)

Complex dilatations and the S-matrix

Matching EF Is on-shell

SDA, G. Durieux [to appear soon]

Stefano De Angelis - New Physics @ Korean Institute - 07/06/2023



Why a new method for performing matching?



Why a new method for performing matching?
« Why not?

Traditional methods are
[Appelquist,Carazzone],[Witten],[Collins,Wilczek,Zee]
- Feynman diagrams expanded in hard-mass region Software: matchmakereft [Carmona,Lazopoulos,0Olgoso,Santiago]

. . ) [Weinberg],[Ovrut,Schnitzer]
- Functional methods (EOM @ LO’ functional determinants @ NLO) Software: matchete [Fuentes-Martin,Konig,Pages,Thomsen,Wilsch]



Why a new method for performing matching?
« Why not?

Traditional methods are
[Appelquist,Carazzone],[Witten],[Collins,Wilczek,Zee]

- Feynman diagrams expanded in hard-mass region Software: matchmakereft [Carmona,Lazopoulos,0Olgoso,Santiago]

. . ) [Weinberg],[Ovrut,Schnitzer]
- Functional methods (EOM @ LO’ functional determinants @ NLO) Software: matchete [Fuentes-Martin,Konig,Pages,Thomsen,Wilsch]

 Possibility of making selection rules/magic zeros manifest i tamedarigayal panico pomarol giembau

- In the computation of anomalous dimensions, scattering amplitudes explained the origin of many
7EROs thr()ugh Se]ecti()n ru‘ﬂ, [Elias-Miro,Espinosa,Pomarol],[Cheung,Shen],[Bern,Parra-Martinez,Sawyer]x2,[Jiang,Shu, Xiao,Zheng],[Chala]

- It seems that there exist mysterious zeros in the matching and there might be an on-shell explanation
from symmetry. [Delle Rose,von Harling,Pomarol]



Why a new method for performing matching?
« Why not?

Traditional methods are
[Appelquist,Carazzone],[Witten],[Collins,Wilczek,Zee]

- Feynman diagrams expanded in hard-mass region Software: matchmakereft [Carmona,Lazopoulos,0Olgoso,Santiago]

. . ) [Weinberg],[Ovrut,Schnitzer]
- Functional methods (EOM @ LO’ functional determinants @ NLO) Software: matchete [Fuentes-Martin,Konig,Pages,Thomsen,Wilsch]

 Possibility of making selection rules/magic zeros manifest i tamedarigayal panico pomarol giembau

- In the computation of anomalous dimensions, scattering amplitudes explained the origin of many
7EROs thr()ugh Se]ecti()n ru‘ﬂ, [Elias-Miro,Espinosa,Pomarol],[Cheung,Shen],[Bern,Parra-Martinez,Sawyer]x2,[Jiang,Shu, Xiao,Zheng],[Chala]

- It seems that there exist mysterious zeros in the matching and there might be an on-shell explanation
from symmetry. [Delle Rose,von Harling,Pomarol]

. Computational improvements

- @ integrand level: on-shell techniques (perturbative unitarity and locality) provide a compact
reorganisation of the integrands of the Scattering Amplitudes (e.g. gauge theory and gravity amplitudes)

- @ projecting on operator basis: we deal with S-matrix elements (e.g. no field redefinition)
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. We want to use dispersion relations

We were inspired by the approach from analyticity and unitarity used in the context of

positivity bounds.

In the forward limit of 2 — 2 scattering: ¢, = O
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. ... beyond four-point scattering: /

- The analytic structure of the S-matrix elements beyond the four-point case is not know. [Bros EpsteinGlaser]

- But, we can consider FORM FACTORS!

First studied in the context of N=4 sYM:
[van Neerven],[Brandhuber,Spence,Travaglini,Yang],[Bork,Kazakov,Vartanov]
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First studied in the context of N=4 sYM:

... and beyond forward limit:

- This quantities depend on all the Mandelstam invariants (e.g. s, t, u @ three-points)

- We consider a DILATATION transformation: p; = p; = z p; and analytically continue in z.

[van Neerven],[Brandhuber,Spence,Travaglini,Yang],[Bork,Kazakov,Vartanov]

Fo(ii) = Jd“x e iy | O) | O)
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o A .
. All the states are outgoing: E
Andlitic
L ’ , eveqjuunere
5= 2p; p; = 2EE;(1 — cos0) > 0 ; pt) =4¢*>>0 ;f{;\n e -;?fgi),“ )

 The analytic structure of the form factors is simple

In perturbation theory, it is easy to realise that the form factors in massless
theories have singularities only @ s;; = 0.

‘N=4: [Zwiebel],[Nandan,Sieg, Wilhelm,Yang],[+Loebbert]

o ... with discontinuities determined by unitarity! EF'Ts: [Caron-Huot Wilhelm],see also [Mird Ingoldbya, Riembaul,

Partial Waves: [Baratella,Fernandez,Pomarol]

Similarly to the S-matrix, also form factors satisty unitarity conditions: 2-loop: [Bern,Sawyer,Parra-Martinez]

STS =1 — F=S®F"
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The analytic structures is modified by virtual or threshold contributions.
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o Which form factor? The closest to the S-matrix!

To pertorm the matching of an EFT to a possible UV completion we consider the Lagrangian.

2o
d,i
31R—30+22 — 04, - Zuyy=Zo+ Lokint Lot -
d=5 i=1

If we cross some of the out states and take the limit ¢ — 0, we obtain the scattering amplitude.

» The matching condition: ,,(y;| Zr(0)[0) = qulws| Lyy(0)|0)

In the kinematics for which the massive state decouples g* = Si.. <M 2and |z] <1, we
demand that the form factors computed in the IR is the same as the one in the UV.

Choosing the state will select operators and the matching is easier if we choose it carefully.

In the most generic case, we can set ¢ — O from the very beginning.

/
/

},

BONUS MATERIAL (for discussion or questions):

We have just generalised the central equation of
[Caron-Huot,Wilhelm] for computing anomalous
dimensions to the case of light massive states.

1 (% dz
[ Dlsch (m 27)

<




Matching in Dilatation Space

OV Pol,es

A 2
™ Lﬁl

OV brandh powty
P T

'\rrte%u—\ioh > 1R +hveshdd : the Loop

Contouy Nomentum NS two

Yeaions of inkeoxations
0

e sof+ A~s ((scaleless)
e hard _P~M




Matching in Dilatation Space

r OO

dz
Zn+1

Disc F 3Uv(ﬁ; 7)
<

« The rational terms do not contribute to the matching.

In [Delle Rose, von Harling, Pomarol] it was argued (based on certain scaling of the Feynman
integrals) that rational terms do not contribute to the matching (for 4-point interactions).
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Matching in Dilatation Space

. . . A
 The rational terms do not contribute to the matching. |
In [Delle Rose, von Harling, Pomarol] it was argued (based on certain scaling of the Feynman OV peles OV brandn ot
integrals) that rational terms do not contribute to the matching (for 4-point interactions). R, : v
™ LH
. The projection onto an operator basis is trivial. | {
W&Q‘a‘a‘“m > IR, Ahvesndd : the Loop
@@,n(n_ff) are polynomials (or rational functions) and the projection can be performed ' ‘:;’;“i\fu?p f:fe;;f e
numerically (~ solving a linear system) c Soft A~ (scaleless)

e hard _P~AM
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Working Example - Scalar Theory

1 A 1 1 g3 84
& = —0,0"p Pt +—0,00'P — —M*P* D YR
2 4! 2 2 2! 3!
, 2n 4.4 - , g3 — 1
: ©0) _ 45 3 O0) _ 2 n n n
‘Matcﬁmg the 0-""¢" interactions d0 =1=y — dO =1+ Y ¢ o )
stu Y n=0
S.. n+1 Nl
R _ 5 _ i UV — 2 U
E ' , AT =4 <M2> ifﬁ‘d (Z)_’H—Z&Mzmz
f S,t,U BTl s,1,U
" : AL X A
Stu Res A(z) = — ———
7= Sij M2
2 Z_T'j
Matching the a2n¢6 interactions: the result is identical after substituting g5 — g4 and s;; = ;.
Y .
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Working Example - Scalar Theory

‘Matcﬁing the 0*"* interactions @ 1-[00}9
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Working Example - Scalar Theory

‘Matcﬁing the 0*"* interactions @ 1-[00J19

» v 1 dz . (1) _ 84 dz Ac = n>1
e T JM_ TR A ) Pl R b T T6m a1

S S S

%/'t.u ~ / j

We can now consider a more subtle contribution @ @(/lgg)

A 2 oo d 2 A 2 (oo d 1 "
A8y [ Z [ Jrrps [ — +ﬁJ A . [dLIPS++/1g32 - — ie;0,0)
2z ), 7't (I — \/Zp3)2 — M2 2z ), 7't s — M? + ic

3

3
1 1, 4 o 13 1 e Vs GO S
3 Dere—e - ae—e(_ Ac, = Ag3 FHy + 000
gk ; | "8 Tem2n+ 1) \e
= )
71 a3 The contribuions Qfom these cuts ave alreqdiy
ORNE - Looy é_) "t‘(ee—{‘eue‘L_ h
MNTCH OEs .

Reminder: we have to subtract the 1R fooys (which are scaleless). Then the 1R cﬁvergences of the UV comy[éu’ons are traded for Uv cﬁvergences @C the EFT.
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« Positivity bounds for higher-point contact terms.

«Generic constraints from the UV to the IR:

* Structural properties of UV completions, e.g. supersymmetry in the UV

* Magic zeros as selection rules?

«Efficiency improvements and software implementation (?)

» Systematic approaches to dLIPS integration and conciliation with region

expansion.



Thank you!
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¢ The mass dimension cf the form facwr is dim O — m:

’.l-[omogeneity in the mass dimension tells us that we can rewrite D in terms of the renormalisation scale:

0
D = dim0 — #,, — oy
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\ 4 R@iﬁnecf version (Z]L/ tﬁe ‘Decoupﬁ'ng SUBU’OLCI'[OTL scﬁeme:

Massive modes contribute to the anomalous dimensions U( the kinematics is above threshold!

The c{eco%v[ing of ﬁeavy modes is man@’fest in the renormalisation qf the coujoﬁ’ngs.



