On-shell Higgsing, the HEFT and the SMEFT

Yael Shadmi, TECHNION

Reuven Balkin, Gauthier Durieux, Teppei Kitahara, YS, Yaniv Weiss '21 Hongkai Liu, Teng Ma, YS, Michael Waterbury '23

expanding on methods from:
YS Weiss '18
Durieux Kitahara YS Weiss '19
Durieux Kitahara Machado YS Weiss '20
introduction: Lie groups (gauge symmetry) from amplitudes:
(textbook example eg Schwartz)
the consistent interactions of spin-1 particles —> LIE GROUPS
three point coupling $\propto C^{a b c}$ completely antisymmetric
consistent factorization of 4-point amplitude on 3-pt's $->$ Jacobi Identity
$->$ full classification of Lie algebras

3 massive degenerate spin-1 particles

3 massive degenerate spin-1 particles

Durieux Kitahara YS Weiss '19 Liu Yin '22

Lorentz (little group): most general amplitude:

completely antisymmetric $+C^{\prime a b c}\langle 12\rangle\langle 23\rangle\langle 31\rangle / \Lambda^{2}+C^{\prime \prime a b c}[12][23][31] / \Lambda^{2}$
-> $C^{a b c}$ completely antisymmetric
structure constants!

+ factorization of 4-points on 3-points: Jacobi identity

3 massive degenerate spin-1 particles

Durieux Kitahara YS Weiss '19
Liu Yin '22

Lorentz (little group): most general amplitude:

completely antisymmetric

$$
+C^{\prime} a b c\langle 12\rangle\langle 23\rangle\langle 31\rangle / \Lambda^{2}+C^{\prime \prime a b c}[12][23][31] / \Lambda^{2}
$$

-> $\quad C^{a b c}$ completely antisymmetric structure constants!

+ factorization of 4-points on 3-points: Jacobi identity
natural to expect also general features of the Higgs mechanism to emerge from Lorentz today:
- anatomy of the Higgs mechanism at the amplitude level
- application: on-shell derivation of SMEFT, HEFT amplitudes at low-energy

2023:

1. EWSB ?? have only ad-hoc effective description: why is symmetry broken? what sets the scale? what stabilizes the scale?
2. know that we know nothing about the UV (${ }^{*}$): motivates use of EFTs, on-shell construction of EFTs

notations: spinor variables:

why suffer:
little group (LG) "charges" transparent —> selection rules
massless-massive relations transparent in LG covariant ("bolded") massive spinor formalism

amplitude basics: spinor variables:

amplitude is function of momenta, polarizations $(s=1 / 2, s=1)$
all can be written in terms of massless 2-component spinors:

$$
\begin{array}{ll}
\left.u_{+}(p)=p\right] & \text { or } \\
\left.u_{-}(p)=p\right\rangle \\
\bar{u}_{+}(p)=[p & \bar{u}_{-}(p)=\langle p
\end{array}
$$

massless particle: one 3-vector/lightlike vector (momentum) $->$ one spinor
massive particle: two 3-vector/two lightlike vector (momentum+spin axis) -> two spinors

amplitude basics: spinor variables: massless

$\left.p_{i}=i\right\rangle\left[i \quad\right.$: LG $(\mathrm{U}(1))=$ Lorentz transformations keeping p_{i} invariant:

$$
\begin{array}{cc}
\left.i] \rightarrow e^{i \phi} i\right]: & \text { charge }+1 \\
\left.i\rangle \rightarrow e^{-i \phi} i\right\rangle: & \text { charge }-1
\end{array}
$$

amplitude basics: spinor variables: massless

external leg i :

$$
\begin{array}{ll}
i, h=1 / 2 & i] \\
i, h=-1 / 2 & i\rangle \\
i, h=+1 & i] i] \\
i, h=-1 & i\rangle i\rangle
\end{array}
$$

amplitude basics: spinor variables: massive

$$
\begin{gathered}
p_{i}=p_{i}^{I=1}+p_{i}^{I=2} \text { lightlike vectors } \\
\left.p_{i}=i\right\rangle^{I}\left[i_{I}\right.
\end{gathered}
$$

LG (SU(2)) = Lorentz transformations keeping p_{i} invariant:

$$
\left.i\rangle^{I} \rightarrow W_{J}^{I} i\right\rangle^{J} \quad\left[i _ { I } \rightarrow (W ^ { - 1 }) _ { I } ^ { J } \left[i_{J}\right.\right.
$$

amplitude basics: spinor variables:

massless
external leg i :
massive

$i, h=1 / 2$	$i]$
$i, h=-1 / 2$	$i\rangle$
$i, h=+1$	$i] i]$
$i, h=-1$	$i\rangle i\rangle$

$$
\begin{aligned}
& i, s=1 / 2 \quad \text { i }] \text { or } \mathbf{i}\rangle \\
& i, s=+1 \quad \text { i }] \mathbf{i}] \text { or } \mathbf{i}\rangle \mathbf{i}\rangle \text { or } \mathbf{i}\rangle \mathbf{i}] \\
& \\
& \left.\mathbf{i}] \mathbf{i}] \equiv i]^{\{I} i\right]^{J\}}
\end{aligned}
$$

can construct any SU(2) rep from symm combinations of doublets

amplitude basics: spinor variables:

$$
\begin{gathered}
\text { amplitude }=\text { function of spinor products } \quad\langle i j\rangle, \quad[i j], \text { or }\langle\mathbf{i j}\rangle, \quad[\mathbf{i j}] \\
\qquad \& \text { Lorentz invariants } \quad s_{i j}=\left(p_{i}+p_{j}\right)^{2}
\end{gathered}
$$

amplitude basics: more on LG covariant massive spinors

high-energy limit:
$p=p^{I=1}+p^{I=2} \equiv k+q$
HE: $\quad k=\mathcal{O}(E) \sim p \quad q=\mathcal{O}\left(m^{2} / E\right)$
eg, only $\mathbf{p}]^{I=1} \sim p$] survives; $\left.\mathbf{p}\right]^{I=2}=q$] subleading
-> HE limit: simply unbold spinor structures
massless <-> massive amplitudes from (un)bolding

anatomy of on-shell Higgsing

anatomy of on-shell Higgsing

start from massless amplitudes of unbroken theory and "Higgs" to get low-energy massive amplitudes
extra Higgs legs non-dynamical: soft: $H\left(q_{i}\right) \quad q_{i} \rightarrow 0$

probe field space
identify massless and massive amplitudes in high-energy/massless limit (where they coincide)

$$
M_{n}(1, \ldots, n)=A_{n}(1, \ldots, n)+v \lim _{q \sim v \rightarrow 0} A_{n+1}(1, \ldots, n ; H(q))+\cdots
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n
($\mathrm{n}+1$)-pt amplitude with external
Higgses $\mathrm{n},(\mathrm{n}+1)$

known (universal)
3-pt amplitude $\propto g$
n-pt amplitude with external massive vector n

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n
($n+1$)-pt amplitude with external
Higgses $\mathrm{n},(\mathrm{n}+1)$

n-pt amplitude with external massive vector n

$$
\text { propagator } \propto 1 /(k+q)^{2}=1 / m^{2}
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n
($n+1$)-pt amplitude with external
Higgses $\mathrm{n},(\mathrm{n}+1)$

soft Higgs leg supplies second lightlike momentum to form massive momentum

$$
\mathbf{p}=k+q
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n
($n+1$)-pt amplitude with external
Higgses $\mathrm{n},(\mathrm{n}+1)$

symmetrization over LG indices: exchanging k, q in Higgs legs
soft Higgs leg supplies second lightlike momentum to form massive momentum

$$
\mathbf{p}=k+q
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n

$$
(\mathrm{n}+1) \text {-pt amplitude }
$$

with external

$$
\text { Higgses } n,(n+1)
$$

massless spinor structure gets bolded $k] k] \rightarrow \mathbf{p}] \mathbf{p}]$

anatomy of on-shell Higgsing

massless fermion: $i] \rightarrow$ i]
massless vector $i] i] \rightarrow$ i]i]
massless scalar amplitude with momentum insertion $\left.p_{i}=i\right]\langle i$
$\rightarrow>$ 1. massive scalar amplitude with momentum insertion $\mathbf{p}_{\mathbf{i}}$
$\rightarrow>$ 2. massive vector amplitude $\left.\quad p_{i}=i\right]\langle i \rightarrow \mathbf{i}]\langle\mathbf{i}$
(longitudinal vector from Goldstone boson)

anatomy of on-shell Higgsing

just as for gauge symmetry:
Higgs mechanism <—> Lorentz symmetry
from Lorentz symmetry pov:
bolding the massless spinor structure = covariantizing wrt full massive LG

anatomy of on-shell Higgsing

- couplings get $\mathcal{O}(v)$ corrections:

$$
C_{n}=c_{n}+\# v c_{n+1}+\# v^{2} c_{n+2}+\ldots
$$

used this to derive

- 3-pt amplitudes in Higgsed U(1) toy model (incl contributions from 3, 4, 5 point amplitudes of unbroken theory)
- two examples of SMEFT amplitudes: $\bar{u} d W h, W W h h$

EFT applications

on-shell EFTs

bootstrapping amplitudes:
construct amplitudes based on their properties: little group; poles, cuts

$$
\rightarrow \mathscr{A}_{S M}+\mathscr{A}_{E F T}
$$

rediscover SM

Durieux Kitahara YS Weiss '19
Accettuli Huber, De Angelis '21

- most general EFT amplitude
- model independent
- no issues of field redefinitions
- natural approach as we try to go beyond SM
- amplitude is what we need for searches

on-shell EFTs

bootstrapping amplitudes:

- most general 3-points (renormalizable+higher-dim): dictated by little group
- factorizable parts of higher-point amplitudes (determined by 3-pts)
- higher-point contact terms: dictated by little group
-> starting with the massive (and massless) particles we know: construct most general amplitudes

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

local: no poles

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

carries LG weight; "stripped" off all Lorentz invariants $s_{i j}$ "stripped contact term" SCT

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

carries LG weight; "stripped" of all Lorentz invariants $s_{i j}$ "stripped contact term" SCT
polynomial in Lorentz invariants $s_{i j}$ subject to kinematical constraints, $\mathrm{eg}, s_{12}+s_{13}+s_{23}=\sum m^{2}$

2 to 2:

$$
\mathscr{A}=\underbrace{\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}}}_{\text {SCT }} P \underbrace{P\left(\frac{s}{\Lambda^{2}}, \frac{t}{\Lambda^{2}}\right)}_{\text {scattering angle }}
$$

2 to 2:

$$
\mathscr{A}=\underbrace{\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}}}_{\text {SCT }} P \underbrace{P\left(\frac{s}{\Lambda^{2}}, \frac{t}{\Lambda^{2}}\right)}_{\text {scattering angle }}
$$

scattering angle
and
decay angles

2 to 2 with massless initial state particles:

What about (low-energy) SMEFT amplitudes?
use on-shell Higgsing
construct amplitudes of unbroken theory \& "Higgs" them to get massive amplitudes

massless \mathscr{A} (impose full $\mathrm{SU}(3) \times S U(2) \times U(1)$)

derive massive \mathscr{M}
(contact term part only)
construct amplitudes of unbroken theory \& "Higgs" them to get massive amplitudes

massless \mathscr{A} (impose full $\mathrm{SU}(3) \times S U(2) \times U(1)$)

derive massive \mathscr{M}
(contact term part only)
another way: start with most general amplitudes and require perturbative unitarity

results: HEFT, SMEFT

HEFT inventory

- all HEFT 3-points (+matching to SMEFT)
- [all generic 3-points for spins up to 3
- all generic 4-pt SCTs for spins 0, 1/2, 1]
- HEFT 4-points: hggg, Zggg, ffVh, WWhh

Durieux Kitahara Machado YS Weiss’20

Shadmi et al '18, Durieux et al '19, Balkin et al '21

+ some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh
- $5 V(4 W+Z$ etc $)$

De Angelis ‘21

- Higgs, top 4pts in terms of momenta+polarizations
- all HEFT 4pts up to d=8

Liu Ma YS Waterbury '23

HEFT inventory

- all HEFT 3-points
- [all generic 3-point SCTs for spins up to 3
- all generic 4-points for spins 0, 1/2, 1]
- HEFT 4-points: hggg, Zggg, ffVh, WWhh
+ some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh
- $5 V$ (4W $+Z$ etc)
- Higgs, top 4pts in terms of momenta+polarizations Chang et al '22, '23
- all HEFT 4pts up to $d=8$

Durieux Kitahara Machado YS Weiss‘19
Shadmi et al '18, Durieux et al '19, Balkin et al '21
most general EFT contact terms featuring E^{2} growth: (typically dim-6 operators)

Massive amplitudes	E^{2} contact terms
$\mathcal{M}(W W h h)$	$C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{W W h h}^{ \pm \pm}(\mathbf{1 2})^{2}$
$\mathcal{M}($ Z $Z h h)$	$C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[12], C_{Z Z h h}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(g g h h)$	$C_{\text {gghh }}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma \gamma h h)$	$C_{\gamma \gamma h h}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma Z h h)$	$C_{\gamma Z h h}^{ \pm}(12)^{2}$
$\mathcal{M}(h h h h)$	$C_{h h h h}$
$\mathcal{M}\left(f^{c} f h h\right)$	$C_{f f h h}^{ \pm \pm}(12)$
$\mathcal{M}\left(f^{c} f W h\right)$	$C_{f f W h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle, C_{f f W h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}], C_{f f W h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(f^{c} f Z h\right)$	$C_{f f Z h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle, C_{f f Z h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}], C_{f f Z h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(f^{c} f \gamma h\right)$	$C_{f f \gamma h}^{ \pm \pm \pm}(13)(\mathbf{2 3)}$
$\mathcal{M}\left(q^{c} q g h\right)$	$C_{q q g h}^{ \pm \pm \pm}(13)(\mathbf{2 3)}$
$\mathcal{M}\left(f^{c} f f^{c} f\right)$	$C_{f f f f}^{ \pm \pm \pm \pm, 1}(\mathbf{1 2})(\mathbf{3 4}), C_{f f f f}^{--++}\langle\mathbf{1 2}\rangle[\mathbf{3 4}], C_{f f f f}^{-+-+}\langle\mathbf{1 3}\rangle[\mathbf{2 4}], C_{f f f f}^{-++-}\langle\mathbf{1 4}\rangle[\mathbf{2 3}]$ $C_{f f f f}^{ \pm \pm \pm, 2}(\mathbf{1 3})(\mathbf{2 4}), C_{f f f f}^{++--}[\mathbf{1 2}]\langle\mathbf{3 4}\rangle, C_{f f f f}^{+-+-}[\mathbf{1 3}]\langle\mathbf{2 4}\rangle, C_{f f f f}^{+--+}[\mathbf{1 4}]\langle\mathbf{2 3}\rangle$

most general EFT contact terms featuring E^{2} growth: (mostly dim-6 operators)

Massive amplitudes	E^{2} contact terms
$\mathcal{M}(W W h h)$	$C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{W W h h}^{ \pm \pm}(\mathbf{1 2})^{2}$
$\mathcal{M}(Z Z h h)$	$C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{Z Z Z h}^{ \pm \pm}(\mathbf{1 2})^{2}$
$\mathcal{M}(g g h h)$	$C_{g g h h}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma \gamma h h)$	$C_{\gamma \gamma h h}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma Z h h)$	$C_{\gamma Z h h}^{ \pm}(12)^{2}$
$\mathcal{M}(h h h h)$	$C_{h h h h}$
$\mathcal{M}\left(f^{c} f h h\right)$	$C_{f f h h}^{ \pm \pm}(\mathbf{1 2})$
$\mathcal{M}\left(f^{c} f W h\right)$	$C_{f f W h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle, C_{f f W h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}], C_{f f W h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(f^{c} f Z h\right)$	$C_{f f Z h}^{+0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle, C_{f f Z h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}], C_{f f Z h}^{ \pm \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(f^{c} f \gamma h\right)$	$C_{f f \gamma h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(q^{c} q g h\right)$	$C_{q q g h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$
$\mathcal{M}\left(f^{c} f f^{c} f\right)$	$C_{f f f f}^{ \pm \pm \pm, 1}(\mathbf{1 2})(\mathbf{3 4}), C_{f f f f}^{--++}\langle\mathbf{1 2}\rangle[\mathbf{3 4}], C_{f f f f}^{-+-+}\langle\mathbf{1 3}\rangle[\mathbf{2 4}], C_{f f f f}^{-++-}\langle\mathbf{1 4}\rangle[\mathbf{2 3}]$
	$C_{f f f f}^{ \pm \pm \pm \pm, 2}(\mathbf{1 3})(\mathbf{2 4}), C_{f f f f}^{++--}[\mathbf{1 2}]\langle\mathbf{3 4}\rangle, C_{f f f f}^{+-+-}[\mathbf{1 3}]\langle\mathbf{2 4}\rangle, C_{f f f f}^{+--+}[\mathbf{1 4}]\langle\mathbf{2 3}\rangle$

$(12)=[12]$ or $\langle 12\rangle$

C's: Wilson coefficients
most suppressed by $\bar{\Lambda}^{2}$ (amplitude dim-less)
similarly: list of all $d \leq 8$ HEFT amplitudes

$$
\left(E^{3}, E^{4} \text { growth }\right)
$$

some of these already derived in:
YS Weiss ‘18
Durieux Kitahara YS Weiss '19 (which also has all 3 points)
Balkin Durieux Kitahara YS Weiss '21

4.1.7 $W^{+} W^{-} Z Z$

$0000: \quad[\mathbf{1 2}][\mathbf{3 4}]\langle\mathbf{1 2}\rangle\langle\mathbf{3 4}\rangle,[\mathbf{1 3}][\mathbf{2 4}]\langle\mathbf{1 3}\rangle\langle\mathbf{2 4}\rangle+(3 \leftrightarrow 4)$
$(4 ; 8) \quad \#=2$
$++00: \quad[\mathbf{1 2}]^{2}[34]\langle\mathbf{3 4}\rangle ; \mathrm{PF}$
$(6 ; 8) \quad \#-2$
$+0+0: \quad\{[\mathbf{1 2}][\mathbf{3 4}][\mathbf{1 3}]\langle\mathbf{2 4}\rangle,[\mathbf{1 4}][\mathbf{2 3}][\mathbf{1 3}]\langle\mathbf{2 4}\rangle\}+(3 \leftrightarrow 4) ;(1 \leftrightarrow 2) ; \operatorname{PF}(6 ; 8\rangle \quad \#=8$
$\left.{ }^{[34]^{2}}{ }^{2} 12\right]\langle 12\rangle ; \mathrm{PF}$
$(6 ; 8) \quad \#=2$
$[\mathbf{1 3}][\mathbf{1 4}]\langle\mathbf{2 3}\rangle\langle\mathbf{2 4}\rangle ; \mathrm{PF} \quad(6 ; 8) \quad \#=2$
+-00 :
$(6 ; 8) \quad \#=4$
$\{[\mathbf{1 2}][\mathbf{1 4}]\langle\mathbf{2 3}\rangle\langle\mathbf{3 4}\rangle+(3 \leftrightarrow 4),(1 \leftrightarrow 2)\} ; \mathrm{PF}$
$(6 ; 8) \quad \#=1$

$$
\left\{[\mathbf{1 2}]^{2}[\mathbf{3 4}]^{2},[\mathbf{1 3}]^{2}[\mathbf{2 4}]^{2}+(3 \leftrightarrow 4)\right\} ; \mathrm{PF}
$$

$(8 ; 8) \quad \#=4$
$(8 ; 8) \quad \#=2$
$[\mathbf{1 4}]^{2}\langle\mathbf{2 3}\rangle^{2}+(3 \leftrightarrow 4) ; \mathrm{PF}$
$(8 ; 8) \quad \#=2$
At order E^{5} several new $v v v v$ SCTs become independent in the $(+000),(+++0)$, and $(++-0)$ helicity categories.
do new SCTs appear at higher dim's and where

What about SMEFT amplitudes?
use on-shell Higgsing

same structures of HEFT amplitudes but coefficients constrained by full electroweak symmetry

here: up to $d \leq 6$
$\mathrm{d}=8$: Goldberg Liu YS in progress

Massive $d=6$ amplitudes	SMEFT Wilson coefficients
$\mathcal{M}\left(W_{L}^{+} W_{L}^{-} h h\right)=C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}]$	$C_{W W h h}^{00}=\left(c_{\left(H^{\dagger} H\right)^{2}}^{(+)}-3 c_{\left(H^{\dagger} H\right)^{2}}^{(-)}\right) / 2$
$\mathcal{M}\left(W_{ \pm}^{+} W_{ \pm}^{-} h h\right)=C_{W W h h}^{ \pm \pm}(\mathbf{1 2})^{2}$	$C_{W W h h}^{ \pm \pm}=2 c_{W W H H}^{ \pm \pm}$
$\mathcal{M}\left(Z_{L} Z_{L} h h\right)=C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}]$	$C_{Z Z h h}^{00}=-2 c_{\left(H^{\dagger} H\right)^{2}}^{(+)}$
$\mathcal{M}\left(Z_{ \pm} Z_{ \pm} h h\right)=C_{Z Z h h}^{ \pm \pm}(12)^{2}$	$C_{Z Z h h}^{ \pm \pm}=c_{W}^{2} c_{W W H H}^{ \pm \pm}+s_{W}^{2} c_{B B H H}^{ \pm \pm}+c_{W} s_{W} c_{B W H H}^{ \pm \pm}$
$\mathcal{M}\left(g_{ \pm} g_{ \pm} h h\right)=C_{g g h h}^{ \pm \pm}(12)^{2}$	$C_{g g h h}^{ \pm \pm}=c_{G G H H}^{ \pm \pm}$
$\mathcal{M}\left(\gamma_{ \pm} \gamma_{ \pm} h h\right)=C_{\gamma \gamma h h}^{ \pm \pm}(12)^{2}$	$C_{\gamma \gamma h h}^{ \pm \pm}=s_{W}^{2} c_{W W H H}^{ \pm \pm}+c_{W}^{2} c_{B B H H}^{ \pm \pm}-c_{W} s_{W} c_{B W H H}^{ \pm \pm}$
$\mathcal{M}\left(\gamma_{ \pm} Z h h\right)=C_{\gamma Z h h}^{ \pm}(12)^{2}$	$C_{\gamma Z h h}^{ \pm}=s_{W} c_{W} c_{W W H H}^{ \pm \pm}-s_{W} c_{W} c_{B B H H}^{ \pm \pm}+\frac{1}{2}\left(s_{W}^{2}-c_{W}^{2}\right) c_{B W H H}^{ \pm \pm}$
$\mathcal{M}(h h h h)=C_{\text {hhhh }}$	$C_{\text {hhhh }}=-3 c_{\left(H^{\dagger} H\right)^{2}}+45 v^{2} c_{\left(H^{\dagger} H\right)^{3}}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} h h\right)=C_{f f h h}^{ \pm \pm}(\mathbf{1 2})$	$C_{f f h h}^{ \pm \pm}=3 c_{\Psi \psi H H H}^{ \pm \pm} v /(2 \sqrt{2})$
$\mathcal{M}\left(f_{+}^{c} f_{-}^{\prime} W_{L} h\right)=C_{f f W h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle$	$C_{f f W h}^{+-0}=\left(c_{\Psi \Psi H H}^{+-,(+)}-c_{\Psi \Psi H H}^{+-,(-)}\right) / 2$
$\mathcal{M}\left(f_{-}^{c} f_{+}^{\prime} W_{L} h\right)=C_{f f W h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}]$	$C_{f f W h}^{-+0}=c_{\psi_{R} \psi_{R}^{\prime} H H}^{-+}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm}^{\prime} W_{ \pm} h\right)=C_{f f W h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3)}$	$C_{f f W h}^{ \pm \pm \pm}=c_{\Psi \psi W H}^{ \pm \pm \pm} / 2$
$\mathcal{M}\left(f_{+}^{c} f_{-} Z_{L} h\right)=C_{f f Z h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle$	$C_{e_{L} e_{L} Z h}^{+-0}=-i \sqrt{2} c_{\Psi \Psi H H}^{+-,(+)}, C_{\nu_{L} \nu_{L} Z h}^{+-0}=-i\left(c_{\Psi \Psi H H}^{+-,(+)}+c_{\Psi \Psi H H}^{+-,(-)}\right) / \sqrt{2}$
$\mathcal{M}\left(f_{-}^{c} f_{+} Z_{L} h\right)=C_{f f Z h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}]$	$C_{f f Z h}^{-+0, \mathrm{CT}}=-i \sqrt{2} c_{\psi \psi H H}^{-+}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} Z_{ \pm} h\right)=C_{f f Z h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$	$C_{f f Z h}^{ \pm \pm \pm}=-\left(s_{W} c_{\Psi \psi B H}^{ \pm \pm \pm}+c_{W} c_{\Psi \psi W H}^{ \pm \pm \pm}\right) / \sqrt{2}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} \gamma_{ \pm} h\right)=C_{f f \gamma h}^{ \pm \pm \pm}(\mathbf{1 3)}$ (23)	$C_{f f \gamma h}^{ \pm \pm \pm}=\left(-s_{W} c_{\Psi \psi W H}^{ \pm \pm \pm}+c_{W} c_{\Psi \psi B H}^{ \pm \pm \pm}\right) / \sqrt{2}$
$\mathcal{M}\left(q_{ \pm}^{c} q_{ \pm} g_{ \pm}^{A} h\right)=C_{q q g h}^{ \pm \pm \pm} \lambda^{A}(\mathbf{1 3)}(\mathbf{2 3)}$	$C_{q q g h}^{ \pm \pm \pm}=c_{\Psi \psi(\pm H}^{ \pm \pm \pm} / \sqrt{2}$

Table 3: The low-energy E^{2} contact terms (left column) and their $d=6$ coefficients in the SMEFT (right column). $c_{\left(H^{\dagger} H\right)^{2}}$ without a superscript is the renormalizable four-Higgs coupling. The mapping for four fermion contact terms is trivial, so we do not include them here.

also include

full mapping of 4-pt $d \leq 6$ EFT amplitudes

 and Warsaw basisMa Shu Xiao '19

Amplitude	Contact term	Warsaw basis operator	Coefficient
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H_{k}^{c} H^{l} H^{m} H^{n}\right)$	$T_{i j k}^{+l m n}$	$\mathcal{O}_{H} / 6$	$c_{\left(H^{\dagger} H\right)^{3}}$
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H^{k} H^{l}\right)$	$s_{12} T_{i j}^{+k l}$	$\mathcal{O}_{H D} / 2+\mathcal{O}_{H \square} / 4$	$c_{\left(H^{\dagger} H\right)^{2}}^{(+)}$
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H^{k} H^{l}\right)$	$\left(s_{13}-s_{23}\right) T_{i j}^{-k l}$	$\mathcal{O}_{H D} / 2-\mathcal{O}_{H \square} / 4$	$c_{\left(H^{\dagger} H\right)^{2}}^{(-)}$
$\mathcal{A}\left(B^{ \pm} B^{ \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta_{i}^{j}$	$\left(\mathcal{O}_{H B} \pm i \mathcal{O}_{H \tilde{B}}\right) / 2$	$c_{B B H H}^{ \pm \pm}$
$\mathcal{A}\left(B^{ \pm} W^{I \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2}\left(\sigma^{I}\right)_{i}^{j}$	$\mathcal{O}_{H W B} \pm i \mathcal{O}_{H \tilde{W} B}$	$c_{B W H H}^{ \pm \pm}$
$\mathcal{A}\left(W^{I+} W^{J+} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta^{I J} \delta_{i}^{j}$	$\left(\mathcal{O}_{H W} \pm i \mathcal{O}_{H \tilde{W}}\right) / 2$	$c_{W W H H}^{ \pm \pm}$
$\mathcal{A}\left(g^{A \pm} g^{B \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta^{A B} \delta_{i}^{j}$	$\left(\mathcal{O}_{H G} \pm i \mathcal{O}_{H \tilde{G}}\right) / 2$	$c_{G G H H}^{ \pm \pm}$
$\mathcal{A}\left(L_{i}^{c} e H_{j}^{c} H^{k} H^{l}\right)$	$[12] T_{i j}^{+k l}$	$\mathcal{O}_{e H} / 2$	$c_{\text {LeHHH }}^{++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} H_{j}^{c} H^{k} H^{l}\right)$	${ }^{[12]} T_{i j}^{+k l} \delta_{a}^{b}$	$\mathcal{O}_{\text {dH }} / 2$	$c_{Q d H H H}^{++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} H_{j}^{c} H_{k}^{c} H^{l}\right)$	$[12] \varepsilon_{i m} T_{j k}^{+m l} \delta_{a}^{b}$	$\mathcal{O}_{u H} / 2$	$c_{Q u H H H}^{++}$
$\mathcal{A}\left(e^{c} e H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j}$	$\mathcal{O}_{\text {He }} / 2$	$c_{\text {eeH }}^{-+}$
$\mathcal{A}\left(u_{a}^{c} u^{b} H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j} \delta_{a}^{b}$	$\mathcal{O}_{H u} / 2$	$c_{u u H H}^{-+}$
$\mathcal{A}\left(d_{a}^{c} d^{b} H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j} \delta_{a}^{b}$	$\mathcal{O}_{H d} / 2$	$c_{d d H}^{-+}$
$\mathcal{A}\left(u_{a}^{c} d^{b} H^{i} H^{j}\right)$	$\langle 142] \epsilon^{i j} \delta_{a}^{b}$	$\mathcal{O}_{\text {Hud }} / 2$	$c_{u d H H}^{-+}$
$\mathcal{A}\left(L_{i}^{c} L^{j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{+j l}$	$\left(\mathcal{O}_{H L}^{(1)}+\mathcal{O}_{H L}^{(3)}\right) / 8$	$c_{\text {LLHH }}^{+-,(+)}$
$\mathcal{A}\left(L_{i}^{c} L^{j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{-j l}$	$\left(\mathcal{O}_{H L}^{(1)}-\mathcal{O}_{H L}^{(3)}\right) / 8$	$c_{\text {LLHH }}^{+-,(-)}$
$\mathcal{A}\left(Q_{a, i}^{c} Q^{b, j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{+j l} \delta_{a}^{b}$	$\left(3 \mathcal{O}_{H Q}^{(1)}+\mathcal{O}_{H Q}^{(3)}\right) / 8$	$c_{Q Q H H}^{+-,(+)}$
$\mathcal{A}\left(Q_{a, i}^{c} Q^{b, j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{-j l} \delta_{a}^{b}$	$\left(\mathcal{O}_{H Q}^{(1)}-\mathcal{O}_{H Q}^{(3)}\right) / 8$	$c_{Q Q H H}^{+-,(-)}$
$\mathcal{A}\left(L_{i}^{c} e B^{+} H^{j}\right)$	[13][23] δ_{i}^{j}	$-i \mathcal{O}_{e B} /(2 \sqrt{2})$	$c_{\text {Le }}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} B^{+} H^{j}\right)$	[13][23] $\delta_{i}^{j} \delta_{a}^{b}$	$-i \mathcal{O}_{d B} /(2 \sqrt{2})$	$c_{Q d B H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} B^{+} H_{j}^{c}\right)$	[13][23] $\epsilon_{i j} \delta_{a}^{b}$	$-i \mathcal{O}_{u B} /(2 \sqrt{2})$	$c_{Q u B H}^{+++}$
$\mathcal{A}\left(L_{i}^{c} e W^{I+} H^{j}\right)$	[13][23] $\left(\sigma^{I}\right)_{i}^{j}$	$-i \mathcal{O}_{\text {eW }} /(2 \sqrt{2})$	$c_{\text {LeW } H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} W^{I+} H^{j}\right)$	[13][23] $\left(\sigma^{I}\right)_{i}^{j} \delta_{a}^{b}$	$-i \mathcal{O}_{d W} /(2 \sqrt{2})$	$c_{Q d W H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} W^{I+} H_{j}^{c}\right)$	[13][23] $\left(\sigma^{I}\right)_{i k} \epsilon_{j}^{k} \delta_{a}^{b}$	$-i \mathcal{O}_{u W} /(2 \sqrt{2})$	$c_{Q u W H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} g^{A+} H^{j}\right)$	[13] $[23] \delta_{i}^{j}\left(\lambda^{A}\right)_{a}^{b}$	$-i \mathcal{O}_{d G} /(2 \sqrt{2})$	$c_{Q d G H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} g^{A+} H_{j}^{c}\right)$	[13][23] $\epsilon_{i j}\left(\lambda^{A}\right)_{a}^{b}$	$-i \mathcal{O}_{u G} /(2 \sqrt{2})$	$c_{Q u G H}^{+++}$
$\mathcal{A}\left(W^{I \pm} W^{J \pm} W^{K \pm}\right)$	(12)(23)(31) $\epsilon^{I J K}$	$\left(\mathcal{O}_{W} \pm i \mathcal{O}_{\tilde{W}}\right) / 6$	$c_{W W W}^{ \pm \pm \pm \pm}$
$\mathcal{A}\left(g^{A \pm} g^{B \pm} g^{C \pm}\right)$	$(12)(23)(31) f^{A B C}$	$\left(\mathcal{O}_{G} \pm i \mathcal{O}_{\tilde{G}}\right) / 6$	$c_{G G G}^{ \pm \pm \pm}$

Table 2: Massless $d=6$ SMEFT contact terms [34] and their relations to Warsaw basis operators [3]. For each operator (or operator combination) \mathcal{O} in the third column, $c \mathcal{O}$ generates the structure in the second column with the coefficient c given in the fourth column.

Massive amplitudes	E^{2} contact terms
$\mathcal{M}(W W h h)$	$C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{W W h h}^{ \pm \pm}(\mathbf{1 2})^{2}$
$\mathcal{M}(Z Z h h)$	$C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{Z Z h h}^{ \pm \pm}(12)^{2}$
$M A(a, h h)$	$\left.C^{ \pm} \pm 12\right)^{2}$

simple: each one: complex number (scattering angle; W/Z/h/t spin polarization direction)
SMEFT relations or lack thereof reflected directly in coefficients of specific observables (obviously after adding in factorizable part of amplitude and squaring)
good starting point for isolating specific contributions
in progress: De Angelis Durieux Grojean YS

| $\mathcal{M}\left(f^{c} f f^{c} f\right)$ | $C_{f f f f}^{ \pm \pm \pm \pm, 2}(\mathbf{1 3})(\mathbf{2 4}), C_{f f f f}^{++--}[\mathbf{1 2}]\langle\mathbf{3 4}\rangle, C_{f f f f}^{+-+-}[\mathbf{1 3}]\langle\mathbf{2 4}\rangle, C_{f f f f}^{+--+}[\mathbf{1 4}]\langle\mathbf{2 3}\rangle$ |
| :--- | :--- | :--- |

recall: standard approach: to derive SMEFT predictions:

- basis of operators in unbroken theory
- turn on Higgs VEV \rightarrow Lagrangian in unbroken theory \rightarrow SM couplings shift
- derive Feynman rules of broken theory in some gauge
- redefine parameters from physical masses, couplings
here: directly get physical parameters, working with on-shell dof's only
shifts of SM couplings from $\mathrm{d}=6$ operators
example: WWh coupling shift from $2 H-2 H^{\dagger} \mathrm{d}=6$ contact term
6-point $\left(H^{\dagger} H\right)^{2} W W$ amplitude with this contact term
taking three Higgs momenta to be soft
$->\mathcal{M}_{d=6}^{m}\left(h\left(W^{+}\right)^{+}\left(W^{-}\right)^{-}\right)=g\left(1+v^{2} C\right) \frac{[\mathbf{1 2}]\langle\mathbf{1 2}\rangle}{M_{W}}$

conclusions \& outlook:
o mature(ing) methods for on-shell derivations of low-energy EFT amplitudes:
o [clear distinction between HEFT, SMEFT]
- all HEFT 4-pts up to d=8; all SMEFT 4-pts up to d=6
o directly in terms of physical particles, couplings
- amplitudes are what we need to compare with experiment
o start to develop an understanding of field space - Higgs mechanism

