Non-Invertible Naturalness

Sungwoo Hong

Korea Advanced Institute of Science and Technology (KAIST)

(2211.07639 + Work in Progress) With Clay Córdova, Seth Koren, and Kantaro Ohmori

The 5th NPKI Workshop

Generalized Global Symmetries!

Generalized Global Symmetries!

Introduction to Generalized Global Symmetries in QFT and Particle Physics

T. Daniel Brennan^a, Sungwoo Hong^b

^aDepartment of Physics, University of California, San Diego, CA, 92093, USA ^bDepartment of Physics, KAIST, Daejeon, 34141, Korea

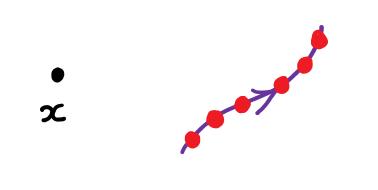
E-mail: tbrennan@ucsd.edu, sungwooh@kaist.ac.kr

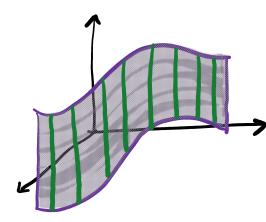
ABSTRACT: Generalized symmetries (also known as categorical symmetries) is a newly developing technique for studying quantum field theories. It has given us new insights into the structure of QFT and many new powerful tools that can be applied to the study of particle phenomenology. In these notes we give an exposition to the topic of generalized/categorical symmetries for high energy phenomenologists although the topics covered may be useful to the broader physics community. Here we describe generalized symmetries without the use of category theory and pay particular attention to the introduction of discrete symmetries and their gauging.

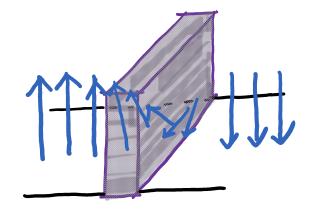
Generalized Global Symmetries!

Higher-form symmetries

Various extended objects appear in broad class of theories.







Local operator e.g. particle **0-form** symmetry

Line operator e.g. Wilson loop 't Hooft loop **1-form** symmetry Surface operator e.g. Cosmic string **2-form symmetry** Volume operator e.g. Domain Wall **3-form symmetry**

Consider a massless QED: $\psi_{-,}\psi_{+}$ charged under gauged U(1)

Consider a massless QED: $\psi_{-}\psi_{+}$ charged under gauged U(1)

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \quad \Rightarrow \quad \partial^{\mu}J_{\mu} = \frac{N_{f}}{32\pi^{2}}\epsilon^{\alpha\beta\gamma\delta}F_{\alpha\beta}F_{\gamma\delta}$$

Consider a massless QED: $\psi_{-}\psi_{+}$ charged under gauged U(1)

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \Rightarrow d * J_{1} = \frac{N_{f}}{8\pi^{2}} F \wedge F$$

Consider a massless QED: $\psi_{-}\psi_{+}$ charged under gauged U(1)

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \quad \Rightarrow \quad \partial^{\mu}J_{\mu} = \frac{N_{f}}{32\pi^{2}}\epsilon^{\alpha\beta\gamma\delta}F_{\alpha\beta}F_{\gamma\delta}$$

"Old days", we interpret this as: $U(1)_A \rightarrow Z_{N_f}$

Consider a massless QED: $\psi_{-}\psi_{+}$ charged under gauged U(1)

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \quad \Rightarrow \quad \partial^{\mu}J_{\mu} = \frac{N_{f}}{32\pi^{2}}\epsilon^{\alpha\beta\gamma\delta}F_{\alpha\beta}F_{\gamma\delta}$$

"Old days", we interpret this as: $U(1)_A \rightarrow Z_{N_f}$

Now, we say that $U(1)_A \rightarrow Z_{N_f}$ (invertible) + {non-invertible}

2205.05086 (Yichul Choi, Ho Tat Lam, Shu-Heng Shao), 2205.06243 (Clay Córdova, Kantaro Ohmori)

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \Rightarrow d * J_{1} = \frac{N_{f}}{8\pi^{2}} F \wedge F$$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2}$

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \Rightarrow d * J_{1} = \frac{N_{f}}{8\pi^{2}} F \wedge F$$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2}$

$$\psi(\alpha) = e^{i\alpha} \psi(\alpha)$$

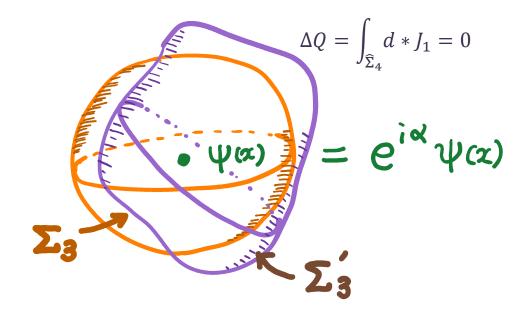
$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$$
$$U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$$
$$\langle U(\alpha, \Sigma_3) \psi(x) \rangle \sim e^{i\alpha} \psi(x)$$

"Symmetry Defect Operator"

 \exists global $U(1)_A$ with Adler-Bell-Jackiw (ABJ) anomaly

$$\psi_{-} \rightarrow e^{i\alpha}\psi_{-}, \quad \psi_{+} \rightarrow e^{i\alpha}\psi_{+} \Rightarrow d * J_{1} = \frac{N_{f}}{8\pi^{2}} F \wedge F$$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2}$



$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$$
$$U(\alpha, \Sigma_2) = e^{i\alpha Q(\Sigma_3)}$$

 $\langle U(\alpha,\Sigma_3)\psi(x)\rangle\sim e^{i\alpha}\psi(x)$

"Symmetry Defect Operator"

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$

$$S_{defect} = \frac{iN}{4\pi} \int_{\Sigma_3} C \wedge dC$$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$
 $U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$
 $U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$
 $U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$

$$4\pi J_{\Sigma_3} + \frac{iN}{2\pi} \int_{\Sigma_3} C \wedge B_2$$

$$S_{inflow} = -\frac{2\pi i p}{N} \int_{M_4} \frac{\mathcal{P}(B_2)}{2}$$

$$C \to C + \frac{1}{N}\epsilon_1, \int \frac{\epsilon_1}{2\pi} \in Z$$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2} - \frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $U(\alpha, \Sigma_3) = e^{iQ(\Sigma_3)}$
 $U(\alpha, \Sigma_3) = e^{iQ(\Sigma_3)}$
 t 'Hooft anomaly of $Z_N^{(1)}$ 1-form global symmetry
 $S_{defect} = \frac{iN}{4\pi} \int_{\Sigma_3} C \wedge dC$
 $= -\frac{2\pi i p}{N} \int_{M_4} \frac{\mathcal{P}(B_2)}{2} \to -\frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $+\frac{i}{2\pi} \int_{\Sigma_3} C \wedge dA$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2} - \frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $U(\alpha, \Sigma_3) = e^{iQ(\Sigma_3)}$
 t 'Hooft anomaly of $Z_N^{(1)}$ 1-form global symmetry
 $S_{defect} = \frac{iN}{4\pi} \int_{\Sigma_3} C \wedge dC$
 $s_{inflow} = -\frac{2\pi i p}{N} \int_{M_4} \frac{\mathcal{P}(B_2)}{2} \to -\frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $+ \frac{i}{2\pi} \int_{\Sigma_3} C \wedge dA$
Gauging 1-form $Z_N^{(1)}$ of 3d TQFT through the dynamical gauge field $F = dA$
 $= identifying 1-form $Z_N^{(1)}$ symmetry with "bulk" magnetic 1-form symmetry$

Under
$$\alpha = \frac{2\pi}{k}$$
, $S \to S + \frac{2\pi i N_f}{k} \int_{M_4} \frac{F \wedge F}{8\pi^2} - \frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$
 $U(\alpha, \Sigma_3) = e^{iQ(\Sigma_3)}$
 $U(\alpha, \Sigma_3) = e^{iQ(\Sigma_3)}$
 t 'Hooft anomaly of $Z_N^{(1)}$ 1-form global symmetry
 $S_{defect} = \frac{iN}{4\pi} \int_{\Sigma_3} C \wedge dC$
 $s_{inflow} = -\frac{2\pi i p}{N} \int_{M_4} \frac{\mathcal{P}(B_2)}{2} \to -\frac{2\pi i p}{N} \int_{M_4} \frac{F \wedge F}{8\pi^2}$
 $+ \frac{i}{2\pi} \int_{\Sigma_3} C \wedge dA$
 $U(\frac{2\pi}{k}, \Sigma_3) \to D_k = U(\frac{2\pi}{k}, \Sigma_3) \times \mathcal{A}^{N,p}(\frac{F}{2\pi})$ with $\frac{p}{N} = \frac{N_f}{k}$

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

e.g. G = SU(N)

electric 1-form: Z_N magnetic 1-form: none

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

e.g. $G = SU(N)/Z_L$

electric 1-form: $Z_{N/L}$ magnetic 1-form: Z_L

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_{L}$$
Global $U(1) \qquad \qquad \rightarrow \mathbb{Z}_{N} \text{ Instanton}$

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$

$$\in Z \qquad \qquad \in Z_{L}$$
Global $U(1)$

$$\to Z_{N} \text{ Instanton}$$

$$\to Z_{L} \text{ (fractional) Instanton}$$

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$

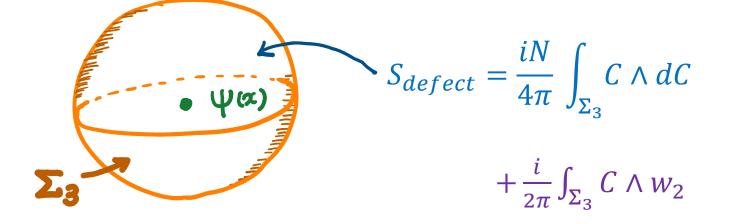
$$\in Z \qquad \qquad \in Z_{L}$$
Global $U(1)$

$$\to Z_{N} \text{ Instanton}$$

$$\to Z_{L} \text{ (fractional) Instanton}$$

Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$



Similar construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$

$$U\left(\frac{2\pi}{k},\Sigma_3\right) \to D_k = U\left(\frac{2\pi}{k},\Sigma_3\right) \times \mathcal{A}^{N,p}$$
 (w_2) with $\frac{p}{N} = \frac{A}{k}$

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0 (vs d * F = j)

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

- 2. Breaking of non-invertible symmetry
 - Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

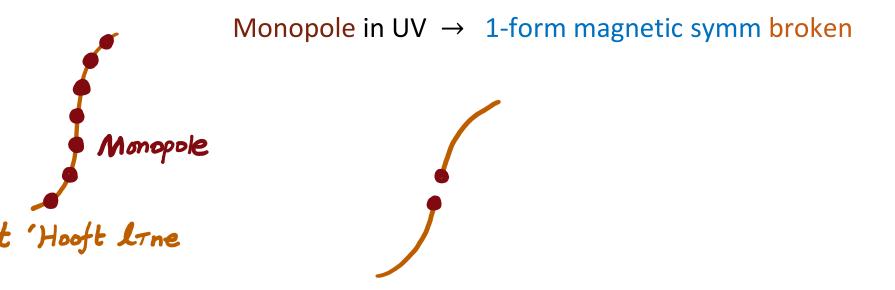
Monopole in UV \rightarrow 1-form magnetic symm broken

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

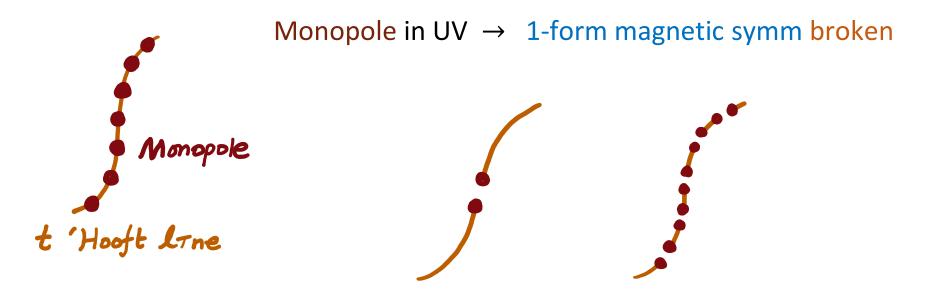
Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0



1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

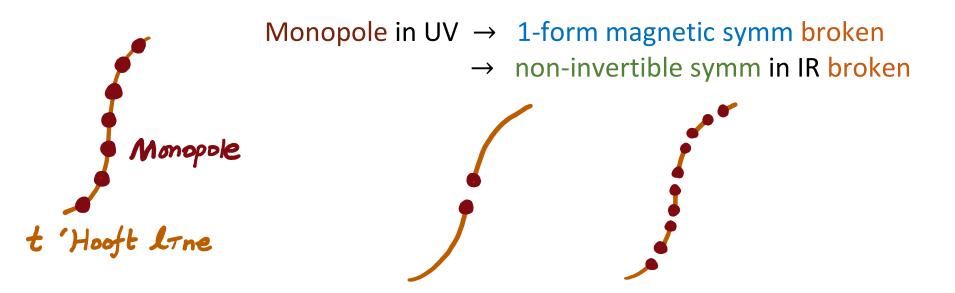
- 2. Breaking of non-invertible symmetry
 - Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0



1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

- 2. Breaking of non-invertible symmetry
 - Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

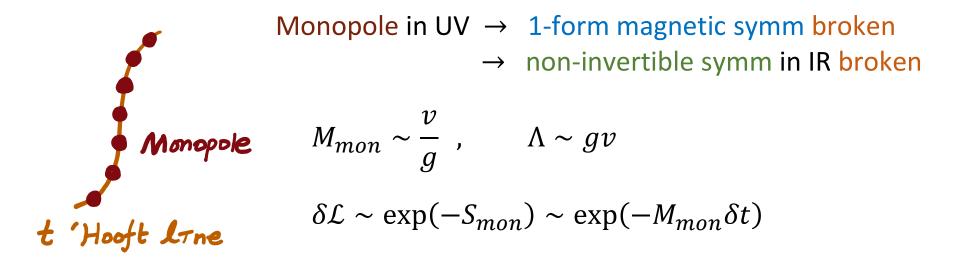


1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0



1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

Monopole in UV \rightarrow 1-form magnetic symm broken \rightarrow non-invertible symm in IR broken

$$M_{mon} \sim \frac{v}{g}$$
, $\Lambda \sim gv$
 $\delta \mathcal{L} \sim \exp(-S_{mon}) \sim \exp(-M_{mon}\delta t)$
 $\sim \exp(-\#/g^2) \sim \exp(-S_{inst})$

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

Monopole in UV \rightarrow 1-form magnetic symm broken → non-invertible symm in IR broken

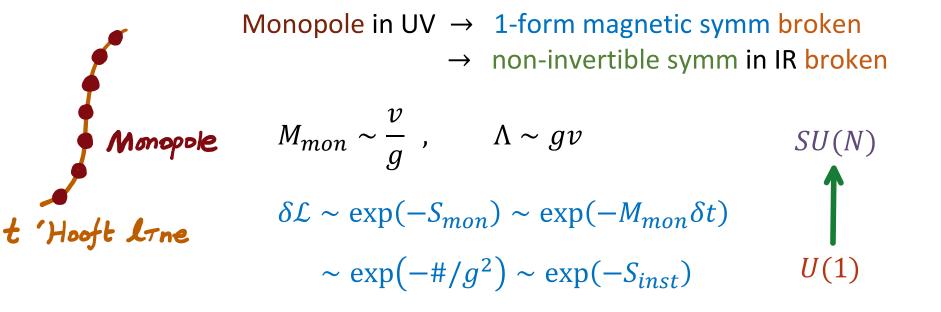
Monopole $M_{mon} \sim \frac{v}{g}$, $\Lambda \sim gv$ Hooft line $\delta \mathcal{L} \sim \exp(-S_{mon}) \sim \exp(-M_{mon}\delta t)$ $\sim \exp(-\#/g^2) \sim \exp(-S_{inst})$ U(1)

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

2. Breaking of non-invertible symmetry

Existence of non-invertible chiral symmetry relies on 1-form magnetic symmetry dF = 0

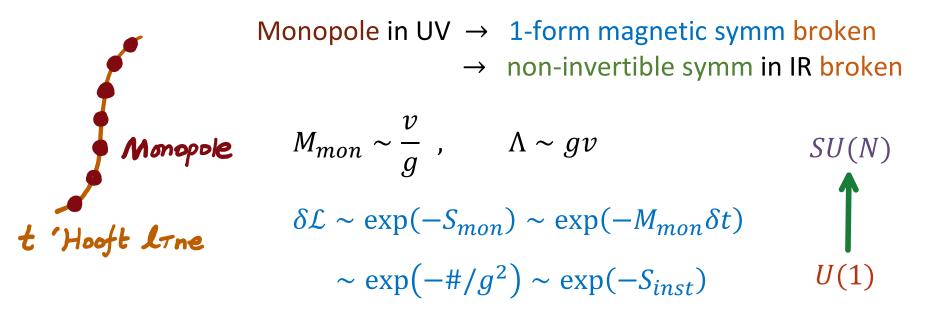


Non-Invertible Symmetry

1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

- 2. Breaking of non-invertible symmetry
 - \Rightarrow "Universal"

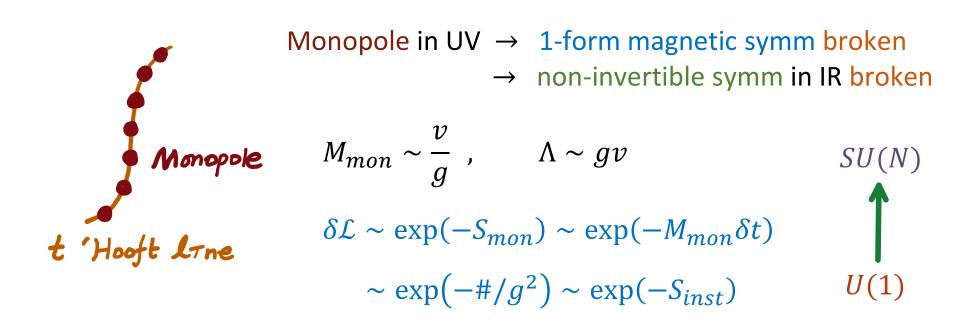


Non-Invertible Symmetry

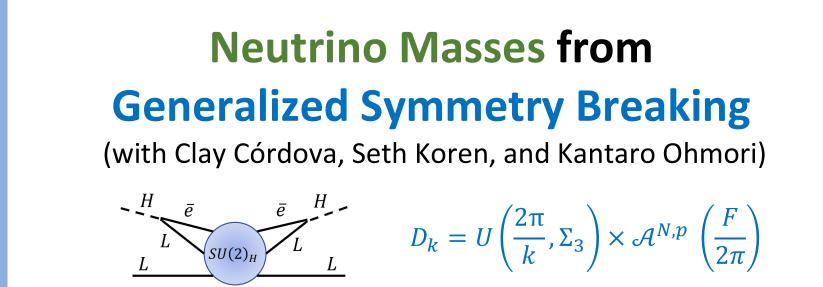
1. $D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$ does not have an inverse operation

$$D_k \times \overline{D}_k \sim \sum_S \xi(S) \exp\left(\frac{i}{2\pi N} \int_S F\right)$$

- 2. Breaking of non-invertible symmetry
 - \Rightarrow "Universal" UV Physics!

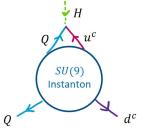


Non-Invertible Naturalness



Solving Strong CP Problem Non-invertibly

(with Clay Córdova and Seth Koren)



$$D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p} (w_2)$$

Non-Invertible Naturalness

Neutrino Masses from Generalized Symmetry Breaking

(with Clay Córdova, Seth Koren, and Kantaro Ohmori)

$$\underbrace{\frac{H}{L}}_{L} \underbrace{\bar{e}}_{SU(2)_{H}} \underbrace{\bar{e}}_{L} \underbrace{\bar{e}}_{L} \underbrace{D_{k}}_{L} = U\left(\frac{2\pi}{k}, \Sigma_{3}\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$$

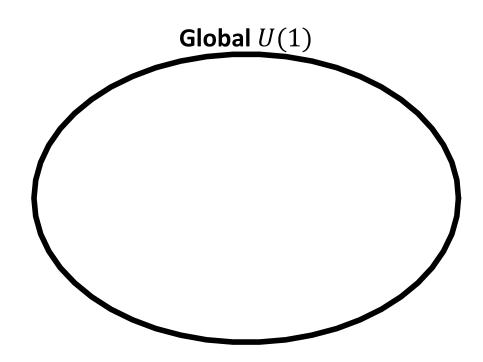
Solving Strong CP Problem Non-invertibly (with Clay Córdova and Seth Koren)

$$D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}(w_2)$$

No non-invertible symmetry in SM

No non-invertible symmetry in SM

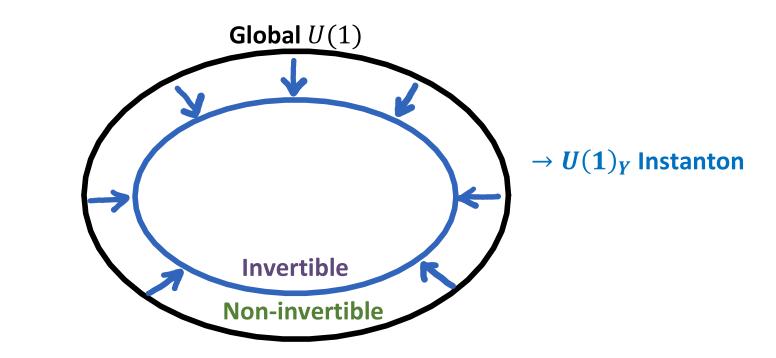
	$SU(2)_{L}^{2}$	$U(1)_{Y}^{2}$	$SU(3)_{C}^{2}$
$U(1)_B$	$N_g N_c$	$-18N_gN_c$	0
$U(1)_{L_k}$	1	-18	0
$U(1)_{L}$	Ng	$-18N_{g}$	0



No non-invertible symmetry in SM

No non-invertible symmetry in SM

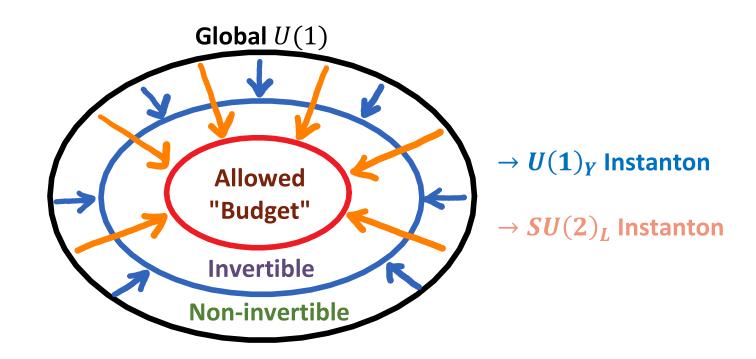
	$SU(2)_{L}^{2}$	$U(1)_{Y}^{2}$	$SU(3)_C^2$
$U(1)_B$	$N_g N_c$	$-18N_gN_c$	0
$U(1)_{L_k}$	1	-18	0
$U(1)_L$	Ng	$-18N_g$	0



No non-invertible symmetry in SM

No non-invertible symmetry in SM

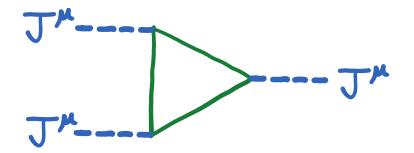
	$SU(2)_{L}^{2}$	$U(1)_{Y}^{2}$	$SU(3)_{C}^{2}$
$U(1)_B$	$N_g N_c$	$-18N_gN_c$	0
$U(1)_{L_k}$	1	-18	0
$U(1)_L$	Ng	$-18N_g$	0



1. Quantum Invertible Symmetry of SM :

$$U(1)_{L_e - L_{\mu}} \times U(1)_{L_{\mu} - L_{\tau}} \times \frac{U(1)_{B - N_c L}}{Z_{N_c}}$$

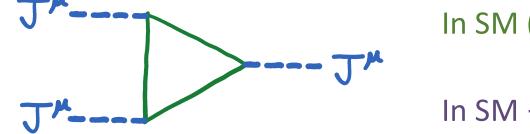
2. We can gauge a subgroup free of cubic t 'Hooft anomaly



1. Quantum Invertible Symmetry of SM :

$$U(1)_{L_e - L_{\mu}} \times U(1)_{L_{\mu} - L_{\tau}} \times \frac{U(1)_{B - N_c L}}{Z_{N_c}}$$

2. We can gauge a subgroup free of cubic t 'Hooft anomaly



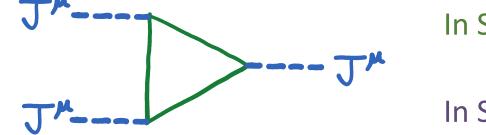
In SM (Majorana):
$$U(1)_{L_i-L_j}$$

In SM +N (Dirac): also $U(1)_{B-N_cL}$

1. Quantum Invertible Symmetry of SM :

$$\mathrm{U}(1)_{L_e-L_{\mu}} \times \boldsymbol{U}(1)_{\boldsymbol{L}_{\mu}-\boldsymbol{L}_{\tau}} \times \frac{\mathrm{U}(1)_{B-N_cL}}{Z_{N_c}}$$

2. We can gauge a subgroup free of cubic t 'Hooft anomaly



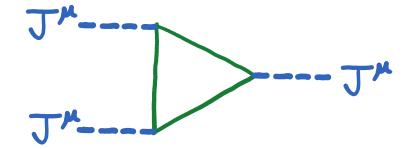
In SM (Majorana): $U(1)_{L_i-L_j}$ In SM +N (Dirac): also $U(1)_{B-N_cL}$

1. Quantum Invertible Symmetry of SM :

$$\mathrm{U}(1)_{L_e-L_{\mu}} \times \boldsymbol{U}(1)_{\boldsymbol{L}_{\mu}-\boldsymbol{L}_{\tau}} \times \frac{U(1)_{B-N_cL}}{Z_{N_c}}$$

 $U(1)_{B-N_aN_cL_e}/Z_{N_c}$

2. We can gauge a subgroup free of cubic t 'Hooft anomaly



In SM (Majorana): $U(1)_{L_i-L_j}$

In SM + N (Dirac): also $U(1)_{B-N_cL}$

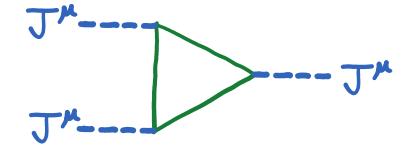
- 3. Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:
 - Invertible:

• Non-invertible: $U(1)_{L_e-L_{\mu}} (U(1)_{L_e-L_{\mu}} [U(1)_{L_{\mu}-L_{\tau}}]^2 = -1)$

1. Quantum Invertible Symmetry of SM :

$$\mathrm{U}(1)_{L_e-L_{\mu}} \times \boldsymbol{U}(1)_{\boldsymbol{L}_{\mu}-\boldsymbol{L}_{\tau}} \times \frac{U(1)_{B-N_cL}}{Z_{N_c}}$$

2. We can gauge a subgroup free of cubic t 'Hooft anomaly



In SM (Majorana): $U(1)_{L_i-L_j}$

In SM + N (Dirac): also $U(1)_{B-N_cL}$

- 3. Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:
 - Invertible: $U(1)_{B-N_qN_cL_e}/Z_{N_c}$

◦ Non-invertible: $U(1)_{L_e-L_u}$ ⊃ $Z_{N_a}^L$ (⊂ $U(1)_L$)

I will focus on Majorana case.
 (Dirac case works great as well)

- 1. I will focus on Majorana case. (Dirac case works great as well)
- 2. (Recall) Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:

 - Invertible: $U(1)_{B-N_qN_cL_e}/Z_{N_c}$
 - Non-invertible: $U(1)_{L_e-L_{\mu}}$ ⊃ $Z_{N_q}^L$ (⊂ $U(1)_L$)

- I will focus on Majorana case.
 (Dirac case works great as well)
- 2. (Recall) Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:

• Invertible: $U(1)_{B-N_gN_cL_e}/Z_{N_c}$

- Non-invertible: $U(1)_{L_e-L_{\mu}}$ ⊃ $Z_{N_g}^L$ (⊂ $U(1)_L$)
- 3. Forbidding M_{ν} by non-invertible symmetry

$$\mathcal{L} \sim \lambda_{ij} (HL_i) (HL_j) \sim M_{\nu}^{ij} \nu_i \nu_j$$

- I will focus on Majorana case.
 (Dirac case works great as well)
- 2. (Recall) Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:

○ Invertible: U(1)_{B-NgNcLe}/Z_{Nc}
 ○ Non-invertible: U(1)_{Le}-L_µ ⊃ Z^L_{Ng} (⊂ U(1)_L)

3. Forbidding M_{ν} by non-invertible symmetry

$$\mathcal{L} \sim \lambda_{ij} (HL_i) (HL_j) \sim M_{\nu}^{ij} \nu_i \nu_j$$

• $U(1)_{L_{\mu}-L_{\tau}}$ gauge invariance \Rightarrow only $(HL_{e})^{2}$, $(HL_{\mu})(HL_{\tau})$

- I will focus on Majorana case.
 (Dirac case works great as well)
- 2. (Recall) Symmetry of $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$:

○ Invertible: U(1)_{B-NgNcLe}/Z_{Nc}
 ○ Non-invertible: U(1)_{Le}-L_µ ⊃ Z^L_{Ng} (⊂ U(1)_L)

3. Forbidding M_{ν} by non-invertible symmetry

$$\mathcal{L} \sim \lambda_{ij} (HL_i) (HL_j) \sim M_{\nu}^{ij} \nu_i \nu_j$$

- $U(1)_{L_{\mu}-L_{\tau}}$ gauge invariance \Rightarrow only $(HL_{e})^{2}$, $(HL_{\mu})(HL_{\tau})$
- From invertible symmetry: $(HL_e)^2$ forbidden
- From non-invertible symmetry: Both $(HL_e)^2$, $(HL_\mu)(HL_\tau)$ forbidden

4. UV Completion

- non-perturbative breaking of non-invertible symmetry
- Embed $U(1)_{L_{\mu}-L_{\tau}} \subset SU(2)_H \times U(1)_Z$

4. UV Completion

- non-perturbative breaking of non-invertible symmetry
- Embed $U(1)_{L_{\mu}-L_{\tau}} \subset SU(2)_H \times U(1)_Z$

	$SU(2)_H$	$U(1)_Z$	$L_{\mu} - L_{\tau}$	$U(1)_{L}$
Φ	2	-1	$\begin{bmatrix} \Phi_e \\ \Phi_\tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	0
$L_{\mu e}$	2	+1	$\begin{bmatrix} L_{\mu} \\ L_{e_1} \end{bmatrix} = \begin{bmatrix} +1 \\ 0 \end{bmatrix}$	+1
$L_{E au}$	2	-1	$\begin{bmatrix} L_{e_2} \\ L_{\tau} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	+1
Ψ_L	—	0	0	-1
$\frac{\Psi_L}{ar{e}_{\mu e}}$	2	-1	$\begin{bmatrix} \bar{e}_1 \\ \bar{\mu} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	-1
$ar{e}_{E au}$	2	+1	$\begin{bmatrix} \bar{\tau} \\ \bar{\boldsymbol{e}}_2 \end{bmatrix} = \begin{bmatrix} +1 \\ 0 \end{bmatrix}$	-1
$\psi_{ar{e}}$	_	0	0	+1

4. UV Completion

- non-perturbative breaking of non-invertible symmetry
- Embed $U(1)_{L_{\mu}-L_{\tau}} \subset SU(2)_H \times U(1)_Z$
- $\mathcal{L} \supset y_{\mu} H L_{\mu e} \bar{e}_{\mu e} + y_{\tau} H L_{E\tau} \bar{e}_{E\tau} + \lambda_{L_1} \Phi L_{\mu e} \psi_L$

 $+\lambda_{L_2}\widetilde{\Phi}L_{E\tau}\psi_L+\lambda_{e_1}\widetilde{\Phi}\bar{e}_{\mu e}\psi_{\bar{e}}+\lambda_{e_2}\Phi\bar{e}_{E\tau}\psi_{\bar{e}}+\lambda_{\psi}\widetilde{H}\psi_L\psi_{\bar{e}}$

4. UV Completion

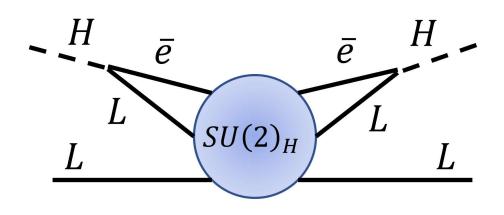
- non-perturbative breaking of non-invertible symmetry
- Embed $U(1)_{L_{\mu}-L_{\tau}} \subset SU(2)_H \times U(1)_Z$
- $\mathcal{L} \supset y_{\mu}HL_{\mu e}\bar{e}_{\mu e} + y_{\tau}HL_{E\tau}\bar{e}_{E\tau} + \lambda_{L_{1}}\Phi L_{\mu e}\psi_{L}$ $+\lambda_{L_{2}}\tilde{\Phi}L_{E\tau}\psi_{L} + \lambda_{e_{1}}\tilde{\Phi}\bar{e}_{\mu e}\psi_{\bar{e}} + \lambda_{e_{2}}\Phi\bar{e}_{E\tau}\psi_{\bar{e}} + \lambda_{\psi}\tilde{H}\psi_{L}\psi_{\bar{e}}$
- Classical symmetry: $U(1)_L \times \frac{U(1)_B}{Z_{N_c}} = U(1)_L \times \frac{U(1)_{B-N_cL}}{Z_{N_c}}$

4. UV Completion

- non-perturbative breaking of non-invertible symmetry
- Embed $U(1)_{L_{\mu}-L_{\tau}} \subset SU(2)_H \times U(1)_Z$
- $\mathcal{L} \supset y_{\mu}HL_{\mu e}\bar{e}_{\mu e} + y_{\tau}HL_{E\tau}\bar{e}_{E\tau} + \lambda_{L_{1}}\Phi L_{\mu e}\psi_{L}$ $+\lambda_{L_{2}}\widetilde{\Phi}L_{E\tau}\psi_{L} + \lambda_{e_{1}}\widetilde{\Phi}\bar{e}_{\mu e}\psi_{\bar{e}} + \lambda_{e_{2}}\Phi\bar{e}_{E\tau}\psi_{\bar{e}} + \lambda_{\psi}\widetilde{H}\psi_{L}\psi_{\bar{e}}$
- Classical symmetry: $U(1)_L \times \frac{U(1)_B}{Z_{N_c}} = U(1)_L \times \frac{U(1)_{B-N_cL}}{Z_{N_c}}$
- ABJ-anomalies:

 $\circ U(1)_L \to Z_{N_g-1}^L (SU(2)_H inst)$ $\circ U(1)_{B-N_cL} \to Z_{N_c(N_g-1)}^{B-N_cL} (SU(2)_H inst)$

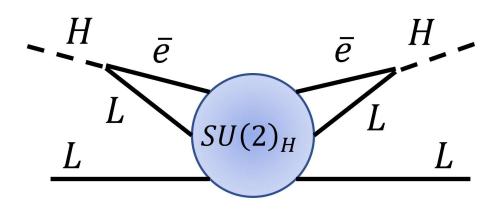
4. UV Completion



 $\boldsymbol{U(1)_L}\,SU(2)_H^2=2$

$$\mathcal{L} \supset y_{\mu} H L_{\mu e} \bar{e}_{\mu e} + y_{\tau} H L_{E\tau} \bar{e}_{E\tau}$$

4. UV Completion



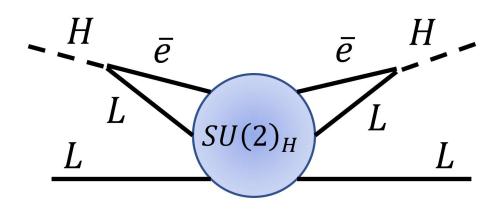
 $U(1)_L SU(2)_H^2 = 2$

$$\mathcal{L} \supset y_{\mu} H L_{\mu e} \bar{e}_{\mu e} + y_{\tau} H L_{E\tau} \bar{e}_{E\tau}$$

$$\mathcal{L} \sim \frac{y_{\tau} y_{\mu}}{v_{\Phi}} \ e^{-\frac{2\pi}{\alpha_H}} \widetilde{H} L_{\mu e} \ \widetilde{H} L_{E\tau}$$

$$\rightarrow y_{\tau} y_{\mu} \frac{v^2}{v_{\Phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_{\mu} v_{\tau} - \frac{1}{2} \sin 2\theta_L v_e v_e \right]$$

4. UV Completion

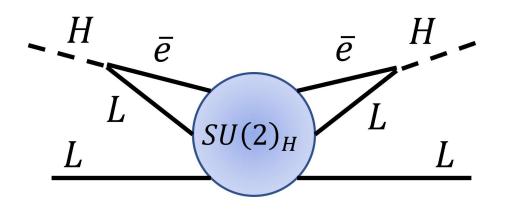


 $U(1)_L SU(2)_H^2 = 2$

- $SU(2)_H$ instanton breaks $U(1)_L \rightarrow \mathbb{Z}_2^L$
- Non-invertible: $Z_{N_g}^L = Z_3^L \subset U(1)_{L_e L_\mu}$
- : broken by instanton

• Invertible: $U(1)_{B-N_gN_cL_e}$?

4. UV Completion



 $U(1)_{L} SU(2)_{H}^{2} = 2$

- $SU(2)_H$ instanton breaks $U(1)_L \rightarrow \mathbb{Z}_2^L$
- Non-invertible: $Z_{N_q}^L = Z_3^L \subset U(1)_{L_e L_\mu}$
- Invertible: $U(1)_{B-N_gN_cL_e} \rightarrow Z_{2N_gN_c}^{B-N_gN_cL_e}$: broken by gauging
- : broken by instanton

•
$$\mathcal{L} \sim y_{\tau} y_{\mu} \frac{v^2}{v_{\Phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_{\mu} v_{\tau} - \frac{1}{2} \sin 2\theta_L v_e v_e \right]$$

Non-Invertible Naturalness

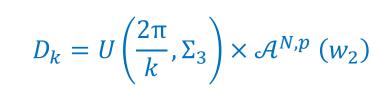
Neutrino Masses from Generalized Symmetry Breaking (with Clay Córdova, Seth Koren, and Kantaro Ohmori)

$$D_k = U\left(\frac{2\pi}{k}, \Sigma_3\right) \times \mathcal{A}^{N,p}\left(\frac{F}{2\pi}\right)$$

Solving Strong CP Problem Non-invertibly

(with Clay Córdova and Seth Koren)

SU(9) Instantor



0. Strong CP Problem: $\bar{\theta} \equiv \arg[\det(e^{i\theta}y_uy_d)] < 10^{-10}$

0. Strong CP Problem: $\bar{\theta} \equiv \arg[\det(e^{i\theta}y_uy_d)] < 10^{-10}$

1. In the presence of massless (chiral) fermion, $\overline{\theta}$ parameter is unphysical.

$$u \to e^{i\alpha}u \Rightarrow \delta S = \frac{i}{8\pi^2} (\bar{\theta} - A\alpha) \int G \wedge G$$

0. Strong CP Problem: $\bar{\theta} \equiv \arg[\det(e^{i\theta}y_uy_d)] < 10^{-10}$

1. In the presence of massless (chiral) fermion, $\overline{\theta}$ parameter is unphysical.

$$u \to e^{i\alpha}u \Rightarrow \delta S = \frac{i}{8\pi^2} (\bar{\theta} - A\alpha) \int G \wedge G$$

2. In nature, up quark seems to be massive e.g. Chiral-PT + observed hadron mass : $m_u/m_d~\sim 0.6$

- 3. Consistent story:
 - $m_u = 0$ at some UV scale (symmetry!)
 - $m_u \neq 0$ generated by non-pertubative (instanton) effects

3. Consistent story:

- $m_u = 0$ at some UV scale (symmetry!)
- m_u ≠ 0 generated by non-pertubative (instanton) effects
 non-perturbative contribution to mass renormalization is real. (H.Georgi, I.N.McArthur (1981), K.Choi, C.W.Kim, W.K.Sze (1988))

$$\mu \frac{d}{d\mu} \det(m) \supset c_0 \left(\frac{8\pi^2}{g^2}\right)^6 e^{-\frac{8\pi^2}{g^2}} \mu^{n_f - 2} \det(m^\dagger m) \operatorname{Tr}(m^\dagger m)^{-1}$$

- 3. Consistent story:
 - $m_u = 0$ at some UV scale (symmetry!)
 - m_u ≠ 0 generated by non-pertubative (instanton) effects
 non-perturbative contribution to mass renormalization is real.
 (H.Georgi, I.N.McArthur (1981), K.Choi, C.W.Kim, W.K.Sze (1988))

$$\mu \frac{d}{d\mu} \det(m) \supset c_0 \left(\frac{8\pi^2}{g^2}\right)^6 e^{-\frac{8\pi^2}{g^2}} \mu^{n_f - 2} \det(m^\dagger m) \operatorname{Tr}(m^\dagger m)^{-1}$$

- QCD instanton calculation not under analytic control
- Lattice QCD : QCD instanton not sufficient

Solving Strong CP with Non-invertible Symmetry

- 1. **IR** : Start with SM with only y_u (massless down quark solution)
- 2. No non-invertible symmetry in quark sector of SM $(\widetilde{B}_i = Q_i - u_i^c)$

	$U(1)_{\tilde{B}_1}$	$U(1)_{\tilde{B}_2}$	$U(1)_{\tilde{B}_3}$	$U(1)_{d_{1}}$	$U(1)_{d_2}$	$U(1)_{d_3}$
$[SU(3)_{c}]^{2}$	1	1	1	1	1	1
$[SU(2)_L]^2$	N _c	N _c	N _c	0	0	0
$[U(1)_{Y}]^{2}$	$-14N_{c}$	$-14N_{c}$	$-14N_{c}$	$4N_c$	$4N_c$	4 <i>N</i> _c

3. This is true regardless of "global structure" of G_{SM}

 $SU(3)_C \times SU(2)_L \times U(1)_Y / \Gamma$, $\Gamma = 1, Z_2, Z_3, Z_6$

Solving Strong CP with Non-invertible Symmetry

4. Intermediate scale : NIS from Embedding

Goal: forbid $y_d HQd^c$ by non-invertible symmetry

(1)
$$\frac{SU(3)_c \times U(1)_H}{Z_{N_c}} \times SU(2)_L \times U(1)_Y$$
 $(H = B_1 + B_2 - 2B_3)$

- Z_3 (CFU) Fractional Instantons \Rightarrow NIS from $U(1)_{d_3-d_1}$ and $U(1)_{d_3-d_2}$ $(U(1)_{d_3-d_1}[CFU]^2 = 1, U(1)_{d_3-d_2}[CFU]^2 = 1)$
- $\mathcal{L}_{y_d} = y_d^{ij} H Q_i d_j^c$
 - $U(1)_H$ gauge-inv: Q_1d_1 , Q_2d_2 , Q_3d_3 , Q_1d_2 , Q_2d_1
 - All these components are forbidden by non-invertible symmetries

4. Intermediate scale : NIS from Embedding

Goal: forbid $y_d HQd^c$ by non-invertible symmetry

(2)
$$\frac{SU(3)_c \times SU(3)_H}{Z_{N_c}} \times SU(2)_L \times U(1)_Y \quad (SU(3)_H = \text{(horizontal) flavor)}$$

	$SU(3)_C$	$SU(3)_H$	$U(1)_{\widetilde{B}}$	$U(1)_d$	
Q	3	3	1	0	$\tilde{B} = Q - u^c$
u ^c	3	3	-1	0	$D = Q - u^{*}$
d^c	3	3	0	1	-

• w/o Z_3 modding $\Rightarrow U(1)_{\tilde{B}} \rightarrow Z_3$, $U(1)_d \rightarrow Z_3$

 $\mathcal{L} = y_d H Q d^c$ forbidden by these invertible symmetries

4. Intermediate scale : NIS from Embedding

Goal: forbid $y_d HQd^c$ by non-invertible symmetry

(2) $\frac{SU(3)_c \times SU(3)_H}{Z_{N_c}} \times SU(2)_L \times U(1)_Y \quad (SU(3)_H = \text{(horizontal) flavor)}$

	$SU(3)_C$	$SU(3)_H$	$U(1)_{ ilde{B}}$	$U(1)_d$	
Q	3	3	1	0	$\tilde{D} = O \omega^{C}$
u ^c	3	3	-1	0	$\tilde{B} = Q - u^c$
d^c	3	3	0	1	-

- with Z_3 modding $\Rightarrow Z_3$ magnetic 1-form
 - \Rightarrow fractional instanton breaks $U(1)_{\tilde{B}}$, $U(1)_d$ completely

 $\mathcal{L} = y_d H Q d^c$ forbidden by Z_3 non-invertible symmetries

5. <u>UV scale</u> : Breaking of NIS by non-perturbative effects

Goal: generate $y_d HQd^c$ by breaking non-invertible symmetry

UV embedding: $\frac{SU(3)_c \times SU(3)_H}{Z_{N_c}} \subset SU(9)$

	<i>SU</i> (9)	$U(1)_{\tilde{B}}$	$U(1)_d$	
Q	9	1	0	$\tilde{B} = Q - u$
u^{c}	9	-1	0	D = Q u
d^c	9	0	1	

$$\mathcal{L}_{UV} \supset y_u \widetilde{H} Q u^c + \cdots$$

 $y_d HQd^c$ forbidden by $(d \text{ or } \tilde{B} + d)$

5. <u>UV scale</u> : Breaking of NIS by non-perturbative effects Goal: generate $y_d HQd^c$ by breaking non-invertible symmetry

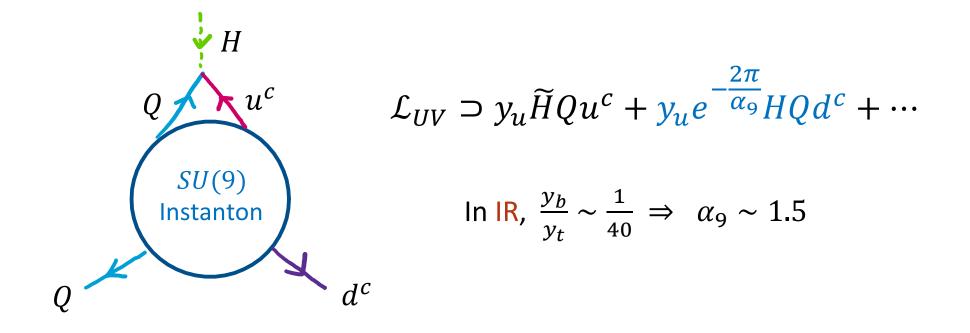
UV embedding: $\frac{SU(3)_c \times SU(3)_H}{Z_{N_c}} \subset SU(9)$

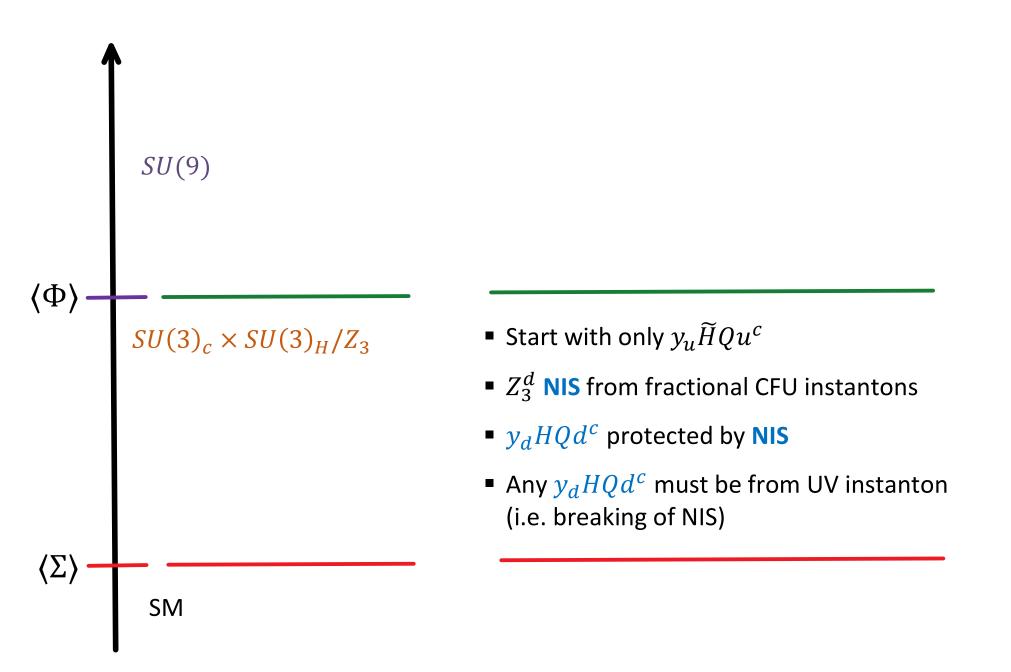
	<i>SU</i> (9)	$U(1)_{\tilde{B}}$	$U(1)_d$
Q	9	1	0
u ^c	9	-1	0
d^c	9	0	1

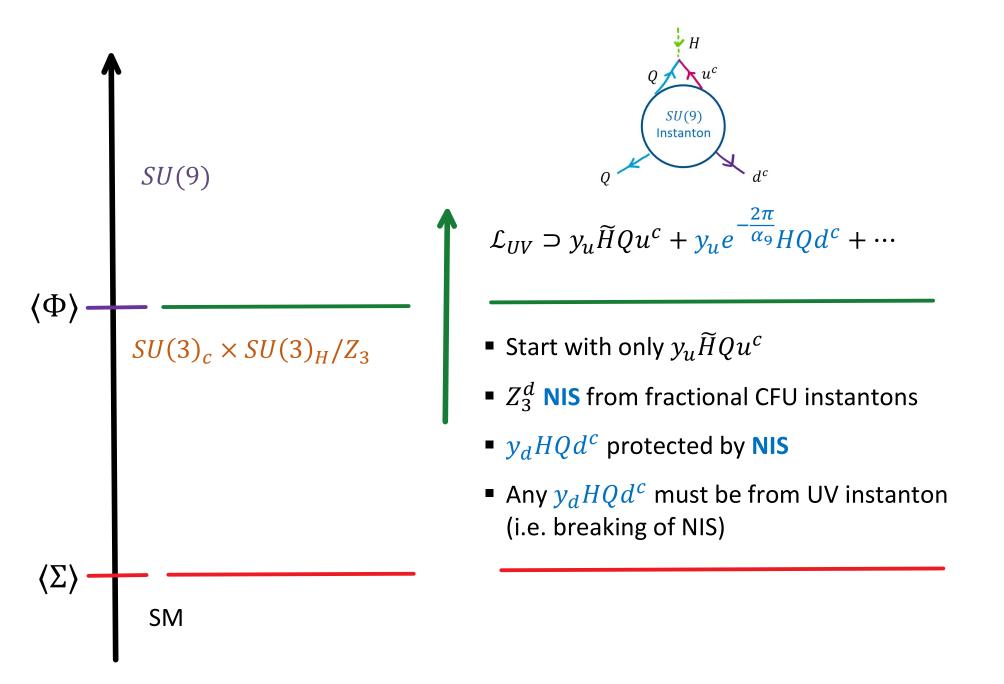
 $U(1)_{B=\tilde{B}-d}[SU(9)]^{2} = 0$ $U(1)_{\tilde{B}+d}[SU(9)]^{2} = 2$ $(or U(1)_{d}[SU(9)]^{2} = 1)$

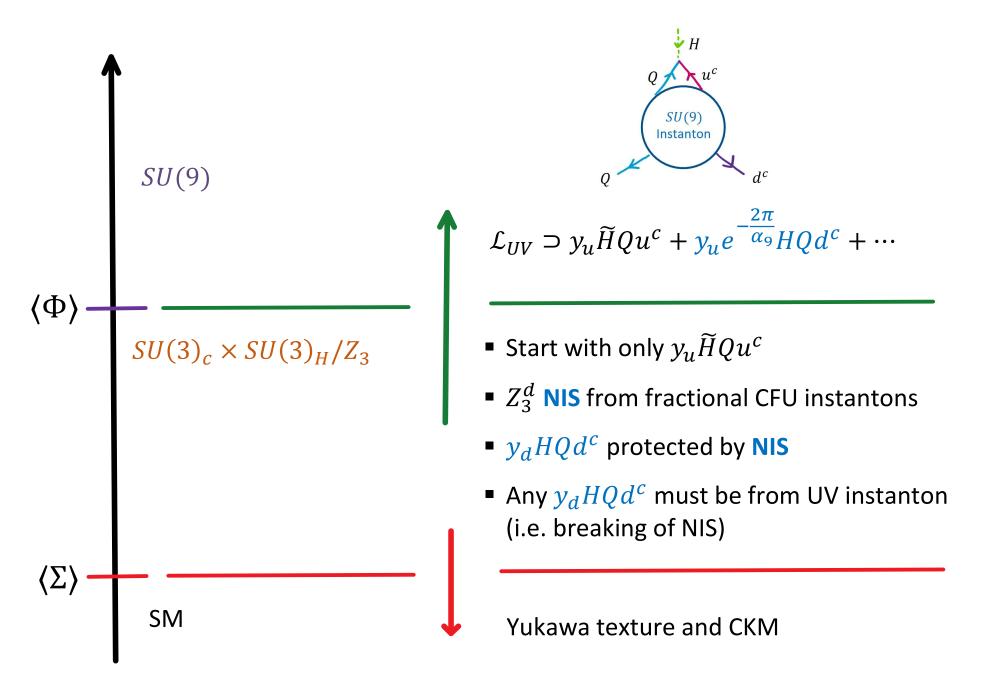
$$\mathcal{L}_{UV} \supset y_u \widetilde{H} Q u^c + \cdots$$

5. <u>UV scale</u> : Breaking of NIS by non-perturbative effects Goal: generate $y_d HQd^c$ by breaking non-invertible symmetry



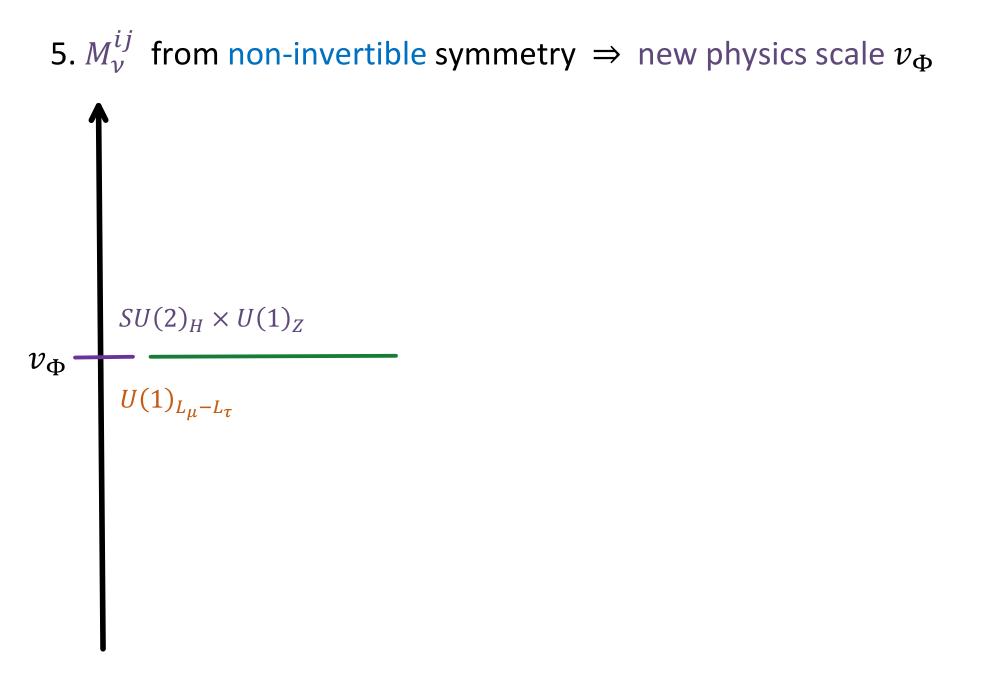




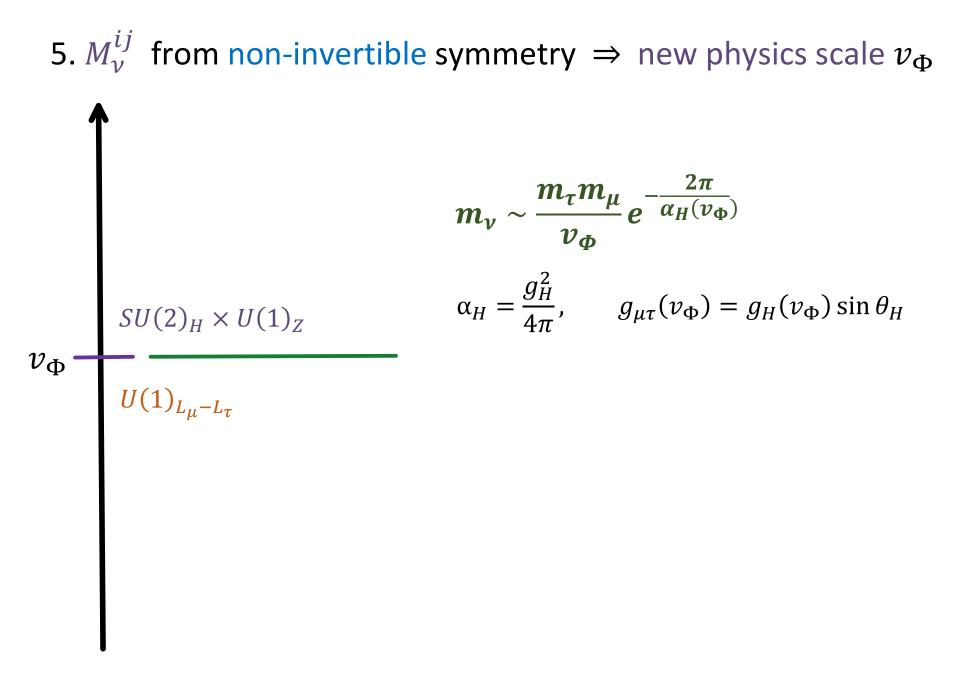


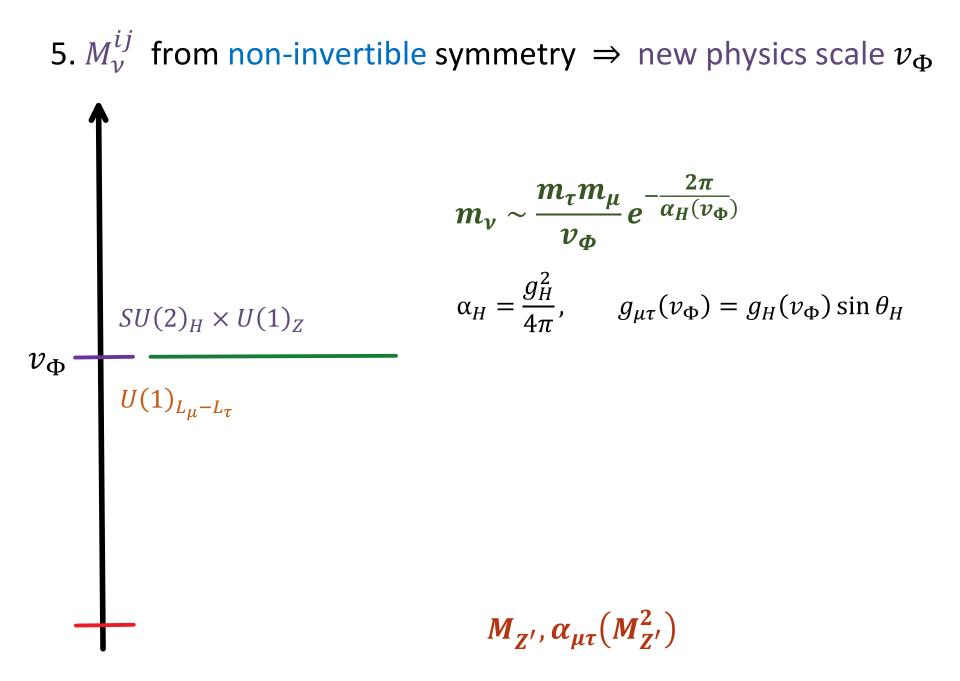
THANK YOU FOR YOUR ATTENTION!

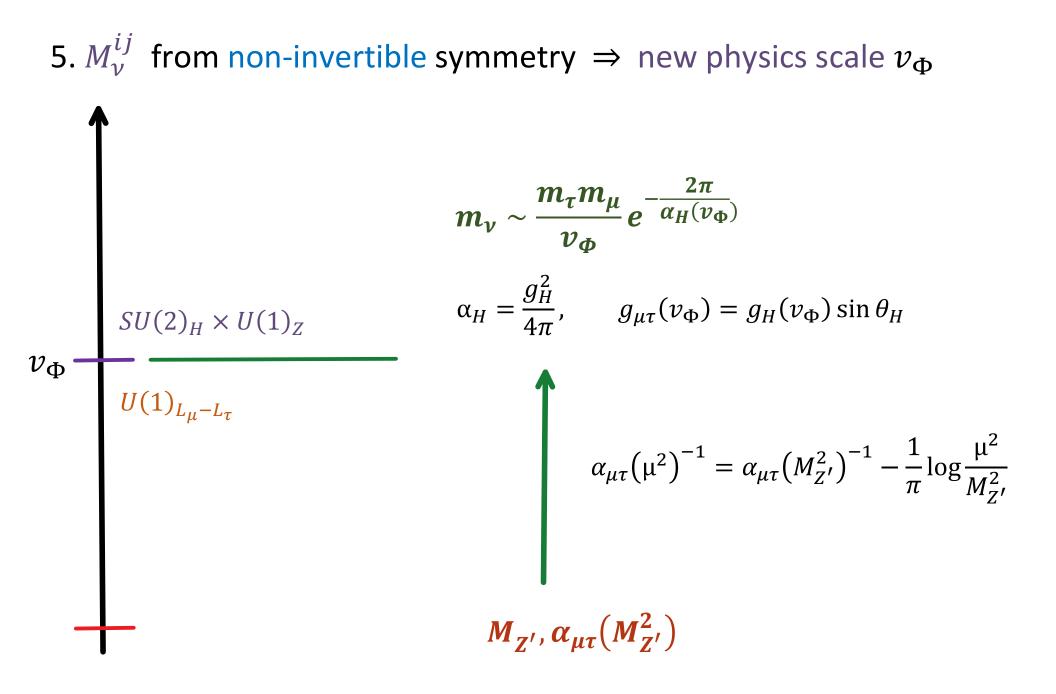
5. M_{ν}^{ij} from non-invertible symmetry \Rightarrow new physics scale v_{Φ}



5. M_{ν}^{ij} from non-invertible symmetry \Rightarrow new physics scale v_{Φ} $\mathcal{L} \sim y_{\tau} y_{\mu} \frac{v^2}{v_{\phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_{\mu} v_{\tau} - \frac{1}{2} \sin 2\theta_L v_e v_e \right] \rightarrow m_{\nu} \sim \frac{m_{\tau} m_{\mu}}{v_{\phi}} e^{-\frac{2\pi}{\alpha_H(v_{\phi})}}$ $\overset{H}{=} \underbrace{SU(2)_H \times U(1)_Z} \underbrace{U(1)_{L\mu} - L_{\tau}} \underbrace{U(1)_{L\mu} - L_{\tau}$





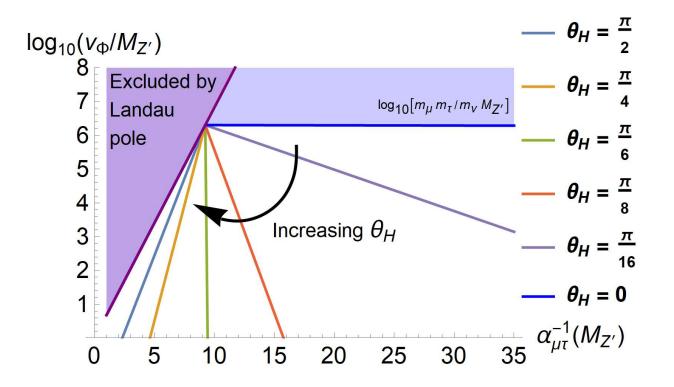


5. M_{ν}^{ij} from non-invertible symmetry \Rightarrow new physics scale v_{Φ}

$$v_{\Phi}^{4s_{H}^{2}-1} \sim M_{Z'}^{4s_{H}^{2}-1} \left(\frac{M_{Z'}m_{\nu}}{m_{\mu}m_{\tau}}\right) \exp \frac{2\pi s_{H}^{2}}{\alpha_{\mu\tau}(M_{Z'}^{2})}$$

5. M_{ν}^{ij} from non-invertible symmetry \Rightarrow new physics scale v_{Φ}

$$v_{\Phi}^{4s_{H}^{2}-1} \sim M_{Z'}^{4s_{H}^{2}-1}\left(\frac{M_{Z'}m_{\nu}}{m_{\mu}m_{\tau}}\right) \exp \frac{2\pi s_{H}^{2}}{\alpha_{\mu\tau}\left(M_{Z'}^{2}\right)}$$



5. M_{ν}^{ij} from non-invertible symmetry \Rightarrow new physics scale v_{Φ}

$$v_{\Phi}^{4s_{H}^{2}-1} \sim M_{Z'}^{4s_{H}^{2}-1} \left(\frac{M_{Z'}m_{\nu}}{m_{\mu}m_{\tau}}\right) \exp \frac{2\pi s_{H}^{2}}{\alpha_{\mu\tau}(M_{Z'}^{2})}$$

Cf) For Dirac mass case

$$v_{\Phi}^2 \sim M_{Z^\prime}^2 \left(\frac{m_\nu}{m_\tau}\right)^{\frac{3}{2}} \exp \frac{3\pi}{4\alpha_{\mu\tau}(M_{Z^\prime}^2)}$$

5. M_{ν}^{ij} texture through RG-flow

$$\mathcal{L} \sim y_{\tau} y_{\mu} \frac{v^2}{v_{\Phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_{\mu} v_{\tau} - \frac{1}{2} \sin 2\theta_L v_e v_e \right]$$

5. M_{ν}^{ij} texture through RG-flow

$$\mathcal{L} \sim y_{\tau} y_{\mu} \frac{v^2}{v_{\Phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_{\mu} v_{\tau} - \frac{1}{2} \sin 2\theta_L v_e v_e \right]$$

• Below $E < v_{\Phi}$ we have $G_{SM} \times U(1)_{L_{\mu}-L_{\tau}}$ theory

- Let φ be the (charge 1) scalar that Higgses $U(1)_{L_{\mu}-L_{\tau}}$
- RG-flow below $E < v_{\Phi}$ generates textures

$$\mathcal{L} \sim y_{\tau} y_{\mu} \frac{v^2}{v_{\Phi}} e^{-\frac{2\pi}{\alpha_H}} \left[v_e v_{\tau} \frac{\varphi}{v_{\Phi}} + v_e v_{\mu} \frac{\varphi^{\dagger}}{v_{\Phi}} + v_{\tau} \frac{\varphi}{v_{\Phi}} v_{\tau} \frac{\varphi}{v_{\Phi}} + v_{\mu} \frac{\varphi^{\dagger}}{v_{\Phi}} v_{\mu} \frac{\varphi^{\dagger}}{v_{\Phi}} \right]$$