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Classical physics asserts
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Maxwell

Einstein
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Quantum physics described by 
Schrodinger equation 

<latexit sha1_base64="6BWJd36wiuYe3cl2Hma0jMUqq+o=">AAACJnicbVDLSgMxFM3UV62vUZdugkVwVWZE1E2h6KbLCvYBnaFk0kwbmsmEJCOUcb7Gjb/ixkVFxJ2fYtoOYlsPBA7nnMvNPYFgVGnH+bIKa+sbm1vF7dLO7t7+gX141FJxIjFp4pjFshMgRRjlpKmpZqQjJEFRwEg7GN1N/fYjkYrG/EGPBfEjNOA0pBhpI/XsKoVeKBFOPYGkpohlvwzqDD55QpmERHzACKzC+qLSs8tOxZkBrhI3J2WQo9GzJ14/xklEuMYMKdV1HaH9dLoQM5KVvEQRgfAIDUjXUI4iovx0dmYGz4zSh2EszeMaztS/EymKlBpHgUlGSA/VsjcV//O6iQ5v/JRykWjC8XxRmJgCYjjtDPapJFizsSEIS2r+CvEQmda0abZkSnCXT14lrYuKe1Vx7y/Ltdu8jiI4AafgHLjgGtRAHTRAE2DwDF7BBLxbL9ab9WF9zqMFK585Bguwvn8Asn2l4Q==</latexit>

i
@

@t
| i = H| i

From this equation classical physics follows…
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From this equation classical physics follows…

..in expectation value 

A Hamiltonian Ĥ is constructed from these operators. Quantum states, constructed for
example as a Fock space using the operators �̂ and ⇡̂, evolve as per Schrödinger’s equation.
It is then straightforward to see that the following equations hold: 1
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These are Hamilton’s equations of motion in expectation value. This can also be shown
using the path integral approach. In the path integral approach, the time evolution operator
T (t2; t1) that describes the time evolution of a quantum state from time t1 to t2 is defined
in terms of its transition matrix elements on field basis states |�i. This transition matrix
element is given by:

h�f |T (t2; t1) |�ii =
Z
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D� eiS[�] (3)

where S =
R
Ld4x is the classical action. Redefine the field variables in the integral by a

shift � ! �+ �� where �� is taken to vanish at the boundaries of integration. The variable
shift should not change the physics of the quantum states. By setting this variation to zero,
we get the following identity:
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Thus, for an arbitrary (but infinitesimal) variation ��, we have
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In other words, the classical equations of motion, derived by demanding that the classical
action is stationary with respect to variations of any field in the action, is satisfied at the
expectation value level.

Observe the following subtlety in applying this procedure to theories with gauge sym-
metries. In these, the number of physical degrees of freedom are smaller than the number
of fields used to represent the theory in the classical action. In the quantum theory, these
superfluous or gauge degrees of freedom are identified by the fact that these degrees of free-
dom do not posses corresponding conjugate momenta. Since these degrees of freedom are
not physical, they need to be fixed through some procedure in order to define a Hamiltonian.
But, once the degree of freedom is fixed, what does it mean to vary the Hamiltonian with
respect to this fixed degree of freedom as per (1)? If the quantum theory is defined using the
path integral, the extraction of the transition matrix elements (3) requires the gauge degrees

1
We are loose with notation here. The final terms should be interpreted as functional derivatives of the

classical Hamiltonian with respect to fields � and ⇡ and then replacing all fields with operators, keeping

ordering fixed.
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A subtlety for gauge theories

Fewer d.o.f. than fields

1. Fewer 2nd order equations for evolution

2. Additional constraint equations on the dof
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Compare 

Constraints:
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Both dynamics and
Dynamics only

& Initial conditions
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Gµ⌫ = Tµ⌫ + Tµ⌫
aux

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

√
−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8πGNT
00 + 8πGN

H√
−g

G0i = 8πGNT
0i + 8πGN

Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g





H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0



 (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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Gµ⌫ = Tµ⌫ + Tµ⌫
aux

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

√
−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8πGNT
00 + 8πGN

H√
−g

G0i = 8πGNT
0i + 8πGN

Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g





H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0



 (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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Familiar from EM

That is, the state looks like the time evolution of a system where in addition to the known
current Jµ, there is an additional “dark charge” J

d

0 that is somehow unmovable. The in-
teresting fact about a state that violates Gauss’ law is that even at the classical level it is
described in terms of the gauge invariant observable ~E - there is thus no logical issue involved
in time evolving such a state.

At the classical level, we would reject such states simply because we believe in Gauss’

law and would thus require
⇣
~r · ~E � J0

⌘
= 0. But, classical mechanics is not the correct

description of nature - the underlying theory is quantum mechanics and classical physics is
a limit of quantum mechanics. The key question that we need to ask is if Gauss’ law follows
from quantum mechanics. We argue that it does not. Instead, we show that quantum
mechanics allows for the existence of gauge invariant states of electromagnetism that violate
Gauss’ law. At the classical level, the time evolution of these states would be identical
to that of the unmovable “dark charge” J

d

0 described in (6) - but there is no new physics
associated with J

d

0 . It is simply a state of electromagnetism. Further, these states can also
be consistently coupled to gravity.

Why is Gauss’s law not true in quantum mechanics but naively appears to be true in
classical electromagnetism? As a first peek at this issue, observe the following. In classical
physics, we obtained Maxwell’s equations by varying the action SEM along four independent
variations of the potential Aµ. But, due to gauge redundancy, there aren’t four independent
variations of Aµ. By Stokes’ theorem, any potential Aµ can be decomposed as Aµ = Kµ+@µ↵

where Kµ is divergence-less i.e. @µ
Kµ = 0 and thus only contains three degrees of freedom.

Write the classical action SEM in terms of Kµ and ↵ instead of Aµ. Due to the gauge
invariance of the action SEM under the gauge transformations Aµ ! Aµ + @µ↵ and the
associated covariant transformations on LJ , the action:

SEM =

Z
d
4
xLEM (Aµ, @⌫Aµ) =

Z
d
4
xLEM (Kµ, @⌫Kµ) (7)

is only a function of Kµ. But since the divergence-less four vector Kµ only has 3 degrees
of freedom, we do not have four independent variations to obtain all of the equations of
Maxwell.

The reader will observe that in writing (7), we have e↵ectively picked the Lorenz gauge
where we set @

µ
Aµ = 0 and as a consequence, we lost an equation of motion. But, this is

a general feature of any gauge fixing procedure where the degree of freedom that is being
fixed can no longer be varied. The definition of the quantum theory, either at the level of
the Hamiltonian or the path integral, requires us to pick a gauge in order to define operators
and states. As a result, some of the naive equations that one might obtain in the classical
theory are no longer true at the quantum level. This results in loosening restrictions on the
allowed quantum states of the theory permitting states such as (6) that violate Gauss’s law.
In the following sections, we will display this in a variety of gauges.

3 Weyl Gauge

To quantize electromagnetism in the Weyl gauge, the following procedure is adopted [4]
to specify the operators, Hamiltonian and physical states. We set A0 = 0. The spatial

4

In Weyl gaugecomponents Aj of the vector potential and its conjugate momentum ⇧j =
@LEM
@Aj

= �Ej get

promoted to operators Âj, ⇧̂j with canonical equal time commutation relations:

[Âj (x) , ⇧̂j0 (x
0)] = i � (x� x0) �jj0 (8)

Using ⇧j = �Ej, we have

[Âj (x) , Êj0 (x
0)] = �i � (x� x0) �jj0 (9)

The Hamiltonian constructed from these operators is:

ĤW =

Z
d
3x
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⇣
~̂E · ~̂E + ~̂B · ~̂B

⌘
+ ~̂J · ~̂A+ ĤJ

◆
(10)

where ĤJ is the Hamiltonian of the current ~J . If a quantum state | i obeys the Schrödinger
equation

i
@| i
@t

= ĤW | i (11)

what equations of motion are automatically obeyed by the expectation values of various
operators such as h | ~E| i?

To answer this, let us naively follow the Schwinger-Dyson procedure and construct the
path integral that solves (11):

T = h
⇣
0, ~Af

⌘
|T (t2; t1) |

⇣
0, ~Ai

⌘
i =

Z ~A(t2)= ~Af

~A(t1)= ~Ai

DAD� e
i
R t2
t1

d
4
x (LEM��A0) (12)

where the Lagrange multiplier � enforces the Weyl gauge A0 = 0. This path integral yields

the transition matrix element for the field basis state |
⇣
0, ~Ai

⌘
i at time t1 to evolve to

|
⇣
0, ~Af

⌘
i at time t2. This transition matrix element (12) should be invariant when we

compute this path integral with a variable redefinition Aµ ! Aµ + �Aµ with �Aµ vanishing
at the boundaries. This yields a set of Schwinger-Dyson equations which show how the
classical field equations arise as identities automatically obeyed by the expectation values of
various field operators when the quantum state evolves as per (12). One can check that when
this procedure is applied to the spatial variations �Ai, one obtains the result that Ampere’s
law is obeyed by the expectation values of the quantum operators. But, for the variation
�A0, this yields the equation:

h |~r · ~E � J0 + �| i = 0 (13)

This is not an equation of motion or a constraint on the physical state | i - instead, it
describes how the unphysical Lagrange multiplier � evolves in the path integral to maintain
the gauge A0 = 0. Thus Gauss’s law does not immediately follow from the quantum Hamil-
tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify

5
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[Âj (x) , Êj0 (x
0)] = �i � (x� x0) �jj0 (9)

The Hamiltonian constructed from these operators is:
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tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify

5

components Aj of the vector potential and its conjugate momentum ⇧j =
@LEM
@Aj

= �Ej get
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quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider

the physics of a subspace of eigenstates of ~r · ~̂E � Ĵ0 with the same eigenvalue. Since the

operator
⇣
~r · ~̂E � Ĵ0

⌘
commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
physics of this eigen-subspace is invariant under spatial gauge transformations.

In the traditional quantization procedure [4], the physical states | EMi are taken to

be eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with zero eigenvalue. In this eigen-subspace, Gauss’s law is

preserved. But, this is a choice. An eigen sub-space of eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with a

non-zero eigenvalue J
d

0 (x):
⇣
~r · ~̂E � Ĵ0

⌘
| EMi = J

d

0 (x) | EMi (14)

also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:

dh EM |
⇣
~r · ~̂E � Ĵ0

⌘
| EMi

dt
= 0 (15)

which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and

there are no di�culties in time evolving these states. The initial quantum state of the
universe could have been a state where Gauss’s law was preserved i.e. the state happened

to be a state that was an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with eigenvalue zero. But, it could just

as easily have been an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with a non-zero eigenvalue Jd

0 (x). In this

case, Gauss’s law would be violated. It is a matter for experiment to decide which of these
scenarios is realized in our universe. Note that in states with J

d

0 (x) 6= 0, the initial state
is not the vacuum and it thus picks a rest frame. The state thus breaks Lorentz symmetry.
This is similar to the fact that our universe also picks a cosmic rest frame, breaking Lorentz
symmetry.

4 Coulomb Gauge

In the Weyl gauge, we removed gauge redundancies in two steps - first, by setting the operator
A0 = 0 and second, by restricting the Hilbert space of the theory by identifying quantum

6
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This is not an equation of motion or a constraint on the physical state | i - instead, it
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◆
(10)
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quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider

the physics of a subspace of eigenstates of ~r · ~̂E � Ĵ0 with the same eigenvalue. Since the

operator
⇣
~r · ~̂E � Ĵ0

⌘
commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
physics of this eigen-subspace is invariant under spatial gauge transformations.

In the traditional quantization procedure [4], the physical states | EMi are taken to

be eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with zero eigenvalue. In this eigen-subspace, Gauss’s law is

preserved. But, this is a choice. An eigen sub-space of eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with a

non-zero eigenvalue J
d

0 (x):
⇣
~r · ~̂E � Ĵ0

⌘
| EMi = J

d

0 (x) | EMi (14)

also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:

dh EM |
⇣
~r · ~̂E � Ĵ0

⌘
| EMi

dt
= 0 (15)

which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and

there are no di�culties in time evolving these states. The initial quantum state of the
universe could have been a state where Gauss’s law was preserved i.e. the state happened

to be a state that was an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with eigenvalue zero. But, it could just

as easily have been an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with a non-zero eigenvalue Jd

0 (x). In this

case, Gauss’s law would be violated. It is a matter for experiment to decide which of these
scenarios is realized in our universe. Note that in states with J

d

0 (x) 6= 0, the initial state
is not the vacuum and it thus picks a rest frame. The state thus breaks Lorentz symmetry.
This is similar to the fact that our universe also picks a cosmic rest frame, breaking Lorentz
symmetry.

4 Coulomb Gauge

In the Weyl gauge, we removed gauge redundancies in two steps - first, by setting the operator
A0 = 0 and second, by restricting the Hilbert space of the theory by identifying quantum
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This is just like adding a background 
classical charge density

states that are connected by purely spatial gauge transformations. Unlike the Weyl gauge,
in the Coulomb gauge, all the gauge redundancies are eliminated at the operator level. How
do we construct the operators that correspond to states with J

d

0 (x) 6= 0?
Before constructing these, let us review how the quantization procedure in Coulomb

gauge is obtained from the physics of electromagnetism in the Weyl gauge. Since this is a
review, we simply sketch the major steps and refer the reader to [4] for the details. The
first step in this procedure is to construct the Lagrangian that describes the physics of the
Weyl gauge from the Hamiltonian ĤW in (10). As described in section 3, ĤW needs to act

on a restricted Hilbert space - namely, states that are eigenstates of ~r · ~̂E � Ĵ0 with the
same eigenvalue so that the theory is gauge invariant under spatial gauge transformations.
To construct the path integral (12), the time evolution needs to be restricted to such gauge
invariant states. In the conventional quantization procedure, this is enforced by inserting a

projection operator P̂ that projects the basis states | ~̂Ai onto the eigenspace of zero eigenvalue
of ~r · ~̂E � Ĵ0. Thus, the generating functional of the theory is:

Z = tr
⇣
Te

�i
R
dtĤW P̂

⌘
(16)

where the projection operator

P̂ = ⇧x �

⇣
~r · ~̂E (x)� Ĵ0 (x)

⌘
(17)

This projection operator acts on each point in time and it can be implemented using an
integral representation of the delta function (17)

�

⇣
~r · ~̂E (x, t)� Ĵ0 (x, t)

⌘
=

Z
DA0 e

i�t
R
d
3xA0(x,t)(~r· ~E(x,t)�J0(x,t)) (18)

We thus see the role of A0 - it enforces the constraint that the Hilbert space of the theory

is restricted to a specific eigenspace of states that annihilate the operator ~r · ~̂E� Ĵ0. Further
algebraic manipulations result in the realization that the action of the theory can be written
as:

S (Aµ, E) =

Z
d
4
x

✓
� ~E · @t ~A� 1

2

⇣
~E
2 + ~B

2
⌘
� ~A · ~J + A0

⇣
~r · ~E � J0

⌘◆
(19)

From this, one performs additional manipulations (i.e. performing Gaussian integrals on E)
and obtains the conventional Lagrangian (1).

Let us see how this procedure would change if we had picked an eigenspace of ~r · ~̂E � Ĵ0

with non-zero eigenvalue J
d

0 (x). In this case, the projection operator would be:

P̂ = ⇧x �

⇣
~r · ~̂E (x)� Ĵ0 (x)� J

d

0 (x)
⌘

(20)

The subsequent mathematical procedure (following the steps in [4] ) results in the e↵ective
Lagrangian:

L̃EM = �1

4
Fµ⌫F

µ⌫ + A
µ
Jµ + A

µ
J
d

µ
+ LJ (21)
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where the field J
d

µ
is the background classical field

�
J
d

0 (x) , 0, 0, 0
�
. Thus, the theory is

identical to that of electromagnetism coupled to a classical background charge density J
d

0 (x)
- this charge density picks a rest frame and it is thus the theory of electromagnetism in such
a Lorentz breaking background. While it is well recognized that such a classical background
can be added to quantum electrodynamics, the key point of our paper is to point out that
there is no additional microphysics associated with this background. The field theory that
describes Jd

0 (x) is simply a quantum state of electromagnetism.
The quantum theory of states with J

d

0 (x) 6= 0 in any gauge can now be described by
applying the conventional quantization procedure specific to that gauge starting with the
e↵ective Lagrangian (21). For example, to obtain the quantum theory in Coulomb gauge,
construct the canonical Hamiltonian corresponding to the e↵ective Lagrangian (21). Then,

impose the operator requirement ~r · ~̂A = 0 and solve for Â0 in terms of the e↵ective charge
density Ĵ0 + J

d

0 :

Â0 (x) =

Z
d
3x0

⇣
Ĵ0 (x0) + J

d

0 (x
0)
⌘

4⇡|x� x0| (22)

The resulting Hamiltonian describes the quantum theory of states with J
d

0 (x) 6= 0.

5 Gravitation and Cosmology

In this section, we describe how states that violate Gauss’s law couple to gravity. Our
treatment of the gravitational interactions parallels the flat space treatment - we begin by
describing these states in the Weyl gauge where the existence of these states is most easily
understood. From the Weyl gauge, we construct the e↵ective Lagrangian that describes
these states and the gravitational dynamics can be readily read o↵ from this Lagrangian.
For simplicity, we will treat gravity semi-classically. There is no obstacle to a full quantum
mechanical treatment of gravity - given the path integrals described below, one can follow
the procedure outlined in our companion paper [1] to quantum mechanically describe the
gravitational field.

Our principal interest in this paper is to understand the cosmological implications of
such states. We will thus specialize to the case of a FRW cosmology - but, the methods
we describe can be extended to any space-time. Accordingly, we take the metric of the
space-time to be:

gµ⌫ ! ds
2 = a (t)2

�
�dt

2 + dx
2 + dy

2 + dz
2
�

(23)

where a (t) is the scale factor. We have written this metric in conformal coordinates since
in these coordinates, as we will see below, the quantum theory easily maps to flat space
results. Since we know how regular charged particles behave in the presence of these states,
we will focus our attention solely on the cosmological evolution of these states, neglecting
the physics of charged matter that may be coupled to these states. The Lagrangian that
describes this system is:
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of ~r · ~̂E � Ĵ0. Thus, the generating functional of the theory is:

Z = tr
⇣
Te

�i
R
dtĤW P̂

⌘
(16)

where the projection operator

P̂ = ⇧x �

⇣
~r · ~̂E (x)� Ĵ0 (x)

⌘
(17)

This projection operator acts on each point in time and it can be implemented using an
integral representation of the delta function (17)

�

⇣
~r · ~̂E (x, t)� Ĵ0 (x, t)

⌘
=

Z
DA0 e

i�t
R
d
3xA0(x,t)(~r· ~E(x,t)�J0(x,t)) (18)

We thus see the role of A0 - it enforces the constraint that the Hilbert space of the theory

is restricted to a specific eigenspace of states that annihilate the operator ~r · ~̂E� Ĵ0. Further
algebraic manipulations result in the realization that the action of the theory can be written
as:
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Z
d
4
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✓
� ~E · @t ~A� 1

2

⇣
~E
2 + ~B

2
⌘
� ~A · ~J + A0

⇣
~r · ~E � J0

⌘◆
(19)

From this, one performs additional manipulations (i.e. performing Gaussian integrals on E)
and obtains the conventional Lagrangian (1).

Let us see how this procedure would change if we had picked an eigenspace of ~r · ~̂E � Ĵ0

with non-zero eigenvalue J
d

0 (x). In this case, the projection operator would be:

P̂ = ⇧x �

⇣
~r · ~̂E (x)� Ĵ0 (x)� J

d

0 (x)
⌘

(20)

The subsequent mathematical procedure (following the steps in [4] ) results in the e↵ective
Lagrangian:

L̃EM = �1

4
Fµ⌫F

µ⌫ + A
µ
Jµ + A

µ
J
d

µ
+ LJ (21)
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where the field J
d

µ
is the background classical field

�
J
d

0 (x) , 0, 0, 0
�
. Thus, the theory is

identical to that of electromagnetism coupled to a classical background charge density J
d

0 (x)
- this charge density picks a rest frame and it is thus the theory of electromagnetism in such
a Lorentz breaking background. While it is well recognized that such a classical background
can be added to quantum electrodynamics, the key point of our paper is to point out that
there is no additional microphysics associated with this background. The field theory that
describes Jd

0 (x) is simply a quantum state of electromagnetism.
The quantum theory of states with J

d

0 (x) 6= 0 in any gauge can now be described by
applying the conventional quantization procedure specific to that gauge starting with the
e↵ective Lagrangian (21). For example, to obtain the quantum theory in Coulomb gauge,
construct the canonical Hamiltonian corresponding to the e↵ective Lagrangian (21). Then,

impose the operator requirement ~r · ~̂A = 0 and solve for Â0 in terms of the e↵ective charge
density Ĵ0 + J

d

0 :

Â0 (x) =

Z
d
3x0

⇣
Ĵ0 (x0) + J

d

0 (x
0)
⌘

4⇡|x� x0| (22)

The resulting Hamiltonian describes the quantum theory of states with J
d

0 (x) 6= 0.

5 Gravitation and Cosmology

In this section, we describe how states that violate Gauss’s law couple to gravity. Our
treatment of the gravitational interactions parallels the flat space treatment - we begin by
describing these states in the Weyl gauge where the existence of these states is most easily
understood. From the Weyl gauge, we construct the e↵ective Lagrangian that describes
these states and the gravitational dynamics can be readily read o↵ from this Lagrangian.
For simplicity, we will treat gravity semi-classically. There is no obstacle to a full quantum
mechanical treatment of gravity - given the path integrals described below, one can follow
the procedure outlined in our companion paper [1] to quantum mechanically describe the
gravitational field.

Our principal interest in this paper is to understand the cosmological implications of
such states. We will thus specialize to the case of a FRW cosmology - but, the methods
we describe can be extended to any space-time. Accordingly, we take the metric of the
space-time to be:

gµ⌫ ! ds
2 = a (t)2

�
�dt

2 + dx
2 + dy

2 + dz
2
�

(23)

where a (t) is the scale factor. We have written this metric in conformal coordinates since
in these coordinates, as we will see below, the quantum theory easily maps to flat space
results. Since we know how regular charged particles behave in the presence of these states,
we will focus our attention solely on the cosmological evolution of these states, neglecting
the physics of charged matter that may be coupled to these states. The Lagrangian that
describes this system is:
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of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
path integral. Thus the action that appears in the path integral that defines the transition
matrix elements (3) is not the original classical action S but instead a suitably gauge fixed
action Sgf . Since Sgf 6= S, the identities implied by changing the variables of integration in
the path integral are di↵erent from the conventional classical equations obtained by varying
S (see discussion in [1]).

Note the key distinction between the above quantum method of deriving the equations
of motion and the classical approach. In the classical theory, the classical action is first
varied and the equation of motion is obtained by setting these variations to zero. A gauge
choice is subsequently made to solve these equations of motion. In the quantum theory, the
definition of the Hamiltonian or the path integral requires a gauge choice – without such a
choice, either the Hamiltonian has ill-defined operators or the gauge degeneracies have not
been factorized from the path integral. This changes the derived classical equations. In the
following, we describe how these issues impact the quantization of general relativity and the
extraction of the classical limit of this quantum theory.

3 Minisuperspace

We start the discussion with a toy (but illustrative) model of cosmology known as minisuper-
space. It is general relativity in four dimensions and it describes homogeneous and isotropic
space-times. Namely, it is generated from a metric

gµ⌫ ! ds2 = �N (t)2 dt2 + a (t)2
�
dx2 + dy2 + dz2

�
(6)

The spatial degrees of freedom are frozen and the theory describes the time evolution of the
scale factor a in concert with other homogeneuous and isotropic forms of matter. The action
is the standard Einstein-Hilbert term plus matter

Sms =

Z
dt
p
�g
�
M2

pl
R + Lmatter

�
(7)

where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1

2g
µ⌫@µ�@⌫��V (�), and the

metric (6), the full action is2

Sms =

Z
dt

 
�6M2

pl

a(t)ȧ(t)2

N(t)
+

a(t)3�̇(t)2

2N(t)
�N(t)a(t)3V (�)

!
(8)

2
We have tacitly integrated by parts to remove terms with ä. This is equivalent to including a Gibbons-

Hawking-York term needed to produce the correct equations of motion for manifolds with boundaries [2,3].
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of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
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leading to classical equations of motion (dropping the t arguments of N and a for clarity)

�Sms

�N
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N2a2
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2N2
� V (�)
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= 0 (9)
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= 3Na2
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N2a
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N2a2
� 4M2
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ȧṄ

N3a
+

�̇2

2N2
� V (�)

!
= 0 (10)

�Sms

��
= �a3

N

 
�̈+ 3

ȧ

a
�̇� Ṅ �̇

N
+N2@V (�)

@�

!
= 0 (11)

Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =

(a3/N)�̇. The resulting Hamiltonian

H =
h
⇡ȧ+ ⇡��̇� L

i

ȧ=··· ,�̇=···

= � N

24M2
pl
a
⇡2 +

N

2a3
⇡2
�
+Na3V (�) (12)

is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).

6

The equations of motion naively follow
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
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the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
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In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:
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of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =

(a3/N)�̇. The resulting Hamiltonian
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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ȧ2

N2a2
� �̇2

2N2
� V (�)

!
= 0 (9)

�Sms

�a
= 3Na2

 
4M2

pl

ä
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ȧ

a
�̇� Ṅ �̇
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⇡ȧ+ ⇡��̇� L

i
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of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
path integral. Thus the action that appears in the path integral that defines the transition
matrix elements (3) is not the original classical action S but instead a suitably gauge fixed
action Sgf . Since Sgf 6= S, the identities implied by changing the variables of integration in
the path integral are di↵erent from the conventional classical equations obtained by varying
S (see discussion in [1]).

Note the key distinction between the above quantum method of deriving the equations
of motion and the classical approach. In the classical theory, the classical action is first
varied and the equation of motion is obtained by setting these variations to zero. A gauge
choice is subsequently made to solve these equations of motion. In the quantum theory, the
definition of the Hamiltonian or the path integral requires a gauge choice – without such a
choice, either the Hamiltonian has ill-defined operators or the gauge degeneracies have not
been factorized from the path integral. This changes the derived classical equations. In the
following, we describe how these issues impact the quantization of general relativity and the
extraction of the classical limit of this quantum theory.

3 Minisuperspace

We start the discussion with a toy (but illustrative) model of cosmology known as minisuper-
space. It is general relativity in four dimensions and it describes homogeneous and isotropic
space-times. Namely, it is generated from a metric

gµ⌫ ! ds2 = �N (t)2 dt2 + a (t)2
�
dx2 + dy2 + dz2

�
(6)

The spatial degrees of freedom are frozen and the theory describes the time evolution of the
scale factor a in concert with other homogeneuous and isotropic forms of matter. The action
is the standard Einstein-Hilbert term plus matter

Sms =

Z
dt
p
�g
�
M2

pl
R + Lmatter

�
(7)

where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1

2g
µ⌫@µ�@⌫��V (�), and the

metric (6), the full action is2
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a(t)ȧ(t)2

N(t)
+

a(t)3�̇(t)2

2N(t)
�N(t)a(t)3V (�)

!
(8)

2
We have tacitly integrated by parts to remove terms with ä. This is equivalent to including a Gibbons-

Hawking-York term needed to produce the correct equations of motion for manifolds with boundaries [2,3].
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.
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In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Just choose N = choice of time 
coordinate

Only get the ‘a’ hamiltonian eqns in 
gravitational sector

Now, once we fix N , we can write a quantum Hamiltonian operator by interpreting
a, ⇡,�, ⇡� as operators with standard commutation relations. There are remaining issues,
such as defining inverse field operators and operator ordering, which we will address below
when we derive the path integral.

Our main point is that once N is fixed, we only get the following equations in the
gravitational sector:

@thâi = �ih
h
ˆ̃H, â

i
i (14)

@th⇡̂i = �ih
h
ˆ̃H, ⇡̂

i
i (15)

When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
discussion in section 2). Of course, the theory can be defined with any choice of N - but this
simply changes the definition of time and does not restrict the physical states of the theory.

While not guaranteed by the above theory, what is guaranteed is

@th ˆ̃Hi = ih
h
ˆ̃H, ˆ̃H

i
i = 0 (16)

which means if the initial state is chosen to satisfy the first Friedmann equation (in expec-
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i
i (14)

@th⇡̂i = �ih
h
ˆ̃H, ⇡̂

i
i (15)

When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
discussion in section 2). Of course, the theory can be defined with any choice of N - but this
simply changes the definition of time and does not restrict the physical states of the theory.

While not guaranteed by the above theory, what is guaranteed is

@th ˆ̃Hi = ih
h
ˆ̃H, ˆ̃H

i
i = 0 (16)

which means if the initial state is chosen to satisfy the first Friedmann equation (in expec-
tation value), then it satisfies it at all times. This is equivalent to the classical equations,
where the time derivative of the first Friedmann equation is linearly dependent of the second

Friedmann equation and matter equations of motion. Thus, one can impose h ˆ̃Hi = 0 on the
initial state and it will be satisfied at all times. Note, classically this is just fixing the initial
boundary condition for ȧ(t).
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What is instead often imposed in the literature is a second order constraint – namely that
the Hilbert space is restricted to the states | i such that Ĥ| i = 0. This is known as the
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General(er) relativity

What we see (after scaling out by the appropriate powers of a) is that the non-compliance
with the first Friedmann equation or Hamiltonian constraint (22) leads to a more general ini-
tial condition for ȧ, which could be interpreted as the existence of a new but non-substantive
source of energy density that has zero pressure. In other words, it contributes to the equa-
tions as a component of dust or a dark matter would. Interestingly, the violation of (22),
parameterized by H0 could take either sign, and thus could contribute as a substance with
negative energy density. There are of course no additional fields here, but an quantum state of
field configurations of the non-dynamical gravitational fields. Note, this and similar e↵ects
has also been seen looking at constrained gravitational instantons [9], in Horava-Lifschitz
gravity [10,11], and in Einstein-aether theories [12, 13].

4 General Relativity

We will now take what we learned from the minisuperspace example and look at the classical
limits from a quantized field theory with a symmetric (metric) tensor, gµ⌫ , coupled to itself
and matter in a general coordinate invariant way.

The classical action that generates general relativity is of course the Einstein-Hilbert
action

S =

Z
d4x

p
�g

�
M2

pl
R + Lmatter

�
+ SGHY (25)

where the matter Lagrangian can contain independent fields as well as the metric, its in-
verse, and covariant derivatives associated with the metric. We have also included the final
Gibbons-Hawking-York term explicitly to remove boundary terms. Minimization of this
action with respect to the path of the metric tensor produces Einstein’s equations:

�S

�gµ⌫
=

p
�g

�
M2

pl
Gµ⌫ � T µ⌫

�
= 0 (26)

where from the second term in (25), Sm =
R p

�gLmatter:

T µ⌫ = � 1p
�g

�Sm

�gµ⌫
(27)

These plus the matter equations of motion determine the classical dynamics as a function of
initial conditions. As in the classical version of minisuperspace, some of these equations are
in fact constraints on the initial conditions.

To canonically quantize, one must find a suitable Hamiltonian operator. Like the previous
examples of minisuperspace and QED, there are redundancies in this theory in the form of
reparameterization invariance. The coordinates can be redefined in terms of four independent
functions, xµ ! ⇠µ(x). This imposed invariance also results in some components of gµ⌫ being
non-dynamical or lacking standard kinetic terms. Thus we have a problem when attempting
to define conjugate momenta for components of gµ⌫ , namely that some vanish. Define Lgrav ⌘R
d3x(

p
�gM2

pl
R+Lboundary), where the last term is to remove higher derive/boundary terms.

As the matter part of the action does not contain time derivatives of metrics, the conjugate
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momenta for the metric components are naturally defined as:

⇡ij ⌘ �Lgrav

�gij,0

⇡i ⌘ �Lgrav

�g0i,0
= 0

⇡ ⌘ �Lgrav

�g00,0
= 0

There is now a clear choice to make – e↵ectively a gauge choice before we define the
Hamiltonian operator. By choosing g0µ = ��0

µ
, we both remove the fields (traditionally the

‘lapse function’ and ‘shift vector’) without conjugates and get the benefit of choosing a time
coordinate and time slices on which to identify initial states.

The gravitational part of the Lagrangian density in this gauge (now setting Mpl = 1) can
be shown to be

L =
p
�

✓
1

4
(�ik�j` � �ij�k`)�ij,0�k`,0 +

(3)
R

◆
(28)

where
(3)
R is the three-dimensional Ricci scalar associated with the spatial metric gij ⌘ �ij,

� is the determinant of the spatial metric, and spatial indices are raised and lowered with
this metric.

In this gauge we see that from the Lagrangian standpoint, the equations of motion are
reduced to the spatial part of Einstein’s equations, and thus these will be the only ones
guaranteed in expectation value in the quantum theory.

We can now build a Hamiltonian operator for the quantum theory in terms of the con-
jugate momentum, which classically is

⇡ij =
1

2

p
�(�ki�`j � �ij�k`)�k`,0 (29)

Solving for the time derivative of the metric

�ij,0 =
2
p
�
(�ia�jb �

1

2
�ij�ab)⇡

ab (30)

allows us to construct the classical Hamiltonian density

H =
1
p
�
(⇡ij⇡

ij � 1

2
⇡2)�p

�
(3)
R (31)

where ⇡ ⌘ �ij⇡ij. Now we would like to use the classical intuition to produce a Hamiltonian
operator in a quantum theory. Again, the kinetic terms are non-trivial, and thus a way
to guarantee the classical limit is approached is, as we did with minisuperspace, to define
the metric-dependent terms in terms of their diagonal matrix elements in a coherent-state
basis, |⇡cl�cli. We see no impediment to doing this by replacing the terms in the classical
Hamiltonian by operators as we did in the homnogeneous case (17) of the previous section.
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non-dynamical or lacking standard kinetic terms. Thus we have a problem when attempting
to define conjugate momenta for components of gµ⌫ , namely that some vanish. Define Lgrav ⌘R
d3x(
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R+Lboundary), where the last term is to remove higher derive/boundary terms.

As the matter part of the action does not contain time derivatives of metrics, the conjugate
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What we see (after scaling out by the appropriate powers of a) is that the non-compliance
with the first Friedmann equation or Hamiltonian constraint (22) leads to a more general ini-
tial condition for ȧ, which could be interpreted as the existence of a new but non-substantive
source of energy density that has zero pressure. In other words, it contributes to the equa-
tions as a component of dust or a dark matter would. Interestingly, the violation of (22),
parameterized by H0 could take either sign, and thus could contribute as a substance with
negative energy density. There are of course no additional fields here, but an quantum state of
field configurations of the non-dynamical gravitational fields. Note, this and similar e↵ects
has also been seen looking at constrained gravitational instantons [9], in Horava-Lifschitz
gravity [10,11], and in Einstein-aether theories [12, 13].

4 General Relativity

We will now take what we learned from the minisuperspace example and look at the classical
limits from a quantized field theory with a symmetric (metric) tensor, gµ⌫ , coupled to itself
and matter in a general coordinate invariant way.

The classical action that generates general relativity is of course the Einstein-Hilbert
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S =
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�
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where the matter Lagrangian can contain independent fields as well as the metric, its in-
verse, and covariant derivatives associated with the metric. We have also included the final
Gibbons-Hawking-York term explicitly to remove boundary terms. Minimization of this
action with respect to the path of the metric tensor produces Einstein’s equations:
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�
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where from the second term in (25), Sm =
R p

�gLmatter:
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These plus the matter equations of motion determine the classical dynamics as a function of
initial conditions. As in the classical version of minisuperspace, some of these equations are
in fact constraints on the initial conditions.

To canonically quantize, one must find a suitable Hamiltonian operator. Like the previous
examples of minisuperspace and QED, there are redundancies in this theory in the form of
reparameterization invariance. The coordinates can be redefined in terms of four independent
functions, xµ ! ⇠µ(x). This imposed invariance also results in some components of gµ⌫ being
non-dynamical or lacking standard kinetic terms. Thus we have a problem when attempting
to define conjugate momenta for components of gµ⌫ , namely that some vanish. Define Lgrav ⌘R
d3x(

p
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pl
R+Lboundary), where the last term is to remove higher derive/boundary terms.
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momenta for the metric components are naturally defined as:

⇡ij ⌘ �Lgrav

�gij,0

⇡i ⌘ �Lgrav

�g0i,0
= 0

⇡ ⌘ �Lgrav

�g00,0
= 0

There is now a clear choice to make – e↵ectively a gauge choice before we define the
Hamiltonian operator. By choosing g0µ = ��0

µ
, we both remove the fields (traditionally the

‘lapse function’ and ‘shift vector’) without conjugates and get the benefit of choosing a time
coordinate and time slices on which to identify initial states.

The gravitational part of the Lagrangian density in this gauge (now setting Mpl = 1) can
be shown to be

L =
p
�

✓
1

4
(�ik�j` � �ij�k`)�ij,0�k`,0 +

(3)
R

◆
(28)

where
(3)
R is the three-dimensional Ricci scalar associated with the spatial metric gij ⌘ �ij,

� is the determinant of the spatial metric, and spatial indices are raised and lowered with
this metric.

In this gauge we see that from the Lagrangian standpoint, the equations of motion are
reduced to the spatial part of Einstein’s equations, and thus these will be the only ones
guaranteed in expectation value in the quantum theory.

We can now build a Hamiltonian operator for the quantum theory in terms of the con-
jugate momentum, which classically is

⇡ij =
1

2

p
�(�ki�`j � �ij�k`)�k`,0 (29)

Solving for the time derivative of the metric

�ij,0 =
2
p
�
(�ia�jb �

1

2
�ij�ab)⇡

ab (30)

allows us to construct the classical Hamiltonian density

H =
1
p
�
(⇡ij⇡

ij � 1

2
⇡2)�p

�
(3)
R (31)

where ⇡ ⌘ �ij⇡ij. Now we would like to use the classical intuition to produce a Hamiltonian
operator in a quantum theory. Again, the kinetic terms are non-trivial, and thus a way
to guarantee the classical limit is approached is, as we did with minisuperspace, to define
the metric-dependent terms in terms of their diagonal matrix elements in a coherent-state
basis, |⇡cl�cli. We see no impediment to doing this by replacing the terms in the classical
Hamiltonian by operators as we did in the homnogeneous case (17) of the previous section.
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What we see (after scaling out by the appropriate powers of a) is that the non-compliance
with the first Friedmann equation or Hamiltonian constraint (22) leads to a more general ini-
tial condition for ȧ, which could be interpreted as the existence of a new but non-substantive
source of energy density that has zero pressure. In other words, it contributes to the equa-
tions as a component of dust or a dark matter would. Interestingly, the violation of (22),
parameterized by H0 could take either sign, and thus could contribute as a substance with
negative energy density. There are of course no additional fields here, but an quantum state of
field configurations of the non-dynamical gravitational fields. Note, this and similar e↵ects
has also been seen looking at constrained gravitational instantons [9], in Horava-Lifschitz
gravity [10,11], and in Einstein-aether theories [12, 13].

4 General Relativity

We will now take what we learned from the minisuperspace example and look at the classical
limits from a quantized field theory with a symmetric (metric) tensor, gµ⌫ , coupled to itself
and matter in a general coordinate invariant way.

The classical action that generates general relativity is of course the Einstein-Hilbert
action

S =
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R + Lmatter
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+ SGHY (25)

where the matter Lagrangian can contain independent fields as well as the metric, its in-
verse, and covariant derivatives associated with the metric. We have also included the final
Gibbons-Hawking-York term explicitly to remove boundary terms. Minimization of this
action with respect to the path of the metric tensor produces Einstein’s equations:
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where from the second term in (25), Sm =
R p

�gLmatter:

T µ⌫ = � 1p
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�Sm
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These plus the matter equations of motion determine the classical dynamics as a function of
initial conditions. As in the classical version of minisuperspace, some of these equations are
in fact constraints on the initial conditions.

To canonically quantize, one must find a suitable Hamiltonian operator. Like the previous
examples of minisuperspace and QED, there are redundancies in this theory in the form of
reparameterization invariance. The coordinates can be redefined in terms of four independent
functions, xµ ! ⇠µ(x). This imposed invariance also results in some components of gµ⌫ being
non-dynamical or lacking standard kinetic terms. Thus we have a problem when attempting
to define conjugate momenta for components of gµ⌫ , namely that some vanish. Define Lgrav ⌘R
d3x(

p
�gM2

pl
R+Lboundary), where the last term is to remove higher derive/boundary terms.

As the matter part of the action does not contain time derivatives of metrics, the conjugate
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The equations of motion that actually 
follow from the quantum theory

Thus, in the coherent state basis, the path integral for quantum gravity should read:

h⇡f�f · · · |e�iĤt|⇡i�i · · · i =
Z

⇡f ,�f

⇡i,�i

D⇡D� · · · ei
R
d
4
x[ 12 (�̇ij⇡ij

�⇡̇
ij
�ij)�H[⇡,�]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values ⇡f and �f , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

p
�g(Gµ⌫ �8⇡GNT µ⌫) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8⇡GNT
00 + 8⇡GN

Hp
�g

G0i = 8⇡GNT
0i + 8⇡GN

P
i

p
�g

Gij = 8⇡GNT
ij

for, as of yet, arbitrary functions H and P
i. In this language, we define an auxiliary energy-

momentum tensor

T µ⌫

aux =
1p
�g

0

BB@

H P
1

P
2

P
3

P
1 0 0 0

P
2 0 0 0

P
3 0 0 0

1

CCA (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
rµ(Gµ⌫ � 8⇡GNT µ⌫) = 0, then:

0 = rµT
µ⌫

aux = @µT
µ⌫

aux + �µ

µ�
T �⌫

aux + �⌫

µ�
T µ�

aux (34)

These four equations simplify in this gauge, as �0
00 = �0

0i = �i

00 = 0. We can use this
condition to constrain the functions [H,P]. Using the identity �µ

µ⌫
= �

p
�g@⌫(1/

p
�g) and

defining tµ⌫aux ⌘
p
�gT µ⌫

aux, we can write the ⌫ = 0 and ⌫ = i equations respectively as

@0t
00
aux + @it

i0
aux = 0

@0t
0i
aux + 2�i

j0t
j0
aux = 0

which (noting that �ij ⌘ gij, � = �g, and �ij�jk = �i
k
in this gauge) simplifies further to

@0H = �@iP
i

@0
�
�ijP

j
�
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values ⇡f and �f , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations
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equations emerge from the quantum field theory in the classical limit. Let’s package the
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Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
rµ(Gµ⌫ � 8⇡GNT µ⌫) = 0, then:
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These four equations simplify in this gauge, as �0
00 = �0
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00 = 0. We can use this
condition to constrain the functions [H,P]. Using the identity �µ
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�g) and

defining tµ⌫aux ⌘
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aux, we can write the ⌫ = 0 and ⌫ = i equations respectively as
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We thus see that this auxiliary shadow matter is made up of three time-independent func-
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An auxiliary ‘shadow matter’ tensor
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key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
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key point is that the six degrees of freedom and their conjugates only produce (in expectation
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Shadow matter in the cosmos

4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi

j
= 0, in terms of the scalar

modes. In Fourier space, we define

hij(~x, t) =

Z
d3kei

~k·~x

✓
k̂ik̂jh̃(~k, t) + (k̂ik̂j �

1

3
�ij)6⌘̃(~k, t)

◆
(37)

The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:

¨̃h+ 3
ȧ

a
˙̃h� 2

k2

a2
⌘̃ = 0 (38)

¨̃h+ 3
ȧ

a
˙̃h+ 6

✓
¨̃⌘ + 3

ȧ

a
˙̃⌘

◆
� 2

k2

a2
⌘̃ = 0 (39)

The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
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⌘̃ / const

1.

(And working with background a~t^(2/3)



2.

Shadow matter in the cosmos

4.1 Cosmological Implications
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi

j
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modes. In Fourier space, we define
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The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:

¨̃h+ 3
ȧ
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi
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= 0, in terms of the scalar

modes. In Fourier space, we define

hij(~x, t) =

Z
d3kei

~k·~x

✓
k̂ik̂jh̃(~k, t) + (k̂ik̂j �

1

3
�ij)6⌘̃(~k, t)

◆
(37)

The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:
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ȧ

a
˙̃h� 2

k2

a2
⌘̃ = 0 (38)

¨̃h+ 3
ȧ
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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In pert theory

4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi
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The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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Zeroth order
whereas the time-time and the longitudinal part of the time-space equations of motion at
linear order are

ȧ
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where �H and Pk ⌘ k̂iPi are taken to be in Fourier space. The leading growth of h̃ is cancelled

in the first of these equations. The contant part of �H falls o↵ as 1/a relative to h̃, i.e.,
e↵ectively redshifts with the background density. The perturbation Pk also only contributes
to the dying mode of ˙̃⌘ and Pk ⇠ 1/a2. This is consistent with the constraint equations

@0�H = �ikPk

@0
�
a2Pk

�
= 0

5 Discussion

By all accounts, quantum field theory is the correct underlying theory of nature and classical
physics is a limit of this quantum theory. As classical observers, we can readily observe and
obtain the classical equations of motion. We are then faced with the task of obtaining
the correct quantum mechanical description from the known classical equations. But, since
classical physics is a limit of quantum mechanics, this is a tricky inverse problem.

The conventional approach to this inverse problem has been to take a classical theory
and replace the Poisson brackets that generate its equations of motion by various quantum
commutators and use these relations to reconstruct the underlying quantum theory. While
this approach works for particle mechanics and scalar field theories, we recognize that it fails
for a broader class of quantum field theories. As is well known, in theories with fermions,
the commutators need to be replaced with anti-commutators. In gauge theories, given gauge
redundancies, some gauge degrees of freedom need to be suitably fixed in order for the theory
to yield sensible results. When these “rules” are directly applied to general relativity, the
procedure yields a trivial Hamiltonian that is manifestly incorrect. There are thus no rigid
and sacred set of rules that “derives” a quantum theory from the known classical dynamics
of the theory. Instead, the correct prescription is to see if a given quantum field theory (i.e.
either a Hamiltonian or path integral description) is logically consistent and yields a classical
limit that is consistent with observation.

With this point of view, there arises an interesting possibility - since classical physics
is a limit of quantum mechanics, could the quantum theory permit more freedom than
inferred by the classical observer? In this paper, we have seen an example of such freedom
where we see that certain Hamiltonian constraints that are imposed on the theory by the
classical equations of motion do not exist at the quantum level. The principal reason for
this relaxation is that the entire quantum evolution is described by just one equation -
the Schrödinger Equation. This is a first order di↵erential equation and thus given any
initial state, it is able to describe its time evolution. This is unlike the classical theory where
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Shadow matter in the cosmos

4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi

j
= 0, in terms of the scalar

modes. In Fourier space, we define

hij(~x, t) =
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The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi
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modes. In Fourier space, we define
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The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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Linear perturbation theory of scalars

4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi
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modes. In Fourier space, we define
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The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:
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The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is
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whereas the time-time and the longitudinal part of the time-space equations of motion at
linear order are
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where �H and Pk ⌘ k̂iPi are taken to be in Fourier space. The leading growth of h̃ is cancelled

in the first of these equations. The contant part of �H falls o↵ as 1/a relative to h̃, i.e.,
e↵ectively redshifts with the background density. The perturbation Pk also only contributes
to the dying mode of ˙̃⌘ and Pk ⇠ 1/a2. This is consistent with the constraint equations
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5 Discussion

By all accounts, quantum field theory is the correct underlying theory of nature and classical
physics is a limit of this quantum theory. As classical observers, we can readily observe and
obtain the classical equations of motion. We are then faced with the task of obtaining
the correct quantum mechanical description from the known classical equations. But, since
classical physics is a limit of quantum mechanics, this is a tricky inverse problem.

The conventional approach to this inverse problem has been to take a classical theory
and replace the Poisson brackets that generate its equations of motion by various quantum
commutators and use these relations to reconstruct the underlying quantum theory. While
this approach works for particle mechanics and scalar field theories, we recognize that it fails
for a broader class of quantum field theories. As is well known, in theories with fermions,
the commutators need to be replaced with anti-commutators. In gauge theories, given gauge
redundancies, some gauge degrees of freedom need to be suitably fixed in order for the theory
to yield sensible results. When these “rules” are directly applied to general relativity, the
procedure yields a trivial Hamiltonian that is manifestly incorrect. There are thus no rigid
and sacred set of rules that “derives” a quantum theory from the known classical dynamics
of the theory. Instead, the correct prescription is to see if a given quantum field theory (i.e.
either a Hamiltonian or path integral description) is logically consistent and yields a classical
limit that is consistent with observation.

With this point of view, there arises an interesting possibility - since classical physics
is a limit of quantum mechanics, could the quantum theory permit more freedom than
inferred by the classical observer? In this paper, we have seen an example of such freedom
where we see that certain Hamiltonian constraints that are imposed on the theory by the
classical equations of motion do not exist at the quantum level. The principal reason for
this relaxation is that the entire quantum evolution is described by just one equation -
the Schrödinger Equation. This is a first order di↵erential equation and thus given any
initial state, it is able to describe its time evolution. This is unlike the classical theory where
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2.

4.1 Cosmological Implications

We will discuss some preliminary observations about the cosmological implications of this
additional source term and leave a fuller analysis of the cosmology to a companion paper [14]
and of the e↵ects on non-linear general relativity to future work.

To analyze the cosmological e↵ects, we expand the metric around a homogeneous back-
ground to linear order in fields as in cosmological perturbation theory:

ds2 = �dt2 + a(t)2(�ij + hij)dx
idxj (35)

where we further break up hij into irreducible components of the three-dimensional Euclidean
group: two scalars h and ⌘, one divergenceless vector wi, and one transverse-traceless tensor
sij

hij = h�ij +Dij⌘ + (@iwj + @jwi) + sij) (36)

where the di↵erential operator Dij = @i@j/r2 � (1/3)�ij (and r2 is the standard spatial
Laplacian). The inverse derivatives will be defined such that for the Fourier transforms of the
fields (e.g., ⌘̃(k) is the transform of ⌘(x)), this di↵erential operator becomes D̃ij = k̂ik̂j��ij/3.

Because the di↵erent representations decouple at linear order, we can focus on the scalar
perturbations. Following [15] (but switching from conformal time to proper time), we can
write the spatial part of the source-free Einstein equations, Gi

j
= 0, in terms of the scalar

modes. In Fourier space, we define

hij(~x, t) =

Z
d3kei

~k·~x

✓
k̂ik̂jh̃(~k, t) + (k̂ik̂j �

1

3
�ij)6⌘̃(~k, t)

◆
(37)

The two scalar equations are the trace part and the longitudinal traceless part of the space-
space equations:

¨̃h+ 3
ȧ

a
˙̃h� 2

k2

a2
⌘̃ = 0 (38)

¨̃h+ 3
ȧ

a
˙̃h+ 6

✓
¨̃⌘ + 3

ȧ

a
˙̃⌘

◆
� 2

k2

a2
⌘̃ = 0 (39)

The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is

✓
ȧ

a

◆2

=
8⇡

3
GN

H0

a3
(40)
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ȧ

a
˙̃⌘

◆
� 2

k2

a2
⌘̃ = 0 (39)

The first thing to note is that there are no wave-like solutions to these equations. Subtracting
(38) from (39) produces an equation for ⌘̃ which has two solutions: a constant and a solution
in which ˙̃⌘ ⇠ 1/a3. The constant solution can be inserted in (38) and we see that during
matter domination, h̃ / a is a solution. Thus, whatever sources the expansion and the initial
perturbations (whether real or shadow matter), the metric perturbations grow linearly during
’matter’ domination.

We can also think of the source terms H ⌘ H0 + �H and P
i in perturbation theory,

where we assume H0 as homogeneous and constant, and �H and P
i as small inhomogeneous

perturbations. While H0 could be the dominant homogeneous contribution to the expansion
rate, we could ask about the evolution of the perturbative sources. Assuming H0 is the only
homogeneous contribution, the time-time equation at zeroth order is

✓
ȧ
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To summarise 

Classical physics is a limit of 
quantum mechanics

Certain classical equations are not 
guaranteed by the quantum theory

One should consider a broader class 
of states in GR



Shadow matter sources linear growth in 
curvature perturbations, like dark matter

Could have either sign, trivial 
violation of NEC

Detailed study of cosmological 
evolution under way, and the 
nonlinear regime.

Inflation dynamically drives to 
conventional GR

Some observations 
to conclude with



Thanks for listening!


