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• The analytic structure of the form factors is simple
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If , the massive state decouples!q2 < M2
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BONUS MATERIAL (for discussion or questions): 
We have just generalised the central equation of 
[Caron-Huot,Wilhelm] for computing anomalous 
dimensions to the case of light massive states.
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• The projection onto an operator basis is trivial.
 are polynomials (or rational functions) and the projection can be performed 

numerically (  solving a linear system)
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s,t,u

g2
3

sn
ij

M2n+2
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z= M2
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3
sn

M2n+2
B(M2 − iϵ; 0,0)

We can now consider a more subtle contribution @ 𝒪(λg2
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Δcn = λg2
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Reminder: we have to subtract the IR loops (which are scaleless). Then the IR divergences of the UV completions are traded for UV divergences of the EFT.
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Outlook
•Positivity bounds for higher-point contact terms.

•Generic constraints from the UV to the IR:

• Structural properties of UV completions, e.g. supersymmetry in the UV

• Magic zeros as selection rules?

•Efficiency improvements and software implementation (?)

• Systematic approaches to  integration and conciliation with region 

expansion.

dLIPS



Thank you!
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•Refined version of the Decoupling Subtraction scheme:
Massive modes contribute to the anomalous dimensions if the kinematics is above threshold!

The decoupling of heavy modes is manifest in the renormalisation of the couplings.

The Callan-Symanzik equation gives the anomalous dimensions!


