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Adiabatic Perturbations

 The primordial perturbations are measured by the CMB to be
adiabatic to good precision.
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Any thermodynamic Perturbation of the
quantity common clock

* Any perturbations that doesn’t satisfy this is “isocurvature
perturbation”.
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e CMB puts a constraint on the power spectrum of S.



Production of Isocurvature

* For a single field, slow roll inflation, only adiabatic modes
are produced.

* For multi-field inflation, any perturbation of a single field is

not adiabatic.
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Axion Isocurvature

e Standard Axion Isocurvature: during inflation, axions get
dS-fluctuations
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* These fluctuations cannot be removed by the
perturbations of the clock.

e |n other words:
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Axion Isocurvature

e \We can estimate the isocurvature

e From CMB
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 Bound on high scale inflation
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Our Idea

Neglect the axion field perturbations

Assume that the axion can move a bit during inflation:

The length of inflation is given by the inflation field, which has
perturbations, 1.e. 7;,-is Inhomogeneous

Result: The axion at the end of inflation is inhomogeneous.



Estimating the Effect

e The distance the axion moves Is
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 The adiabatic perturbation can be written as

R = 5]\Imf

 Therefore the axion perturbation is
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Low Scale Inflation

* |socurvature perturbation:

2
S ~——R
Hl%f
e The CMB is sensitive to
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(anti-correlated)

* Very low scale of inflation,
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Isocurvature Constraint

* Doing the calculation with re-less squiggly lines
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Wait...
Where are the equations?




Solving the Perturbations
during inflation

* During inflation, taking the newtonian gauge
ds® = (1 4 2®)dt? — a(t)*(1 — 2V0)dZ - dT

e For all the fields during inflation:
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 Assuming slow roll and superhorizon
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Adiabatic and Isocurvature
INn Inflation

e The solution can be written as
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* Where the constants are determined by initial conditions
(Bunch-Davies)
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Transition to Hot Big Bang

o After inflation, the C5 contribution to @ vanishes. And so

C,= adiabatic, C3= isocurvature

(Assumes axion vacuum energy is subdominant during inflation)

* Together the two modes give
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Primordial Initial Conditions

e For the CMB calculation, S and @ are the initial
conditions.

e Adiabatic mode
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e |socurvature mode
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Results

—
‘ -~
E’ f\ .’\Af\. k




Power Spectra

e Power spectra
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e Fully correlated! (Not surprising - only inflaton
perturbation)



Spectral Indices

e Definition
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e Results
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Constraints

e The isocurvature ratio
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Relic Abundance

There is a second bound: if the axion moves - it can roll to the bottom!

Model dependent - how long inflation lasts before the CMB modes exit
the horizon.

Taking the conservative approach of the shortest possible inflation:
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And so we get a bound around
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Slightly weaker, but the isocurvature bound can be improved in the
future!



Conclusion

* Bounds on the scale of inflation not only from above, but
also from below.

Isocurvature

Relic
abundance
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* A new source of fully anti-correlated axion isocurvature

* The mechanism is general for any production mechanism
before inflation.



