fit Two physical poles Fit for two residues
- E fit One effective pole 🖒 Fit for residue & pole mass
- PE fit One phys & one eff pole

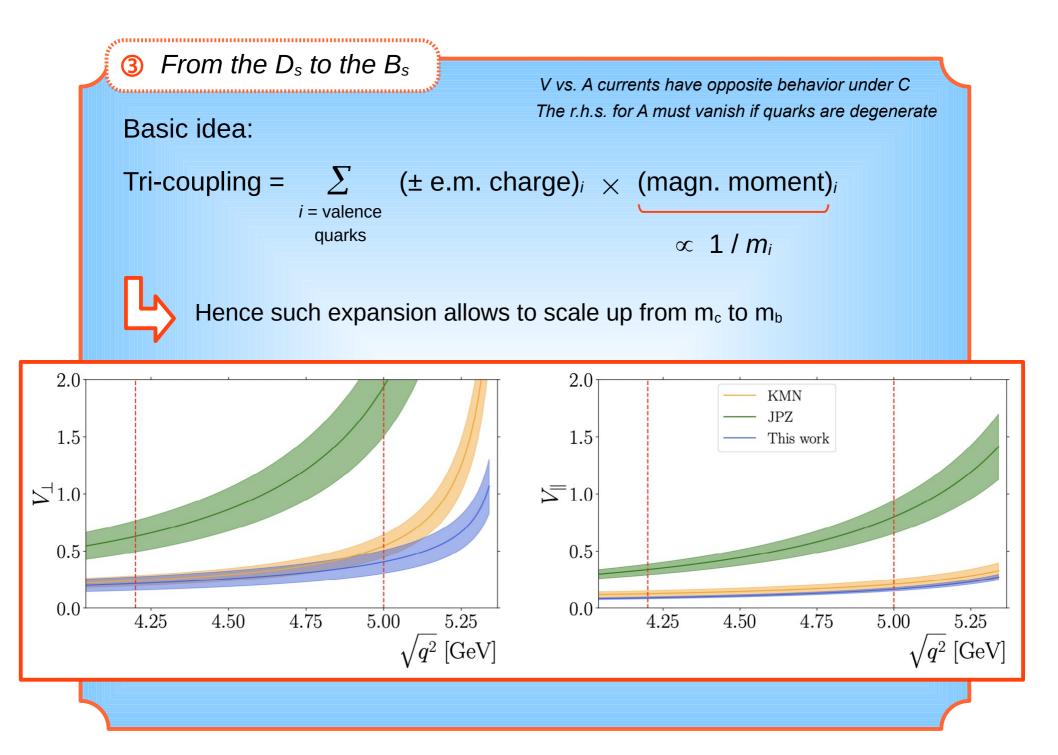


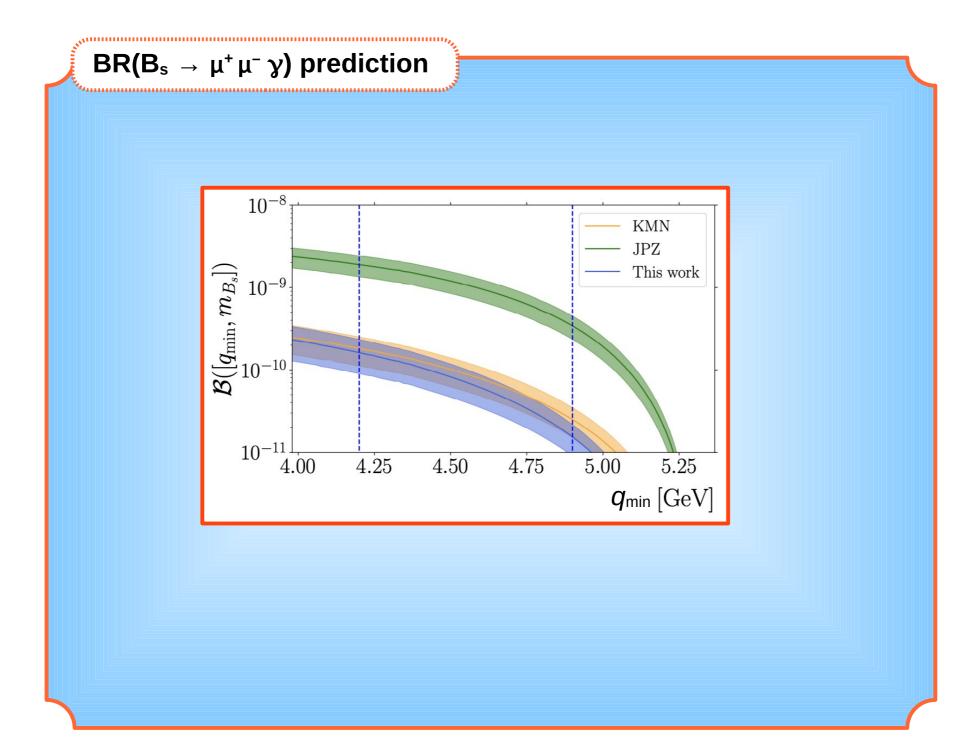
D. Guadagnoli, RAD@LHCb, 26 April, 2023

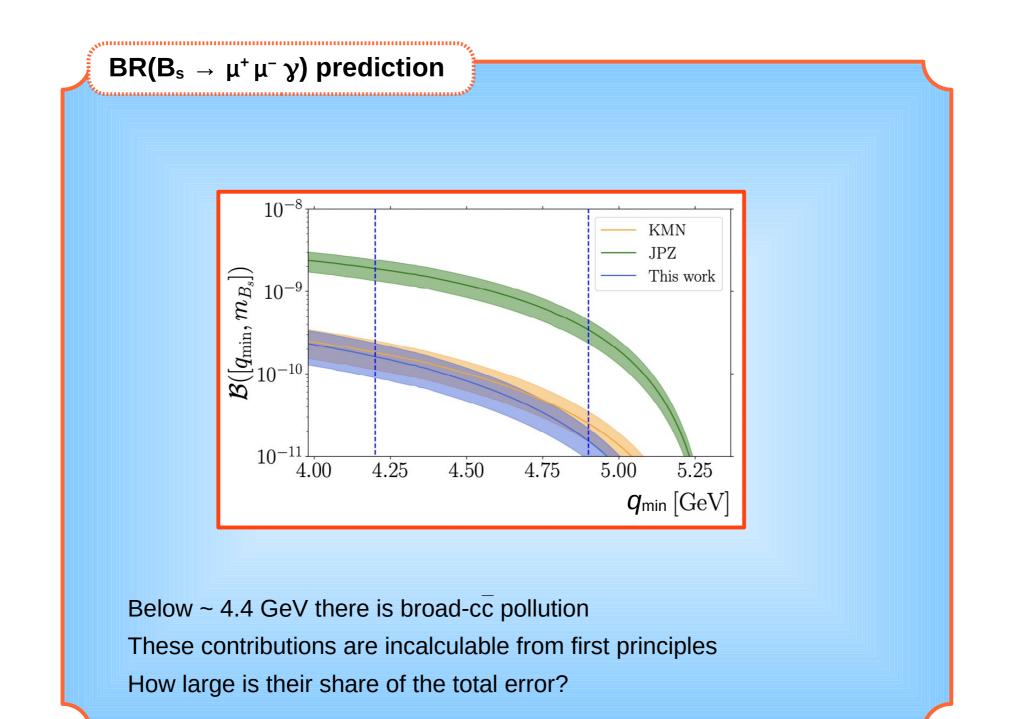


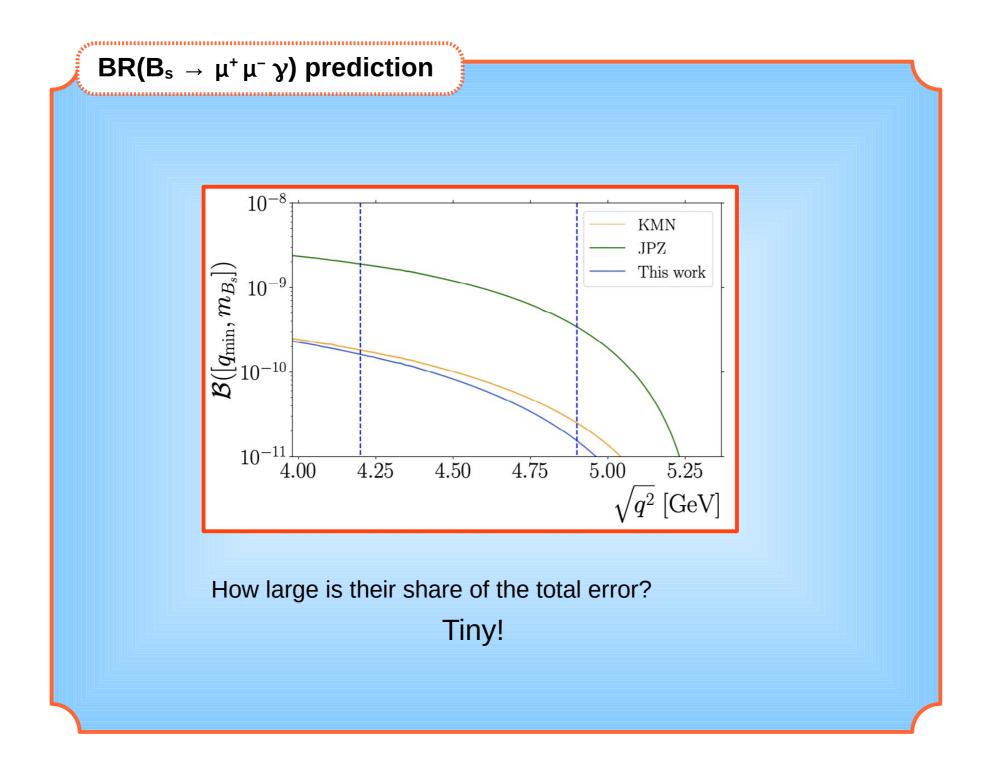








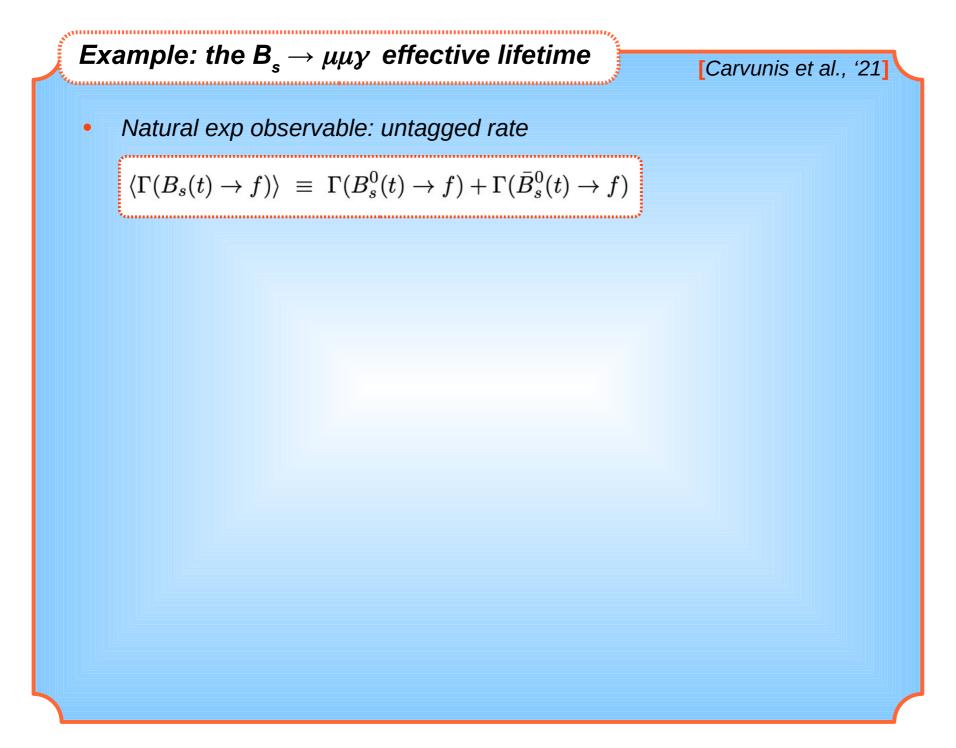


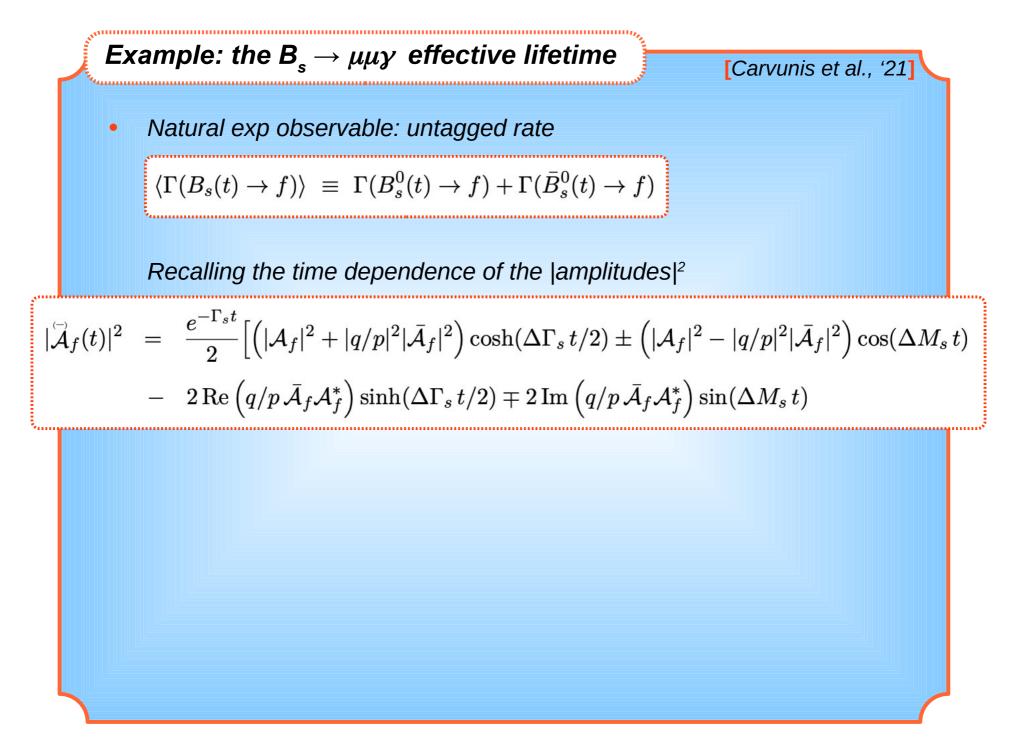


• Low impact of broad $c\overline{c}$ encouraging, given that this systematics inherently escapes a rigorous description

- Low impact of broad $c\overline{c}$ encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"

- Low impact of broad $c\overline{c}$ encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"
- Maybe worthwhile to look for more observables with such properties





$$\begin{aligned} \textbf{Example: the } \textbf{B}_{s} \rightarrow \mu\mu\gamma \ \textbf{effective lifetime} \\ \text{[Carvunis et al., '21]} \end{aligned}$$

$$& \textbf{Natural exp observable: untagged rate} \\ \hline \langle \Gamma(B_{s}(t) \rightarrow f) \rangle \equiv \Gamma(B_{s}^{0}(t) \rightarrow f) + \Gamma(\bar{B}_{s}^{0}(t) \rightarrow f) \\ \text{Recalling the time dependence of the |amplitudes|}^{2} \end{aligned}$$

$$& |\vec{A}_{f}(t)|^{2} = \frac{e^{-\Gamma_{s}t}}{2} \Big[\Big(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cosh(\Delta\Gamma_{s}t/2) \pm \Big(|\mathcal{A}_{f}|^{2} - |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \cos(\Delta M_{s}t) \\ & - 2 \operatorname{Re} \Big(q/p \, \bar{\mathcal{A}}_{f} \mathcal{A}_{f}^{*} \Big) \sinh(\Delta\Gamma_{s}t/2) \mp 2 \operatorname{Im} \Big(q/p \, \bar{\mathcal{A}}_{f} \mathcal{A}_{f}^{*} \Big) \sin(\Delta M_{s}t) \end{aligned}$$

$$& \textbf{yields the following quantity sensitive to new CPV} \\ \hline \mathcal{A}_{\Delta\Gamma_{s}}^{f} = \frac{-2 \int_{\mathrm{PS}} \operatorname{Re} \Big(q/p \, \bar{\mathcal{A}}_{f} \mathcal{A}_{f}^{*} \Big) \\ & \int_{\mathrm{PS}} \Big(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\bar{\mathcal{A}}_{f}|^{2} \Big) \end{aligned}$$

$$\begin{aligned} \textbf{Example: the } \textbf{B}_{s} \rightarrow \mu\mu\gamma \text{ effective lifetime} \\ \text{[Carvunis et al., '21]} \end{aligned}$$

$$\text{Natural exp observable: untagged rate} \\ \overline{\langle \Gamma(B_{s}(t) \rightarrow f) \rangle} &\equiv \Gamma(B_{s}^{0}(t) \rightarrow f) + \Gamma(\bar{B}_{s}^{0}(t) \rightarrow f) \\ \text{Recalling the time dependence of the |amplitudes|}^{2} \end{aligned}$$

$$|\vec{A}_{f}(t)|^{2} &= \frac{e^{-\Gamma_{s}t}}{2} \Big[\Big(|A_{f}|^{2} + |q/p|^{2} |\bar{A}_{f}|^{2} \Big) \cosh(\Delta\Gamma_{s}t/2) \pm \Big(|A_{f}|^{2} - |q/p|^{2} |\bar{A}_{f}|^{2} \Big) \cos(\Delta M_{s}t) \\ - 2 \operatorname{Re} \Big(q/p \bar{A}_{f} A_{f}^{*} \Big) \sinh(\Delta\Gamma_{s}t/2) \mp 2 \operatorname{Im} \Big(q/p \bar{A}_{f} A_{f}^{*} \Big) \sin(\Delta M_{s}t) \end{aligned}$$

$$\textbf{yields the following quantity sensitive to new CPV } \\ \overline{A}_{\Delta\Gamma_{s}}^{f} &= \frac{-2 \int_{\mathrm{PS}} \operatorname{Re} \Big(q/p \bar{A}_{f} A_{f}^{*} \Big) \\ \overline{f_{\mathrm{PS}} \Big(|A_{f}|^{2} + |q/p|^{2} |\bar{A}_{f}|^{2} \Big)} \end{aligned}$$

$$\textbf{A}_{\mathrm{Ar}} \text{ can be extracted from (an accurate measurement of) the effective lifetime} \end{aligned}$$

- $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects
- It's new never measured

- $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects
- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2

Conclusions

...............................

- $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects
- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs

Conclusions

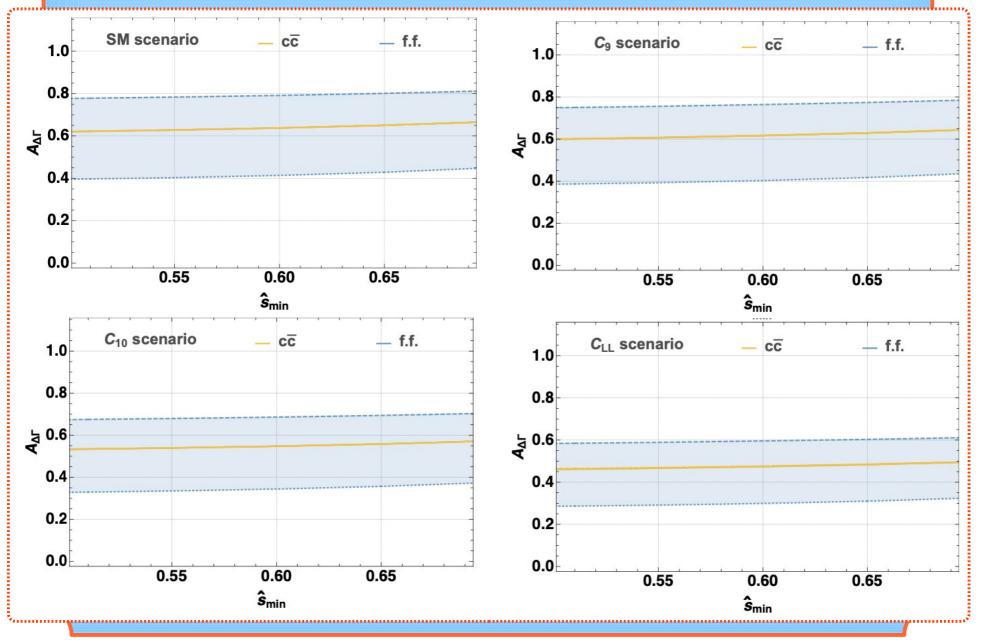
- $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects
- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method

Conclusions

..............................

- $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects
- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method
 - Preferred region for lattice QCD

 $\begin{array}{l} \textbf{Impact of broad cc} \qquad [Carvunis et al., '21] \\ \bullet \quad \text{Parameterize the effect most generally (e.g. discussion in [Lyon, Zwicky, '14])} \\ \hline C_9 \rightarrow C_9 - \frac{9\pi}{\alpha^2} \bar{C} \sum_V |\eta_V| e^{i\delta_V} \frac{\hat{m}_V \mathcal{B}(V \rightarrow \mu^+ \mu^-) \hat{\Gamma}_{\text{tot}}^V}{\hat{q}^2 - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_{\text{tot}}^V} \\ \hline - |\eta_V| \in [1, 3] \& \delta_V \in [0, 2\pi) \quad (\text{uniformly and independently for the 5 resonances}) \\ \bullet \quad \text{for } s_{min} \in [0.5, 0.7] \quad m_{Bs}^2 \quad \begin{bmatrix} S_{\Psi(2S), \Psi(3770), \Psi(4040), \Psi(4160), \Psi(4415)} \\ = \{0.47, 0.49, 0.57, 0.61, 0.68\} \end{bmatrix} \\ \bullet \quad \text{for all TH scenarios} \end{aligned}$



[Carvunis et al., '21]

• Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$

But broad-cc shift to C_9 typically O(5%) – and with random phase

Far from obvious why such a small impact on $A_{\Delta\Gamma}$

- Closer look (App. D for an analytic understanding)
 Cancellation is a conspiracy between
 - Complete dominance of contributions quadratic in C₉ and C₁₀
 - Multiplying f.f.'s $F_V, F_A \in \mathbb{R}$
 - Broad cc can be treated as small modif. of (numerically large) C_9

Ease cancellations between num & den in $A_{\Delta\Gamma}$

Radiative leptonic FFs in LQCD

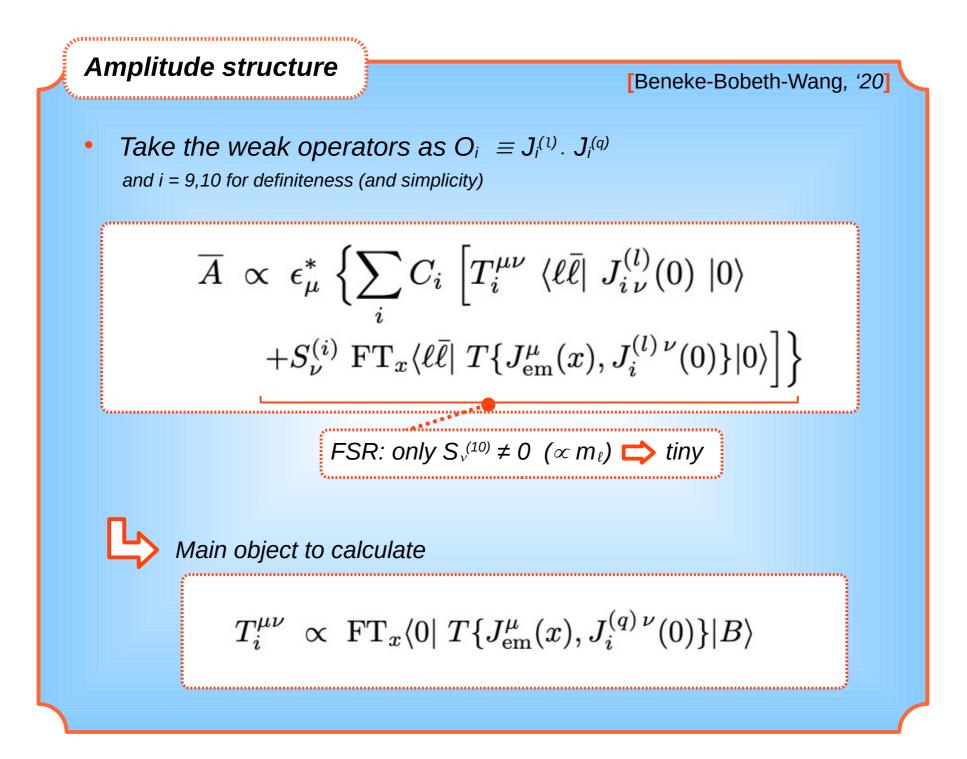
Large E_{γ}

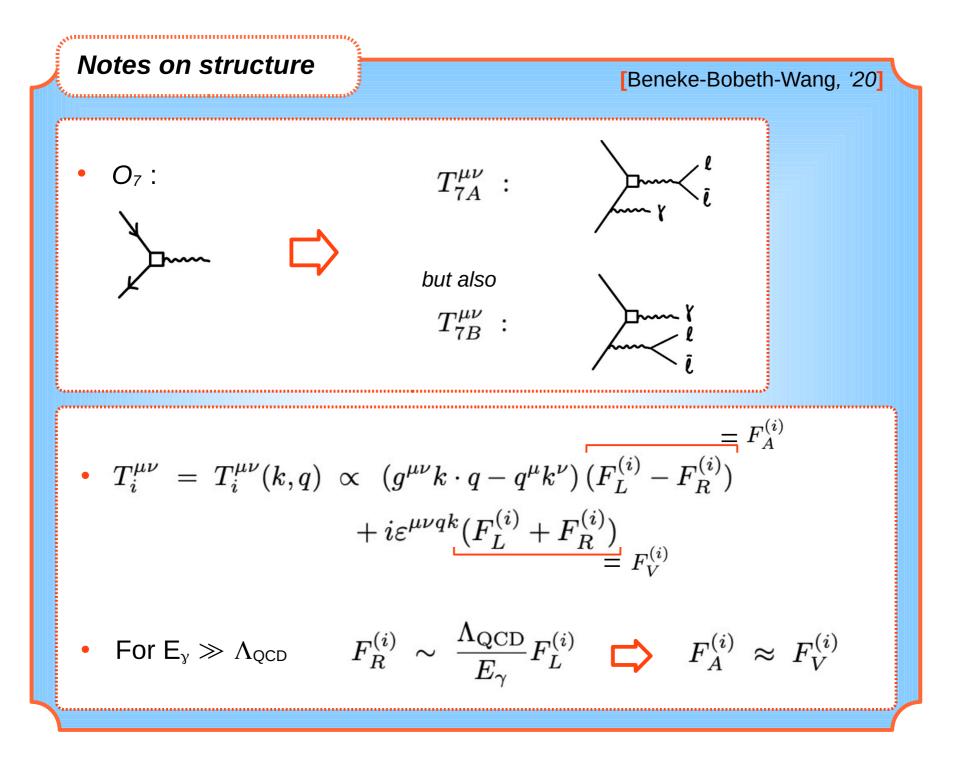
 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior

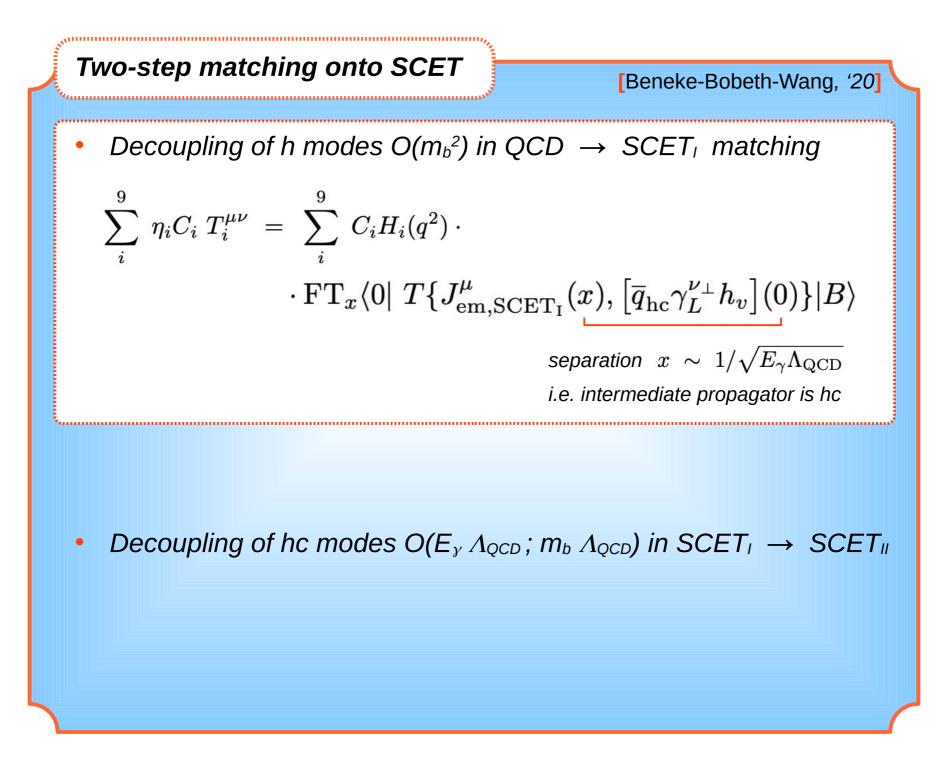
[Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial - e.g. it doesn't seem to hold if there are hadronic final states

 However, the low-q² spectrum is dominated by resonant contributions (~98% of the BR), that LQCD is unable to capture



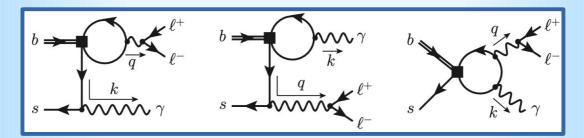




[Beneke-Bobeth-Wang, '20]

local

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET, correlator at tree level
 - annihilation-type insertions of 4q operators



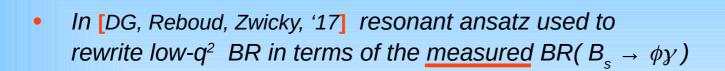
- Two soft FFs
 - $\xi(E_{\gamma})$: computable as in $B_u \rightarrow \ell \vee \gamma$ [Beneke-Rohrwild, '11]
 - For B-type contributions: $\tilde{\xi}(E_{\gamma})$ Its Im develops resonances, thus escaping a factorization description

Resonances

[Beneke-Bobeth-Wang, '20]

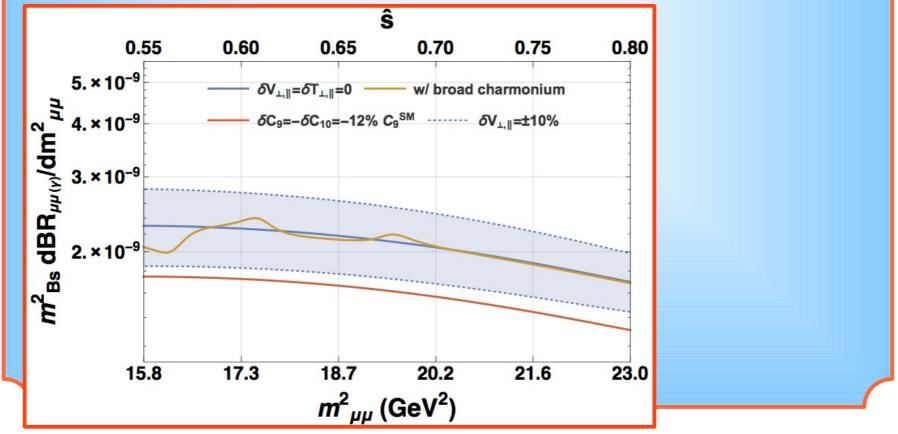
- $T_{7B}^{\mu\nu}$ leads to \overline{A}_{res}
 - standard spectral repr. (à la BW)
 - formally power-suppressed

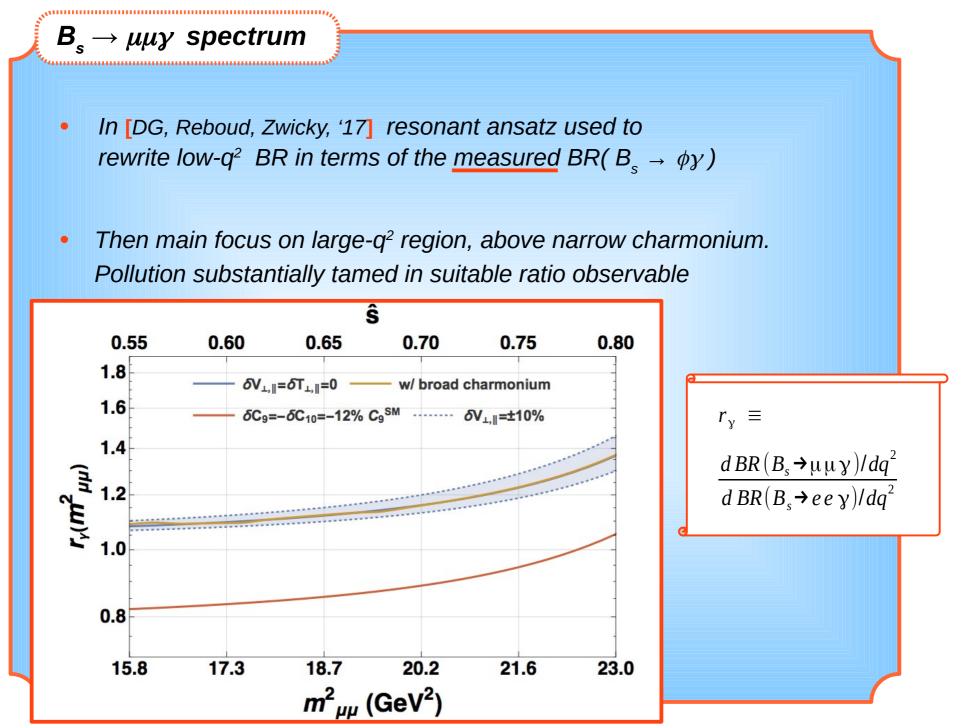
hence inclusion won't lead to double counting of some short-distance contributions



 $B_{\xi} \rightarrow \mu\mu\gamma$ spectrum

Then main focus on large-q² region, above narrow charmonium.
 Broad-charmonium pollution estimated with similar resonant ansatz





D. Guadagnoli, RAD@LHCb, 26 April, 2023