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MOTIVATION 
➤ Despite great theoretical and experimental effort, no evidence 

of New Physics has been found to date.


➤ Many dedicated searches ruled out a significant portion of the 
parameter space of theoretically motivated models.


➤ However, there is still much more to explore:


➤ New theoretical models. 


➤ A lot of data.



MODEL AGNOSTIC SEARCHES 
➤ Data-directed paradigm (DDP) for model agnostic searches:


➤ Search for deviations from SM properties (what we do 
know).


➤ Scan the data efficiently.


➤ Identify anomalous regions for detailed study.

M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, and S. Bressler, [2203.07529]S. Bressler, A. Dery and A. Efrati, [1405.4545]
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MODEL AGNOSTIC SEARCHES 
➤ SM symmetries imply relations between different regions of 

the data, that if violated could point to NP.


➤ Example - lepton flavor universality:  should be 
interchangeable (up to H+phase space).


➤ (Hints: neutrino masses + B-anomalies)

e/μ/τ

M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, and S. Bressler, [2203.07529]S. Bressler, A. Dery and A. Efrati, [1405.4545]
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GOAL
➤ Efficiently scan data for asymmetries between samples that 

should only differ by statistical fluctuations.


➤ Model-independent interpretation: minimal assumptions, 
no detailed simulations (SM&NP).

 datae  dataμ

Fast & Robust

Flexible
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METHOD
➤ Previous proposal - “Learning NP from a Machine”(NPLM)


➤ Testing whether an observed dataset is distributed 
according to a much larger reference SM sample.


SM Data

Likelihood ratio test

Machine Learning

=?

R. T. D’Agnolo & A. Wulzer, [1806.02350].

https://arxiv.org/abs/1806.02350


METHOD
➤ Previous proposal - “Learning NP from a Machine”(NPLM)


➤ Testing whether an observed dataset is distributed 
according to a much larger reference SM sample.


Can it be implemented for small asymmetry searches?

 datae  dataμ

Likelihood ratio test

Machine Learning

=?

R. T. D’Agnolo & A. Wulzer, [1806.02350].

https://arxiv.org/abs/1806.02350


LIKELIHOOD 101 - MODEL FITTING

➤ Likelihood - probability of obtaining result  had  been true:





➤ The model in which the probability of obtaining the observed 
is the highest is the most likely (MLE)


 


➤ Likelihood always maximal if prediction=observed.


➤ If something occurred, it cannot have zero probability.

x θ

ℒ(θ |x) = p(x |θ)

̂θ = argmax (ℒ (θ |xobs))MLE:



LIKELIHOOD 101 - MODEL FITTING

➤ Likelihood - probability of obtaining result  had  been true:





➤ The model in which the probability of obtaining the observed 
is the highest is the most likely (MLE)


 


x θ

ℒ(θ |x) = p(x |θ)

̂θ = argmax (ℒ (θ |xobs))MLE:
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➤ Example: Gaussian PDF  
    


➤



➤ MLE: .

{x0, σ} = θ

ℒ (x0 , σ |x) =
1

2πσ
e−

∑i (xi − x0)2

2σ2

̂x0 = x , ̂σ =
1
N (xi − x)2
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p−value

ϕ (t |ℋ0)

➤ Maximum profile likelihood test of  vs. 





➤ Optimal according to the Neyman-Pearson Lemma.


➤ Generate toy datasets  from 


➤  Find the distribution of t


➤ Calculate p-value for rejecting 

ℋ0 (μ0, ν) ℋ1 (μ, ν)

tobs = 2 log (
maxμ,ν (ℒ (ℋ1 |xobs))
maxν (ℒ (ℋ0 |xobs)) )

{xtoy} ℋ0

ℋ0

LIKELIHOOD 101 - HYPOTHESES TESTING 

G. Cowan, K. Cranmer, E. Gross & O. Vitells, Eur. Phys. J. C (2011) 71: 1554, [1007.1727]S. S. Wilks, Annals Math. Statist. 9 (1938) 60.

SM+NP

SM
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LIKELIHOOD 101 - HYPOTHESES TESTING 

➤ Maximum profile likelihood test of  vs. 





➤ Optimal according to the Neyman-Pearson Lemma.


➤ Asymptotic null-distribution -  
for high enough statistics known 
regardless of underlying model: 
  ,  
n=#dof NP

ℋ0 (μ0, ν) ℋ1 (μ, ν)

tobs = 2 log (
maxμ,ν (ℒ (ℋ1 |xobs))
maxν (ℒ (ℋ0 |xobs)) )

ϕ (t |ℋ0) → χ2
n

G. Cowan, K. Cranmer, E. Gross & O. Vitells, Eur. Phys. J. C (2011) 71: 1554, [1007.1727]S. S. Wilks, Annals Math. Statist. 9 (1938) 60.
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SM+NP
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Fast & Robust
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MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Neural Network (NN) - a specific family of functions.


➤ Training - NN parameters  found by minimizing some “loss”.θ

Flexible



MACHINE LEARNING 101

➤ A family of functions - expressive, universal approximators


➤ Neural Network (NN) - a specific family of functions.


➤ Training - NN parameters  found by minimizing some “loss”.


➤  given by the output of a NN.


➤ NN loss =  .


➤

θ

p(x |θ) = ℒ (ℋ(θ) |x)
−ℒ (ℋ(θ) |xobs)

tobs = 2 log
maxμ,ν (ℒ (ℋ1 |xobs))
maxν (ℒ (ℋ0 |xobs))

Flexible



SM

Data A

nSM
A (x)

nSM+NP
A (x)

NPLM

➤ Determine if sample  is drawn from SM or SM+NP distribution.





➤ Profile likelihood test





➤ Poisson likelihood: 

A

ℋ0 : nA (x) = nSM
A (x) , ℋ1 : nA (x) = nSM+NP

A (x) ,

t = 2 log
max (ℒ (ℋ1 |A))
max (ℒ (ℋ0 |A))

,

ℒ (ℋ |A) =
e−NA(ℋ)

ÑA! ∏
x∈A

nA(x |ℋ) .

14
R. T. D’Agnolo & A. Wulzer, [1806.02350].

https://arxiv.org/abs/1806.02350


NPLM

➤ Determine if sample  is drawn from SM or SM+NP distribution.





➤ Profile likelihood test





➤ SM dist. given by large sample  drawn from it,  
 

A

ℋ0 : nA (x) = nSM
A (x) , ℋ1 : nA (x) = ef(x)nSM

A (x) ,

t = 2 (−∫ (e ̂f(x) − 1) ̂nSM
A (x)dx + ∑

x∈A

̂f (x))
B ÑB ≫ ÑA

15
R. T. D’Agnolo & A. Wulzer, [1806.02350].

NP:  is an 
output of a NN 
maximizing t

f(x)

ef(x)nSM
A (x)

nSM
A (x)

Data A

SM

Sample B SM

SM: fit from 
control 

sample  B

https://arxiv.org/abs/1806.02350


NPLM

➤ Determine if sample  is drawn from SM or SM+NP distribution.





➤ Profile likelihood test





➤ SM dist. represented by large sample  drawn from it,  
 

A

ℋ0 : nA (x) = NA p̃B (x) , ℋ1 : nA (x) = ef(x)NA p̃B (x) ,

t = 2 (−
NA

ÑB
∑
x∈B

(e ̂f(x) − 1)+ ∑
x∈A

̂f (x))
B ÑB ≫ ÑA

16
R. T. D’Agnolo & A. Wulzer, [1806.02350].

Sample B SM

p̃B(x)

SM

Data A

p̃B(x)

ef(x)p̃B(x)

SM: empiric 
observation B 

NP:  is an 
output of a NN  
maximizing t

f(x)

https://arxiv.org/abs/1806.02350


NB/NA = 4NB/NA = 12

NPLM CHALLENGES: IMBALANCED SAMPLES

➤ Requires a large ratio between sample sizes ÑB ≫ ÑA

17

NB/NA = 1

 predicted for 
likelihood test 

χ2
n

 distribution 
for toy data A 

and B generated 
from the same 

PDF

t



NPLM CHALLENGES: SEVERE WEIGHT-CLIPPING
➤ Unbounded loss





➤ For , if   then .


➤ Weight-clipping - setting a max for NN weights (~gradients).


➤ Determined to reach the 
asymptotic distribution  
and avoid divergences.


➤ The stricter the WC,  
the less flexible the NN.

L = − (−
NA

ÑB
∑
x∈B

(e ̂f(x) − 1)+ ∑
x∈A

̂f (x))
x⋆ ∈ (A − A ∩ B) f(x⋆) → ∞ L → − ∞

18
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R. T. D’Agnolo & A. Wulzer, [1806.02350].

https://arxiv.org/abs/1806.02350


NPLM CHALLENGES: SEVERE WEIGHT-CLIPPING
➤ Unbounded loss





➤ For , if   then .


➤ This is a result of a false null-hypothesis.

L = − (−
NA

ÑB
∑
x∈B

(e ̂f(x) − 1)+ ∑
x∈A

̂f (x))
x⋆ ∈ (A − A ∩ B) f(x⋆) → ∞ L → − ∞

19

t = 2 log
max (ℒ (ℋ1 |A))

max (ℒ (ℋ0 |A)) = 0

ℋ1 : nA (x⋆) = ef(x⋆)NA p̃B (x⋆) ,

ℋ0 : nA (x⋆) = NA p̃B (x⋆) = 0 ,

SM

Data ASample B SM

p̃B(x)p̃B(x)
ef(x)p̃B(x)



THE SYMMETRIZED FORMALISM

➤ Symmetric question: instead of asking if sample A comes 
from the distribution of sample B, we ask if A and B come 
from the same distribution.


➤ Symmetric (democratic) modeling: account for fluctuations 
in both samples.


➤ Improved sensitivity for any sample sizes ratio 


➤ Avoid artificial singularities.

NA/NB

AB SM



THE SYMMETRIZED FORMALISM - SYMMETRIC TEST
➤ Determine if samples  and  are drawn from the same distribution.





➤ Symmetric test - both  and  are finite samples - both fluctuate!


A B
ℋ0 : nA (x) = NAp0 (x) , nB (x) = NBp0 (x)
ℋ1 : nA (x) = NApA (x) , nB (x) = NBpB (x) ,

A B

t = 2 log
max (ℒ (ℋ1 |A, B))
max (ℒ (ℋ0 |A, B))

,

A

pA

B

pB

SM

p0



THE SYMMETRIZED FORMALISM - SYMMETRIC TEST
➤ Determine if samples  and  are drawn from the same distribution.





➤ Symmetric test - learn common PDF from both samples, test on both


A B
ℋ0 : nA (x) = NAp0 (x) , nB (x) = NBp0 (x)
ℋ1 : nA (x) = NApA (x) , nB (x) = NBpB (x) ,

t = 2 log
maxpA,pB (ℒ (NA, pA (x) |A) ℒ (NB, pB (x) |B))

maxp0 (ℒ (NA, p0 (x) |A) ℒ (NB, p0 (x) |B))

A

pA

B

pB

SM

p0



THE SYMMETRIZED FORMALISM - SYMMETRIC TEST
➤ Determine if samples  and  are drawn from the same distribution.





➤ Symmetric test - learn common PDF from both samples, test on both





➤ NPLM: if , learn common PDF from   -  , test on 


A B
ℋ0 : nA (x) = NAp0 (x) , nB (x) = NBp0 (x)
ℋ1 : nA (x) = NApA (x) , nB (x) = NBpB (x) ,

t = 2 log
maxpA,pB (ℒ (NA, pA (x) |A) ℒ (NB, pB (x) |B))

maxp0 (ℒ (NA, p0 (x) |A) ℒ (NB, p0 (x) |B))
ÑB ≫ ÑA B ̂p0 ≈ ̂pB A

tNB≫NA
→ 2 log

maxpA (ℒ (NA, pA (x) |A))
ℒ (NA, ̂pB (x) |A)



THE SYMMETRIZED FORMALISM
➤ Determine if observed samples  and  are drawn from the same distribution.





➤ The symmetric null distribution -                                 NPLM





➤ The symmetric test statistic - 


➤




A B

ℋ0 : nA (x) = NAef0p0 (x) , nB (x) = NBeg0p0 (x)
ℋ1 : nA (x) = NAef(x)p0 (x) , nB (x) = NBeg(x)p0 (x) ,

p0(x) =
ñA(x) + ñB(x)

ÑA + ÑB

tA+B (A) = − 2min −
1

ÑA + ÑB
∑

x∈A,B

ÑA (e f(x) − 1) + ∑
x∈A

f (x)

tA+B (B) = − 2min −
1

ÑA + ÑB
∑

x∈A,B

ÑB (eg(x) − 1) + ∑
x∈B

g (x)

p0(x) =
ñB(x)
ÑB

True global MLE ℋ0

Approx. global MLE ℋ0

p̃B(x)

ef(x)p̃B(x)



THE SYMMETRIZED FORMALISM
➤ Determine if observed samples  and  are drawn from the same distribution.





➤ The symmetric null distribution -                                 NPLM





➤ The symmetric test statistic - 





A B

ℋ0 : nA (x) = NAef0p0 (x) , nB (x) = NBeg0p0 (x)
ℋ1 : nA (x) = NAef(x)p0 (x) , nB (x) = NBeg(x)p0 (x) ,

p0(x) =
ñA(x) + ñB(x)

ÑA + ÑB

tA+B (A) = − 2min −
1

ÑA + ÑB
∑

x∈A,B

ÑA (e f(x) − 1) + ∑
x∈A

f (x)

tA+B (B) = − 2min −
1

ÑA + ÑB
∑

x∈A,B

ÑB (eg(x) − 1) + ∑
x∈B

g (x)

tB(A) = 2 (−
NA

ÑB
∑
x∈B

(e ̂f(x) − 1) + ∑
x∈A

̂f (x))

No divergences Unbounded

p0(x) =
ñB(x)
ÑB

True global MLE ℋ0

Approx. global MLE ℋ0



RESULTS

➤ Toy LFV -  samples with  events.


➤ 1-d variable: 


➤ Hyper-parameters: 500k epochs, 1 hidden layer of 4 neurons


➤ Symmetric -  and  randomly drawn from the  sample


➤ Asymmetric -  added to .

e±μ∓ ∼ 2.1 × 105

x =
mcoll

100 GeV

A B eμ

gg → H → τe, τ → μ + X A



w ≤ 9

No WC

NB/NA = 1

RESULTS - THE SYMMETRIC CASE
➤ Background only 

distribution independent 
of sample sizes ratio


➤ No need for weight 
clipping (WC)


➤ Good agreement with 
asymptotic 


➤ No divergences  

χ2

w ≤ 100

w ≤ 100

NB/NA = 12

5% toys diverged

27



RESULTS - EMPIRIC SYMMETRIC DISTRIBUTION

➤ Narrower and predictable background-only distribution.


➤ Better agreement with asymptotic 


➤ Can generate empiric distribution from permutations of 
observed  and 

χ2
n

A B

A,B~bkg A~bkg+sig 
B~bkg 
permutations



RESULTS - THE ASYMMETRIC CASE
➤ Better sensitivity due to narrower background-only 

distribution and relaxed weight-clipping.

tB(A)

w ≤ 9

tA+B(A) + tA+B(B)

w ≤ 100



RESULTS - THE ASYMMETRIC CASE

➤ Preliminary - sensitivity to HLFV Br~5% at 


➤ Enhanced sensitivity compared to the  test - slicing data 
and finding maximal significance window (location&width).

L = 5 fb−1

Nσ

M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, and S. Bressler, [2203.07529]



CONCLUSIONS
➤ SM symmetries can be exploited for model-agnostic NP searches 

that are fully data-based.


➤ NPLM: ML+likelihood-loss test for deviations of observed data 
from much larger reference dataset.


➤ The symmetrized formalism - 


➤ Symmetric statistical test to account for fluctuations in both 
samples.


➤ Symmetric reference distribution - assigning non-zero 
probability to all observed events.


➤ Allows for searches for asymmetries between samples of arbitrary 
ratios, and relaxing the tuning of the model parameters.



THANK YOU!



BACKUP SLIDES



LIKELIHOOD 101 - MODEL FITTING

➤ Likelihood - probability of obtaining result  had  been true:





➤ The most likely model is the one in which the probability of obtaining 
the observed data is the highest


 


➤ Example: biased coin with heads probability 


➤  
     


➤ 


➤ MLE: 

x θ

ℒ(θ |x) = p(x |θ)

̂θ = argmax (ℒ (θ |xobs))
pH = θ

xobs = {T, T, H, … , H, T, T}
N = 100 , nH = 40

ℒ (pH |x) = ( N
nH) pnH

H (1 − pH)N−nH

̂pH = nH /N

0.25 0.30 0.35 0.40 0.45 0.50 0.55

10-5

10-4

0.001

0.010

0.100

pH

L(
p H

|x
ob
s)

MLE:



NPLM
➤ Profile likelihood test





➤  is the output of a NN


➤ E.g. fully connected with one hidden layer of  neurons





t = 2 (−
NA

ÑB
∑
x∈B

(e ̂f(x) − 1) + ∑
x∈A

̂f (x))
f(x)

Nneu

f (x) = bo +
Nneu

∑
α=1

wα
o σ (wαx + bα)

σ(z) =
1

1 + e−z

35
R. T. D’Agnolo & A. Wulzer, [1806.02350].

https://arxiv.org/abs/1806.02350


A

pA
pℛ

B

pℛ

pB

SM

p0

pℛ

THE SYMMETRIZED FORMALISM - REFERENCE DISTRIBUTION
➤ Determine if samples  and  are drawn from the same distribution.


➤ Hypothesis parameterization - similarly to NPLM, use a reference dist.





➤ The symmetric test statistic


A B

ℋ0 : nA (x) = NAeh(x)pℛ (x) , nB (x) = NBeh(x)+rpℛ (x)
ℋ1 : nA (x) = NAef(x)pℛ (x) , nB (x) = NBeg(x)pℛ (x) ,

t = 2 log
maxpA,pB (ℒ (NA, pA (x) |A) ℒ (NB, pB (x) |B))

ℒ (NA, pℛ (x) |A) ℒ (NB, pℛ (x) |B)
− 2 log

maxp0 (ℒ (NA, NB, p0 (x) |A, B))
ℒ (NA, NB, pℛ (x) |A, B)

−tℛ (A + B)tℛ (A) + tℛ (B)



THE SYMMETRIZED FORMALISM - REFERENCE DISTRIBUTION
➤ Determine if samples  and  are drawn from the same distribution.


➤ Hypothesis parameterization - similarly to NPLM, use a reference dist.





➤ The symmetric test statistic


  

 

➤  NPLM:

A B

ℋ0 : nA (x) = NAeh(x)pℛ (x) , nB (x) = NBeh(x)+rpℛ (x)
ℋ1 : nA (x) = NAef(x)pℛ (x) , nB (x) = NBeg(x)pℛ (x) ,

t = 2 log
maxpA,pB (ℒ (NA, pA (x) |A) ℒ (NB, pB (x) |B))

ℒ (NA, p̃B (x) |A) ℒ (NB, p̃B (x) |B)
− 2 log

maxp0 (ℒ (NA, NB, p0 (x) |A, B))
ℒ (NA, NB, p̃B (x) |A, B)

−tB (A + B)tB (A) + tB (B)

pℛ(x) =
ñB(x)
ÑB

NB ≫ NA

p̃B(x)

ef(x)p̃B(x)



OPEN QUESTIONS AND FUTURE WORK
➤ Overfitting - too flexible functions are also able to perfectly fit 

statistical fluctuations.



OPEN QUESTIONS AND FUTURE WORK
➤ Overfitting - too flexible functions are also able to perfectly fit 

statistical fluctuations.


➤ Distribution drifts away from the asymptotic  for a large 
number of epochs


➤ “Slightly” overfit solutions could be severe - locating longest 
runs

χ2



OPEN QUESTIONS AND FUTURE WORK
➤ Overfitting - potential solutions:


➤ Different fitting schemes - 


➤ Smooth functions + averaging.


➤ Fit symmetric and asymmetric components instead of A and B.


➤ Obtain distribution from data - permutation test.


➤ Standard ML regularization techniques -


➤ Validation set - should understand resulting distribution.


➤ Adding a cost term to the loss penalizing high weights/complex 
models.


➤ Understand relation between overfitting and a normal 
distribution of the parameters under the null hypothesis.


