

Understanding the quantum structure of the dimension-8 SMEFT

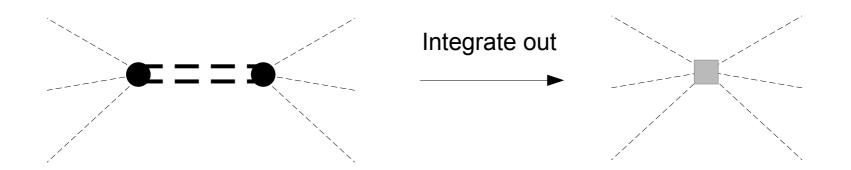
Mikael Chala (University of Granada)

based on 2106.05291, 2110.01264, 2301.09995 and ongoing work

The 5th NPKI workshop, Busan; June 7, 2023

The SMEFT is the SM extended with effective operators

(Probably) the most reasonable model of new physics


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$$

If probed by experiments at very different scales, RGEs of the theory are needed [Jenkins, Manohar, Trott, Alonso '13].

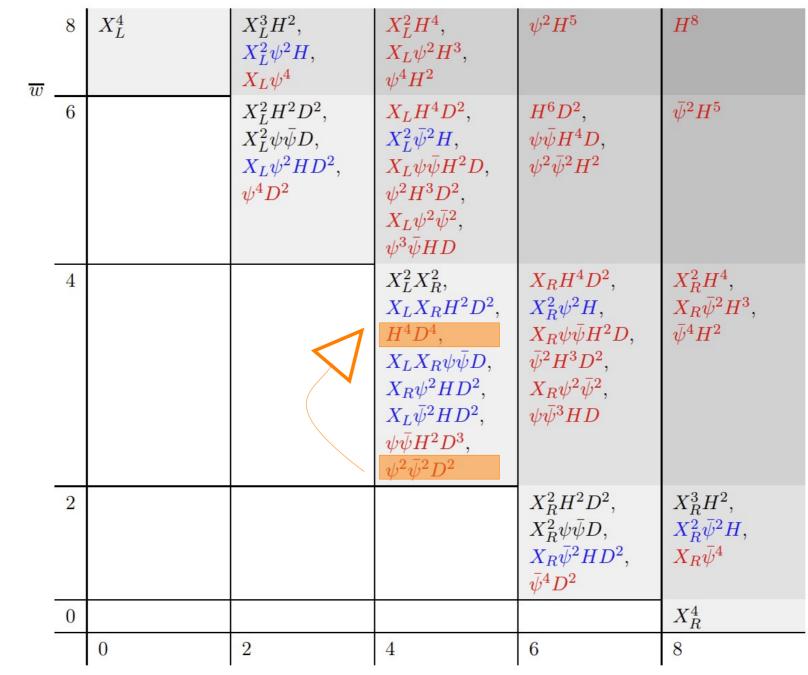
Interesting theoretical aspects at dimension 8 (positivity, tree-loop mixing, test tools, ...)

Besides pure theoretical considerations, anomalous dimensions of dimension-8 operators [Murphy '20; Li, Ren, Shu, Xiao, Yu, Zheng '20] not always phenomenologically irrelevant

Simplest example:

Custodial symmetry violation absent at tree-level dimension-6, one-loop dimension-6 and tree-level dimension-8 [MC, Krause, Nardini '18; Durieux, McCullough, Salvioni '22]

Some partial results:


MC, Guedes, Ramos, Santiago; 2106.05291 Accettulli Huber, De Angelis; 2108.03669 Bakshi, MC, Diaz-Carmona, Guedes; 2205.03301 Helset, Jenkins, Manohar; 2212.03253 Asteriadis, Dawson, Fontes; 2212.03258 Bakshi, Diaz-Carmona; 2301.07151

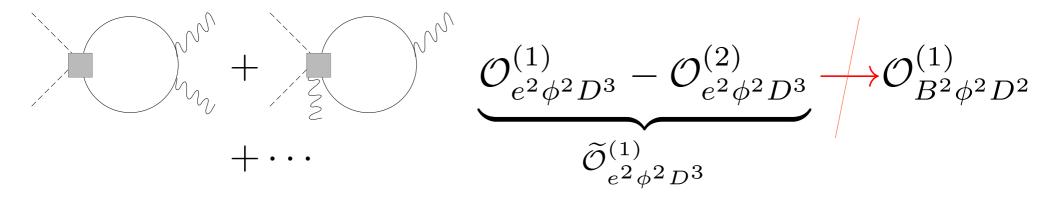
More generally, certain aspects of the full anomalous dimension matrix well understood

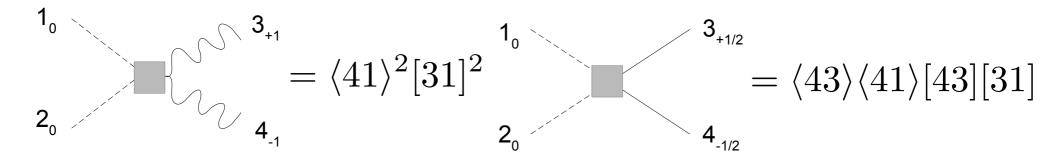
Craig, Jiang, Li, Sutherland; 2001.00017

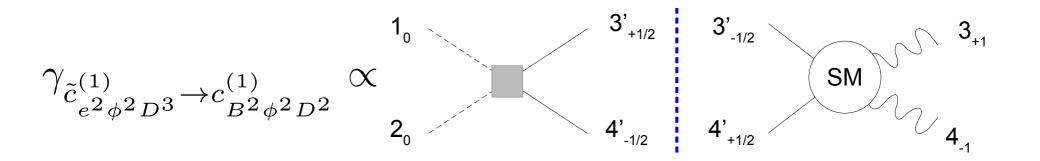
\overline{w} _	8 X_L^4	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{aligned} X_L^2 H^4, \ X_L \psi^2 H^3, \ \psi^4 H^2 \end{aligned}$	$\psi^2 H^5$	H^8
	6	$X_{L}^{2}H^{2}D^{2},\ X_{L}^{2}\psi\bar{\psi}D,\ X_{L}\psi^{2}HD^{2},\ \psi^{4}D^{2}$	$egin{aligned} &X_L H^4 D^2, \ &X_L^2 ar{\psi}^2 H, \ &X_L \psi ar{\psi} H^2 D, \ &\psi^2 H^3 D^2, \ &X_L \psi^2 ar{\psi}^2, \ &\psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{ll} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2H^2 \end{array}$	$ar{\psi}^2 H^5$
_	4		$X_L X_R \psi \bar{\psi} D,$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar{\psi} H^2 D, \ &ar{\psi}^2 H^3 D^2, \ &X_R \psi^2 ar{\psi}^2, \ &\psi ar{\psi}^3 H D \end{aligned}$	$egin{aligned} X_R^2 H^4,\ X_R ar{\psi}^2 H^3,\ ar{\psi}^4 H^2 \end{aligned}$
	2			$egin{aligned} X_R^2 H^2 D^2, \ X_R^2 \psi ar{\psi} D, \ X_R ar{\psi}^2 H D^2, \ ar{\psi}^4 D^2 \end{aligned}$	$egin{aligned} X_R^3 H^2, \ X_R^2 ar{\psi}^2 H, \ X_R ar{\psi}^4 \end{aligned}$
	0				X_R^4
	0	2	4	6	8

Murphy '20; based on Craig et al '20

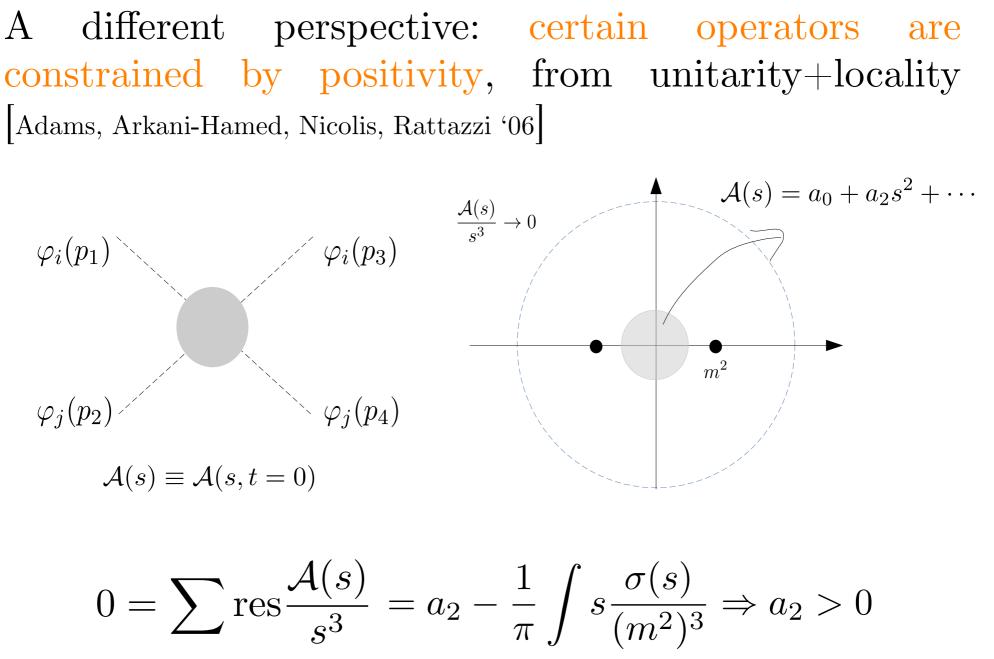
Murphy '20; based on Craig et al '20



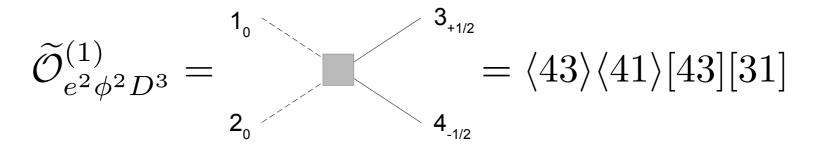

Murphy '20; based on Craig et al '20


It is obvious that there are zeros in mixing of specific operators of different classes

It is not so clear how to anticipate them, not even with amplitude methods


$$\begin{aligned} \mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} &= i(\bar{e}\gamma^{\mu}D^{\nu}e)(D_{(\mu}D_{\nu)}\phi^{\dagger}\phi) + \text{h.c.} \\ \mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)} &= (D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}^{\rho} \\ \mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(2)} &= i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.} \end{aligned}$$

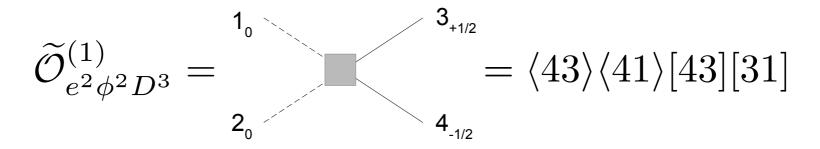
$$= \int d\text{LIPS}\langle 4'3' \rangle \langle 4'1 \rangle [4'3'] [3'1] \frac{\langle 3'4 \rangle^2}{\langle 3'3 \rangle \langle 34' \rangle}$$
$$= \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta s_\theta c_\theta \left[\#_1 e^{i\phi} + \#_2 e^{2i\phi} + \cdots \right]$$


A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

 $c_{B^2\phi^2 D^2}^{(1)} \le 0$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

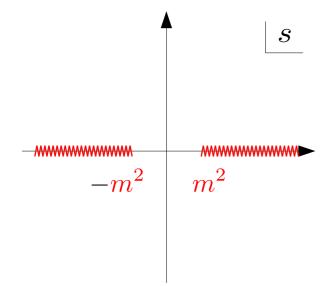
$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$


But some others are not:

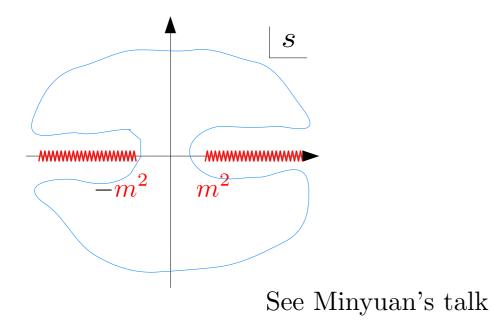
A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$

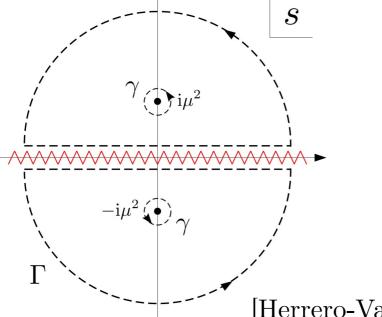
But some others are not:



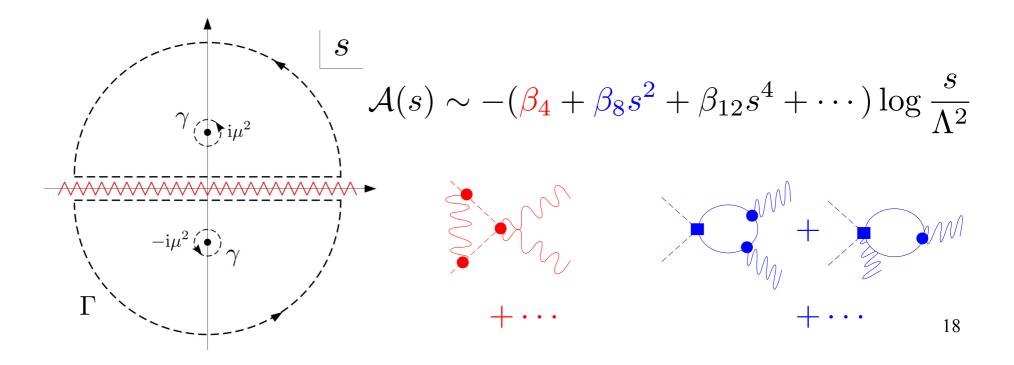
"Therefore",


$$\dot{c}_{B^2\phi^2D^2}^{(1)} = \#_1 \tilde{c}_{e^2\phi^2D^3}^{(1)} + \dots \Rightarrow \#_1 = 0$$

2. Within any such UV, compute to order $O(g^2)$


 \cdots

2. Within any such UV, compute to order $O(g^2)$


2. Within any such UV, compute to order $O(g^2)$

$$\Sigma(\mu) \equiv \frac{1}{2\pi i} \int_{\gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} \ge 0$$

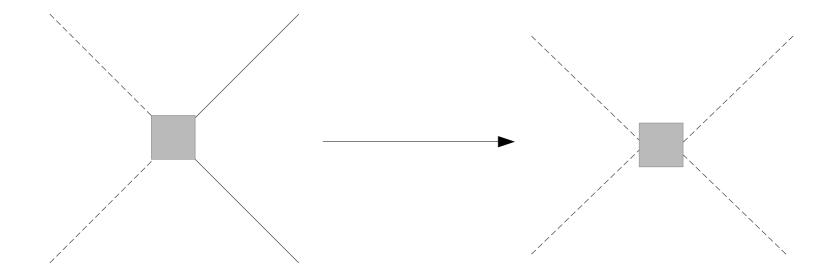
[Herrero-Valea et al '20]

2. Within any such UV, compute to order $O(g^2)$

2. Within any such UV, compute to order $O(g^2)$

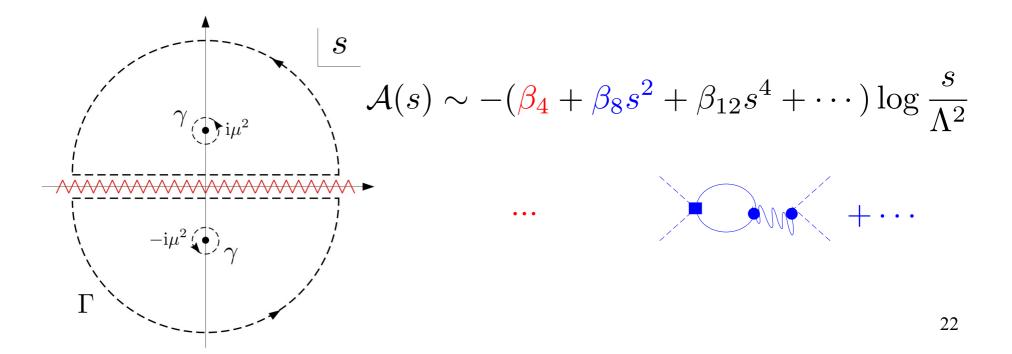
 $\int_{\lambda_1} \mathcal{A}(s) \sim -(\beta_4 + \beta_8 s^2 + \beta_{12} s^4 + \cdots) \log \frac{s}{\Lambda^2}$ $\Sigma(\mu) = -\beta_8 + \beta_{12}\mu^4 + \cdots$ $\Rightarrow \lim_{\mu \to 0} \Sigma(\mu) = -\beta_8 \ge 0$ 19

So $\beta_8 \leq 0$ in any of the aforementioned UV, and therefore for all values of $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with $c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \leq 0$

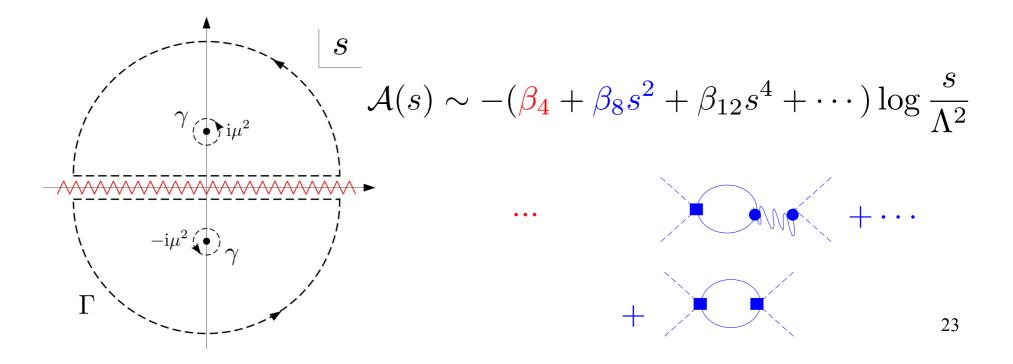

3. The beta function is linear in the Wilson coefficients:

$$\beta_8 = \alpha (c_{e^2 \phi^2 D^3}^{(1)} + c_{e^2 \phi^2 D^3}^{(2)}), \quad \alpha \ge 0$$

Therefore,


$$\underbrace{\mathcal{O}_{e^2\phi^2D^3}^{(1)} - \mathcal{O}_{e^2\phi^2D^3}^{(2)}}_{\widetilde{\mathcal{O}}_{e^2\phi^2D^3}^{(1)}} \xrightarrow{\mathcal{O}_{B^2\phi^2D^2}^{(1)}} \underbrace{\mathcal{O}_{B^2\phi^2D^2}^{(1)}}_{e^2\phi^2D^3}$$

How do things change if we consider instead...?


2. Within any such UV, compute

to order $O(g^2)$

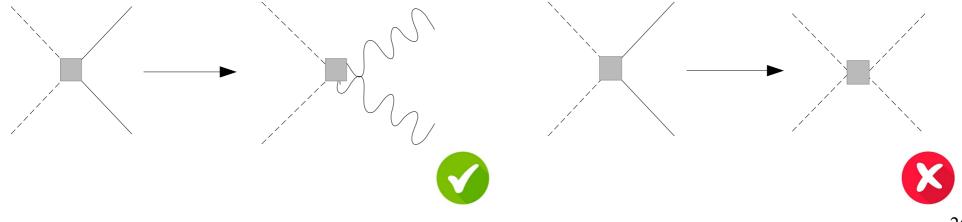
2. Within any such UV, compute

to order $O(g^2)$

The dim-6 squared contributions fulfill positivity:

$$c_{\phi^4}^{(2)} \ge 0$$
, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0$, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$

The dim-6 squared contributions fulfill positivity:


$$c_{\phi^4}^{(2)} \ge 0$$
, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0$, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$

$$\begin{split} &16\pi^2\beta_{H^4D^4}^{(1)} = \frac{8}{3} \bigg[-2(c_{H^4D^2}^{(1)})^2 - \frac{11}{8}(c_{H^4D^2}^{(2)})^2 + 4c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} \\ & \pm 3c_{Hd}^2 \pm c_{He}^2 \pm 2(c_{Hl}^{(1)})^2 - 2(c_{Hl}^{(3)})^2 + 6(c_{Hq}^{(1)})^2 - 6(c_{Hq}^{(3)})^2 + \frac{3c_{Hu}^2}{3} - 3c_{Hud}^2 \bigg] \,, \\ & 16\pi^2\beta_{H^4D^4}^{(2)} = \frac{8}{3} \bigg[-2(c_{H^4D^2}^{(1)})^2 - \frac{5}{8}(c_{H^4D^2}^{(2)})^2 - 2c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} \\ & -3c_{Hd}^2 \pm \frac{-c_{He}^2}{3} \pm \frac{-2(c_{Hl}^{(1)})^2}{3} - 2(c_{Hl}^{(3)})^2 - 6(c_{Hq}^{(1)})^2 - 6(c_{Hq}^{(3)})^2 - 3c_{Hu}^2 \bigg] \,, \\ & 16\pi^2\beta_{H^4D^4}^{(3)} = \frac{8}{3} \bigg[-5(c_{H^4D^2}^{(1)})^2 + \frac{7}{8}(c_{H^4D^2}^{(2)})^2 - 2c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} + 4(c_{Hl}^{(3)})^2 + 12(c_{Hq}^{(3)})^2 + 3c_{Hud}^2 \bigg] \,. \end{split}$$

Resorting to the UV to understand the IR is only a trick. In general:

(1) Some tree-level O_i obey $c_i \ge 0$

(2) If O_i involves fields not present in O_j and c_j not constrained by positivity, then $\gamma_{ij} = 0$

Other aspects of anomalous dimensions: signs and inequalities

Let us consider the mixing \longrightarrow

Positivity bounds:

$$\begin{aligned} c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} + c^{(3)}_{\phi^4} \geq 0 \\ \dot{c}^{(1)}_{B^2 \phi^2 D^2} \geq 0 \end{aligned}$$

From where we obtain:

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

Other aspects of anomalous dimensions: signs and inequalities

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

1. The anomalous dimensions are positive

$$\begin{array}{ccccc} \hline c_{\phi^4 D^4}^{(1)} & c_{\phi^4 D^4}^{(3)} & c_{\phi^4 D^4}^{(3)} \\ c_{B^2 \phi^2 D^2}^{(1)} & + & + & + \\ \end{array}$$
2. They fulfill
$$\gamma_{c_{B^2 \phi^2 D^2}^{(1)}, c_{\phi^4 D^4}^{(2)}} \geq \gamma_{c_{B^2 \phi^2 D^2}^{(1)}, c_{\phi^4 D^4}^{(1)}} \geq \gamma_{c_{B^2 \phi^2 D^2}^{(1)}, c_{\phi^4 D^4}^{(3)}} \\ \end{array}$$

$$\begin{array}{c} 28 \end{array}$$

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	+	+	+	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	_	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	_	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$C_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	_	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

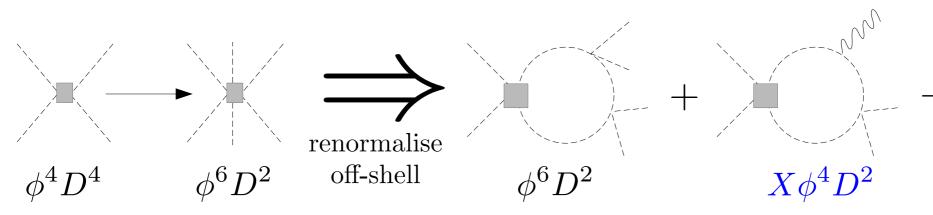
	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2\phi^2D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2 e^2 D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	_	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	_	0	_	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	_	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	_	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	$-\frac{4 Y ^2}{3}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$C_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	_	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2\phi^2D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2e^2D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	_	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	$g^2 - Y ^2$	×	0	$-\frac{4 Y ^2}{3}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$C_{e^2B^2D}$	0	0	0	0	_	0	0	0	0	_	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	_
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

Can't we just compute all anomalous dimensions in some automated way?

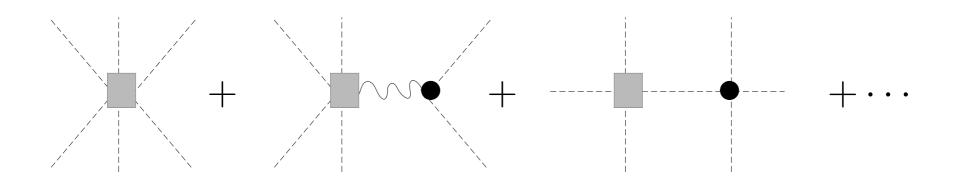
Tools like matchmakereft or matchete not yet fully automatic


[Carmona et al '21; Fuentes-Martin et al '22]

FeynRules QGRAF FORM

EFT in IR

Main obstacles: Green's and physical bases MC, Diaz-Carmona, Guedes '21; Ren, Yu '22; Fonseca]; field redefinitions MC, Santiago



$$L_{\rm div}^{(\rm local)} \sim \frac{1}{\epsilon} P(p_i \cdot p_j, p_i \cdot \epsilon_j, \cdots)$$
 34

Require Lagrangian with redundant operators to provide same S-matrix as that without them

Too many constraints on-shell. Solution: go numerics

Compute the amplitudes in different Montecarlo physical phase-space points. Problem reduced to linear algebra

Application to the purely Higgs sector [to appear in SMEFT-Tools 2022 proceedings]:

$$c_{\phi\Box} \to c_{\phi\Box} + \frac{1}{2}r'_{\phi D}, \qquad (22)$$

$$c_{\phi^{6}} \to c_{\phi^{6}} + 2\lambda r'_{\phi D}, \qquad (23)$$

$$c_{\phi^{6}D^{2}} \to c_{\phi^{6}D^{2}}^{(1)} + 2\lambda(2r_{\phi^{4}D^{4}}^{(12)} - 2r_{\phi^{4}D^{4}}^{(4)} - r_{\phi^{4}D^{4}}^{(6)})$$

$$- 4c_{\phi\Box}r'_{\phi D} - \frac{1}{2}c_{\phi D}r'_{\phi D} - \frac{7}{4}r'_{\phi D}^{2} + r''_{\phi D}^{2}, \qquad (24)$$

$$c_{\phi^{6}}^{(2)} \to c_{\phi^{6}}^{(2)} + 2\lambda(r_{\phi^{4}D^{4}}^{(12)} - r_{\phi^{4}D^{4}}^{(6)}) - c_{\phi D}r'_{\phi D}. \qquad (25)$$

Outlook

Renormalising the SMEFT to dimension 8 is a heavy task, but which can be automatised.

Positivity bounds on dimension-8 interactions (which are important/interesting by themselves) restrict different aspects of (certain) anomalous dimensions (zeros, signs, inequalities).

Further applications include full SMEFT [MC, Li 'ongoing work], LEFT and other EFTs.

Phenomenological relevance of dimension-8 quantum corrections still to be fully understood. 37

Thank you!