Probing Gauge Boson Signals from Inflation

Wei Xue

June 8, 2023 NPKI workshop

Outline

- Introduction
- Parity violation (4-point function)

arXiv: 2211.14324

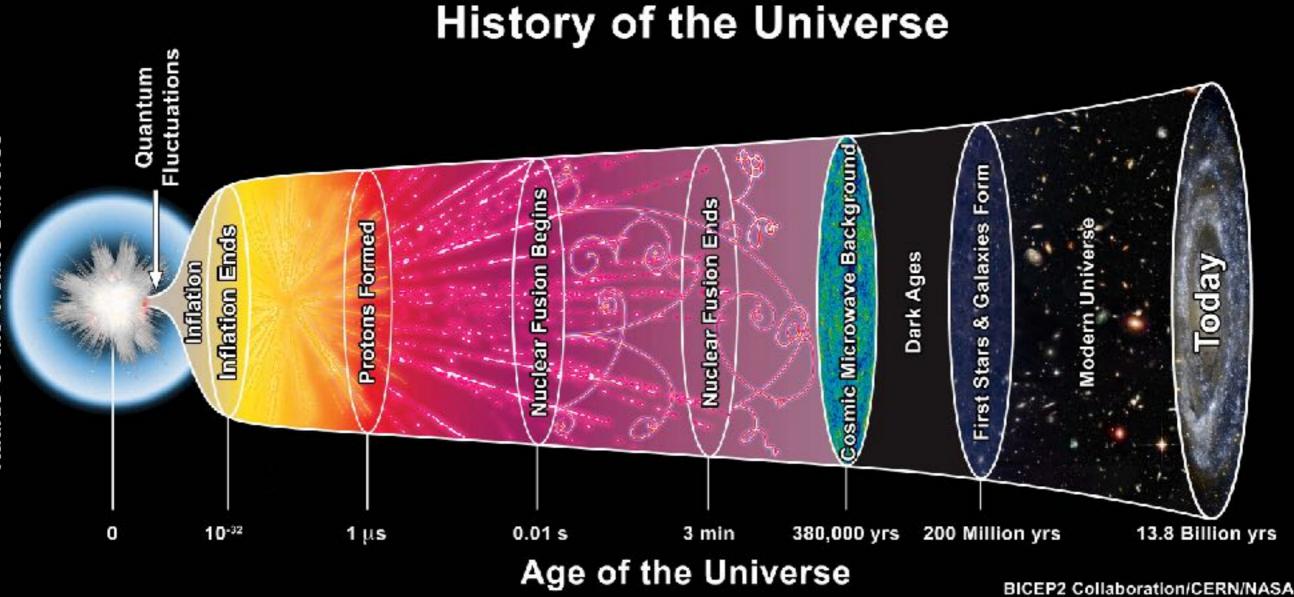
with X. Niu, M. Rahat and K. Srinivasan

• Cosmological collider signals (3-point function)

• Gravitational waves signals (2-point function) arXiv: 2211.14331

with X. Niu, M. Rahat and K. Srinivasan

Conclusion

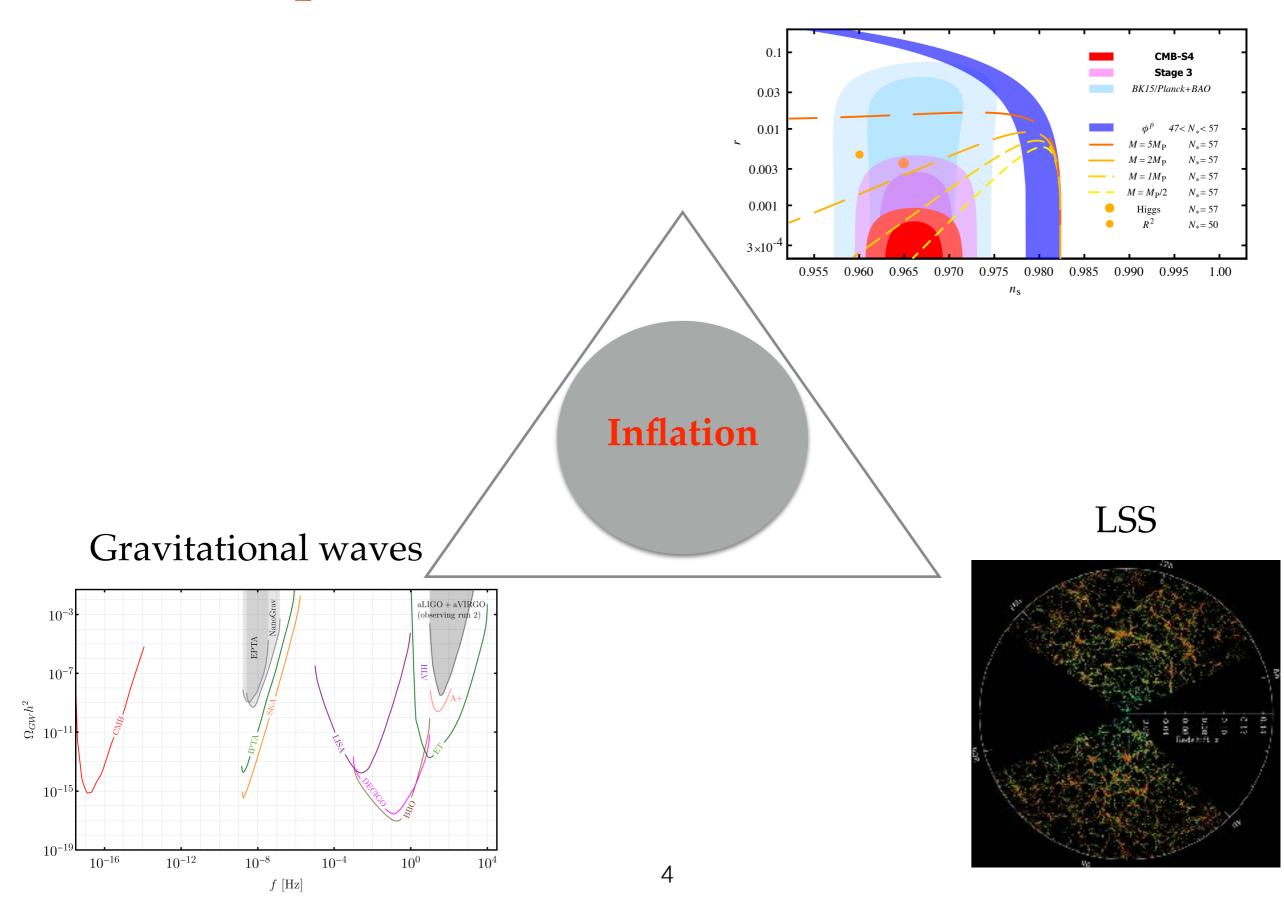


What is the standard inflationary model? How do inflatons interact with the other particles?

Radius of the Visible Universe

Future explorations

CMB



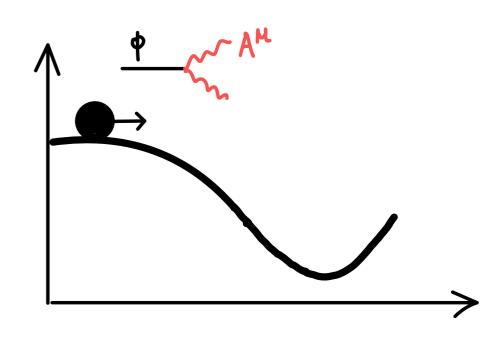
Axion as inflaton

• axion-like particle as inflaton

approximate shift-symmetry couples to gauge boson via anomaly term

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} m_A^2 A^\mu A_\mu - \frac{1}{4\Lambda} \phi \tilde{F}^{\mu\nu} F_{\mu\nu} \right)$$

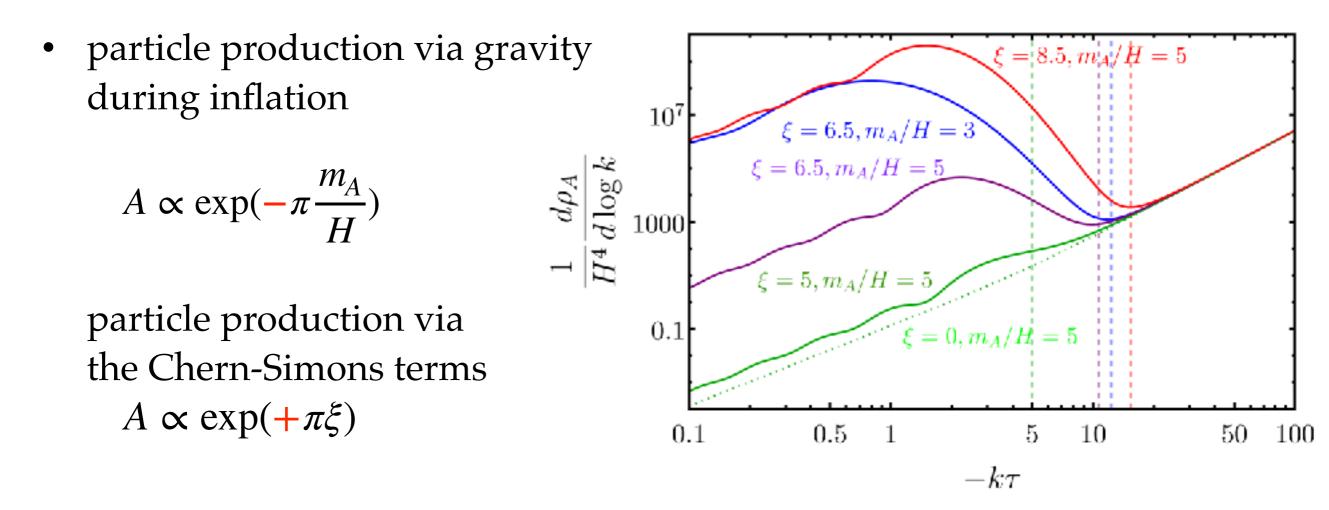
- A^{μ} gauge boson associated with a hidden U(1) or the Standard Model photon
- gauge boson mass 1) $m \ll$ Hubble scale H2) $m \sim H$
 - during inflation $\phi \rightarrow \gamma \gamma$



Particle production during inflation

• one transverse mode is dominantly produced

$$\partial_{\tau}^2 A_{\pm}(\tau,k) + \left(k^2 + a(\tau)^2 m_A^2 \pm \frac{2k\xi}{\tau}\right) A_{\pm}(\tau,k) = 0, \quad \xi \equiv \frac{\dot{\phi}_0}{2\Lambda H}$$



Corrections to inflationary perturbations

• inflation curvature perturbation
$$\zeta \sim \frac{H}{\dot{\phi}} \frac{H}{(2\pi)}$$

Power spectrum $\mathscr{P} \sim \frac{H^2}{\dot{\phi}^2} \frac{H^2}{(2\pi)^2}$

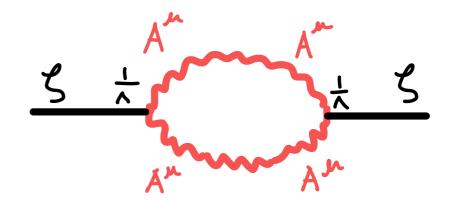
• corrections to n-point correlation functions

 $\langle \zeta \cdots \zeta \rangle \sim \text{propagtors} \times \text{vertices}$

vertices
$$\sim \frac{1}{\Lambda} = \frac{2H\xi}{\dot{\phi}}$$
, propagator $\sim \langle AA \rangle \sim e^{2\pi\xi'}$, $\xi' \equiv \xi - \frac{m}{H}$

• gauge boson loop correction

$$\mathcal{P} \sim \frac{1}{\dot{\phi}^2} \frac{1}{\Lambda^2} e^{4\pi\xi'} \sim \mathcal{P}\left(\mathcal{P} e^{4\pi\xi'}\right)$$



Distinct signals

• three-point function (cosmological collider)

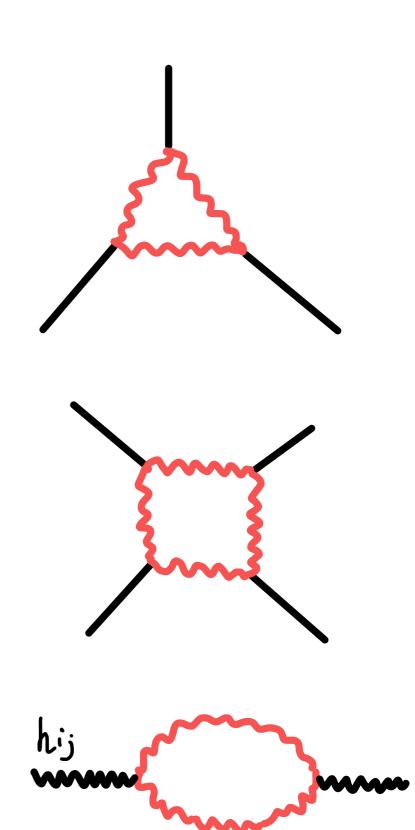
$$\begin{split} \langle \zeta \zeta \zeta \rangle &\sim \frac{1}{\dot{\phi}^3} \frac{1}{\Lambda^3} e^{3 \times 2\pi \xi'} \sim \mathcal{P}^2 \left(\mathcal{P} e^{6\pi \xi'} \right) \\ f_{NL} &\sim \mathcal{P} e^{6\pi \xi'} \end{split}$$

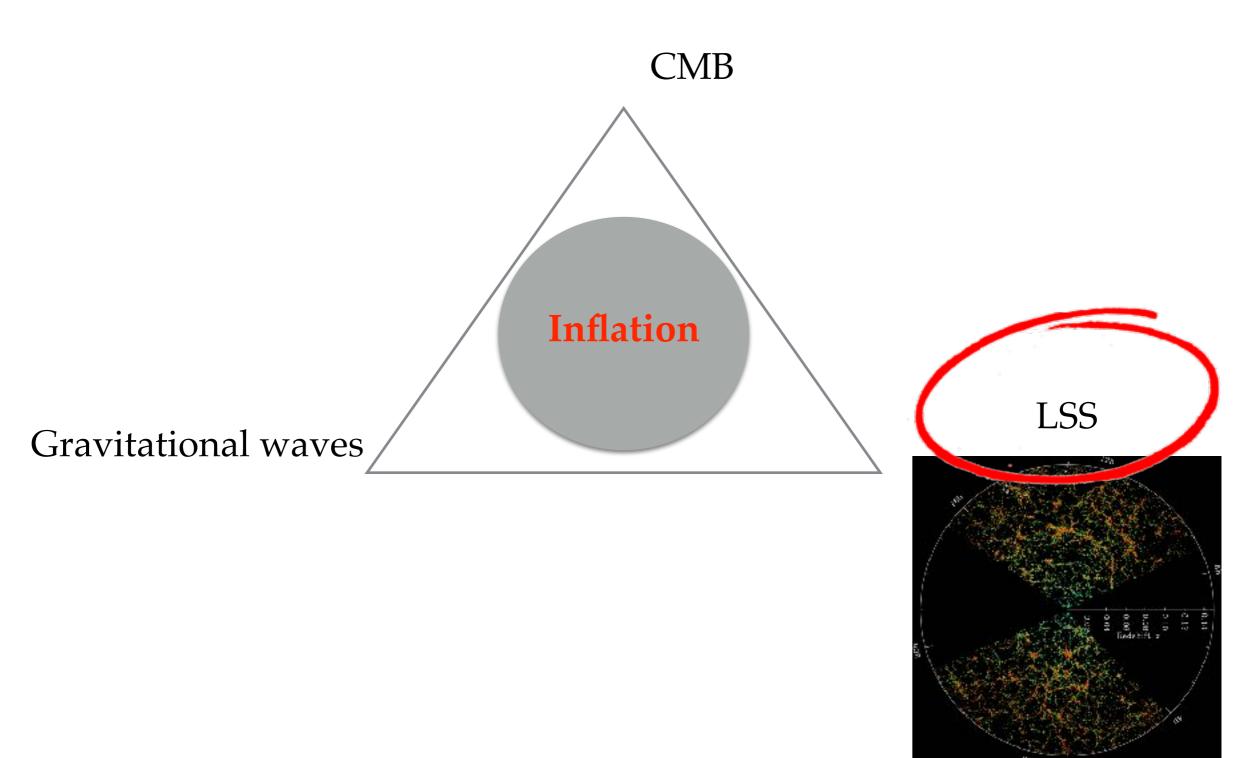
• four-point function (large-scale structure)

$$\begin{split} \langle \zeta \zeta \zeta \zeta \rangle &\sim \frac{1}{\dot{\phi}^4} \frac{1}{\Lambda^4} e^{4 \times 2\pi \xi'} \sim \mathcal{P}^3 \left(\mathcal{P} e^{8\pi \xi'} \right) \\ \tau_{NL} &\sim \mathcal{P} e^{8\pi \xi'} \end{split}$$

• gravitational waves

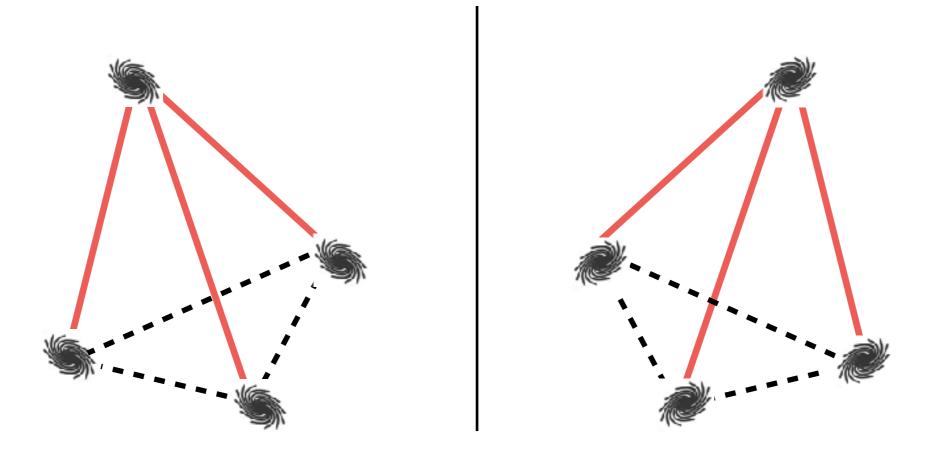
$$\langle h^+ h^+ \rangle \sim \frac{H^4}{M_{\rm pl}^4} e^{2 \times 2\pi \xi'} \sim \mathcal{P}_h \left(\mathcal{P}_h e^{4\pi \xi'} \right)$$





Parity violation in galaxy survey

• four point correlation functions of galaxy overdensity parity vs rotation



• In momentum space, four-point function

$$\begin{array}{ccc} \mathbf{k}_1 \cdot \mathbf{k}_2 & \rightarrow & \mathbf{k}_1 \cdot \mathbf{k}_2 \\ \mathbf{k}_1 \times (\mathbf{k}_2 \cdot \mathbf{k}_3) & \rightarrow & -\mathbf{k}_1 \times (\mathbf{k}_2 \cdot \mathbf{k}_3) \end{array}$$

Parity violation Signals in BOSS data

Measurement of Parity-Odd Modes in the Large-Scale 4-Point Correlation Function of SDSS BOSS DR12 CMASS and LOWZ Galaxies

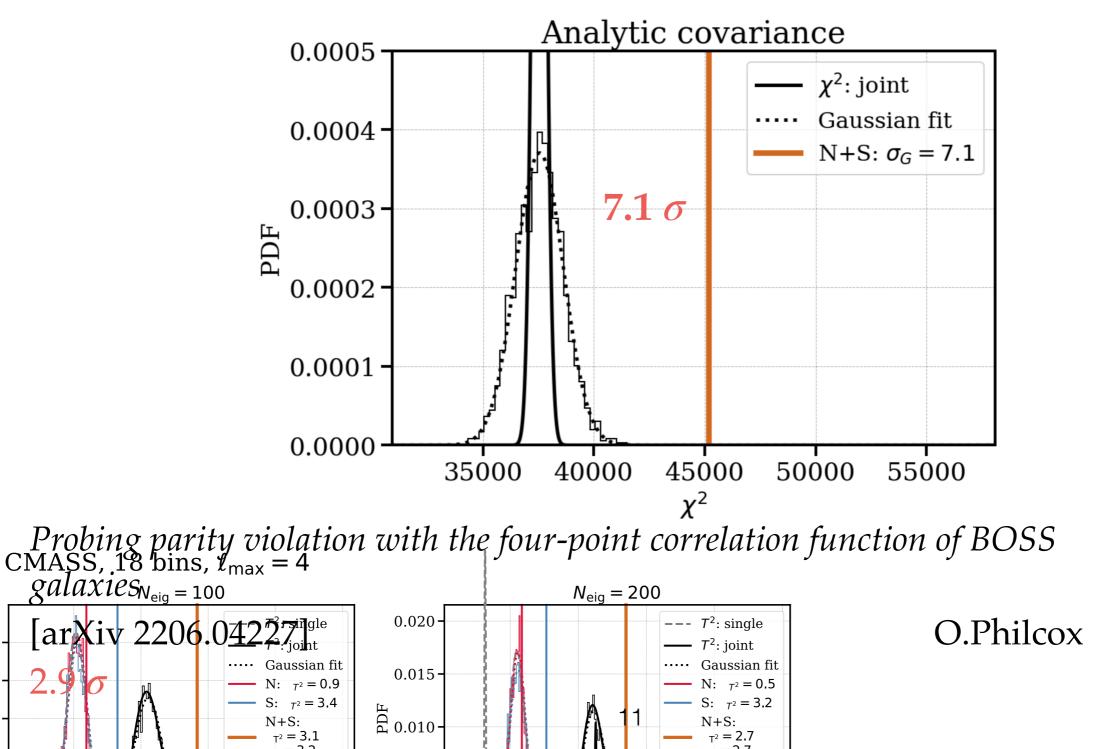
[arXiv 2206.03625]

0.025

0.020

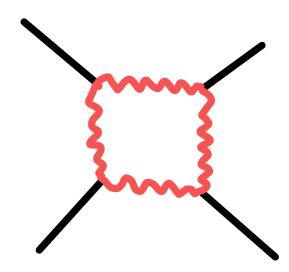
3 0.015

J. Hou, Z. Slepian, R. Cahn



Inflation as the origin of the parity odd signals

- Cosmological evolution by gravity does not give parity violation signals in the large scale structure
- most of the models of inflation do not break the parity
- ghost inflation, non-standard vacuum, etc Without tuning, trispectrum signals are tiny
- parity signal φ → γγ, parity odd signal from only one polarization of gauge bosons is produced chemical potential ξ enhances the trispectrum



In-in formalism

• in-in formalism to derive the n-point function S. Weinberg [hep-th/0506236]

$$\left\langle \mathcal{O}(\tau) \right\rangle = \left\langle \left[\bar{T} \exp(i \int_{-\infty}^{\tau} d\tau H_{I}(\tau)) \right] \mathcal{O}_{I}(\tau) \left[T \exp(-i \int_{-\infty}^{\tau} d\tau H_{I}(\tau)) \right] \right\rangle$$

• parity odd of four point is a imaginary part

Parity:
$$\left\langle \prod_{i=1}^{n} \zeta(t, \mathbf{k}_{i}) \right\rangle \rightarrow \left\langle \prod_{i=1}^{n} \zeta(t, -\mathbf{k}_{i}) \right\rangle = \left\langle \prod_{i=1}^{n} \zeta(t, \mathbf{k}_{i}) \right\rangle^{*}$$

• parity odd signals from gauge bosons

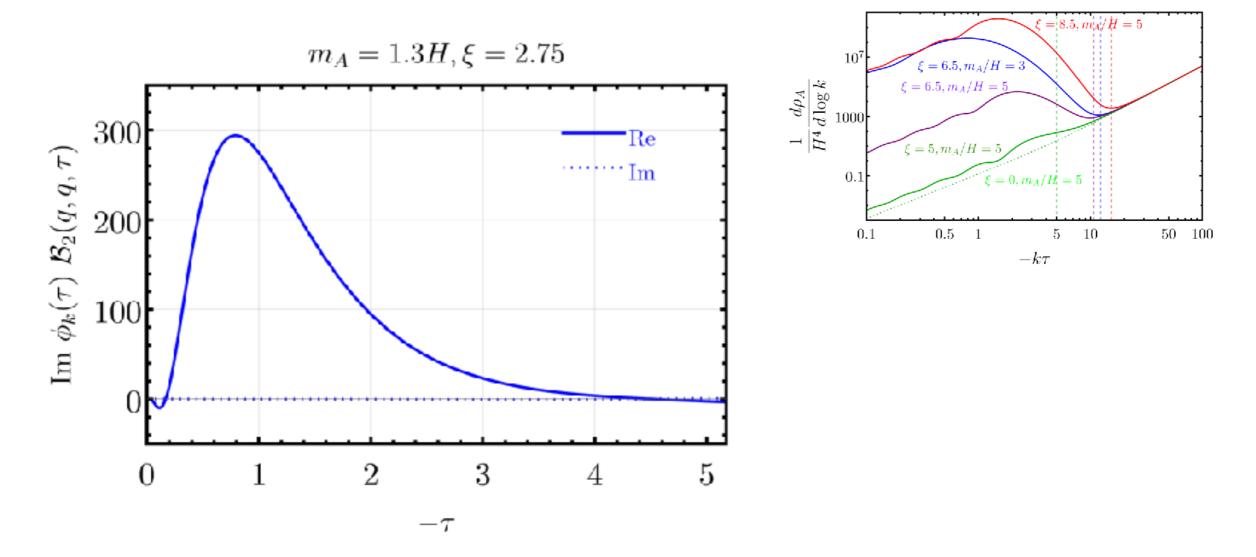
$$\mathbf{A}(\tau, \mathbf{x}) = \sum_{\lambda=\pm,0} \int \frac{d^3k}{(2\pi)^3} \left[\boldsymbol{\epsilon}_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.} \right]$$

Polarization $\epsilon_{\lambda}(\mathbf{k})$ gives the imaginary part,

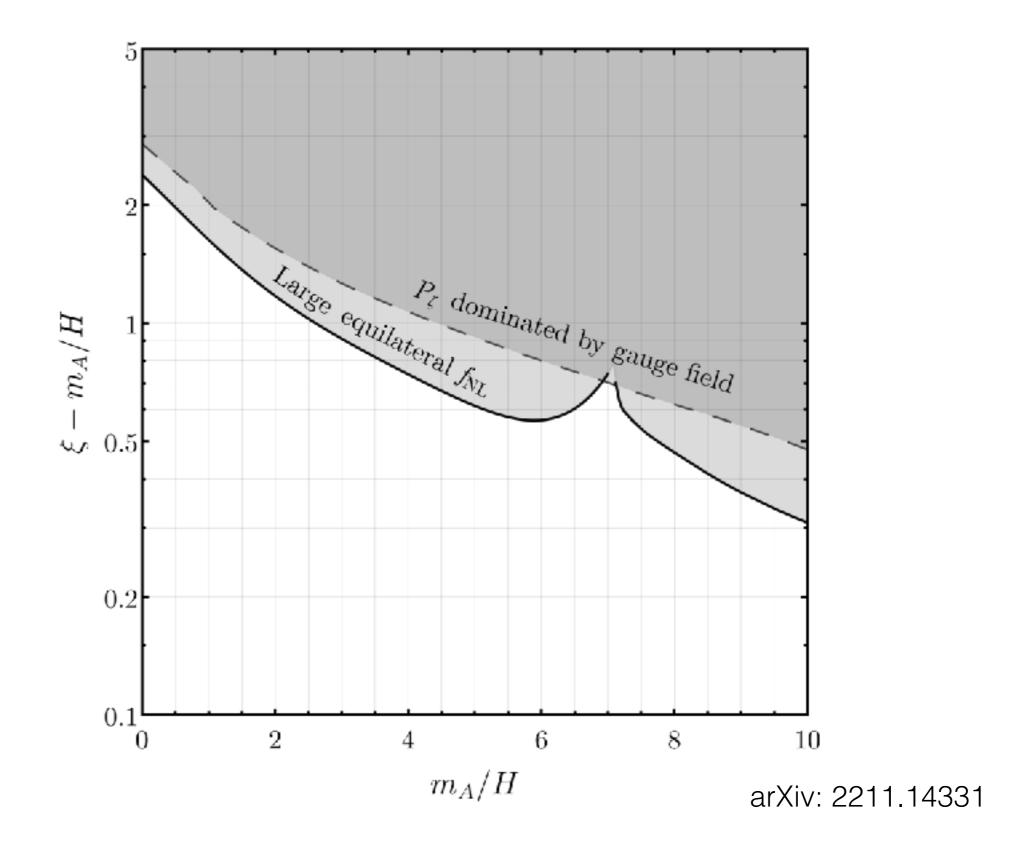
but the loop integration is involved due to the mode function $A_{\lambda}(\tau, k)$

Real mode function approximation

- in-in formalism gives $\mathcal{O}(100)$ terms and 7-dim integration
- neglect the imaginary part of the mode function
 7-dim integration is factorized into 3+1+1+1 dim integration

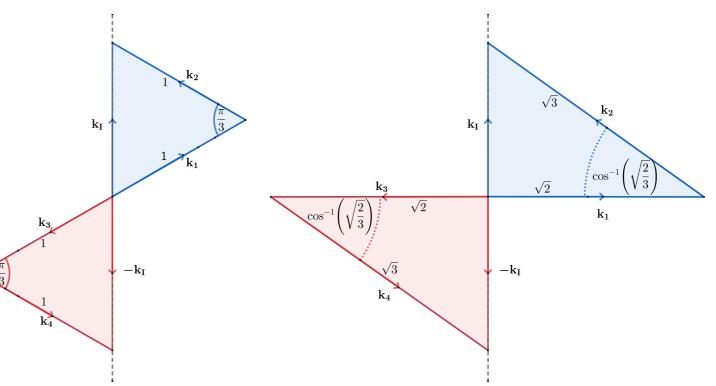


Constraints from CMB

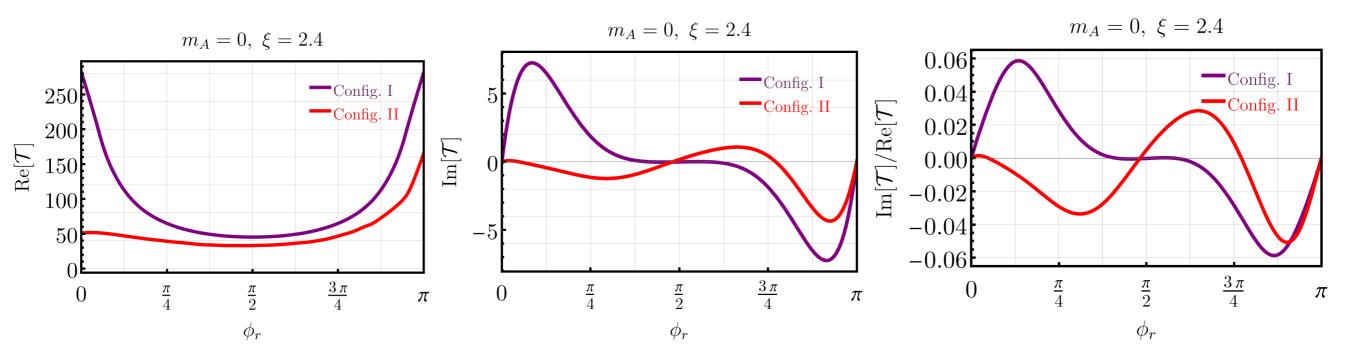


Parity odd and Parity even trispectrum

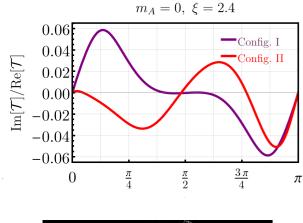
• two configurations



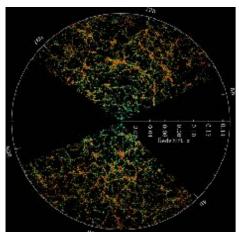
• Parity even (real part) and parity odd (imaginary part)



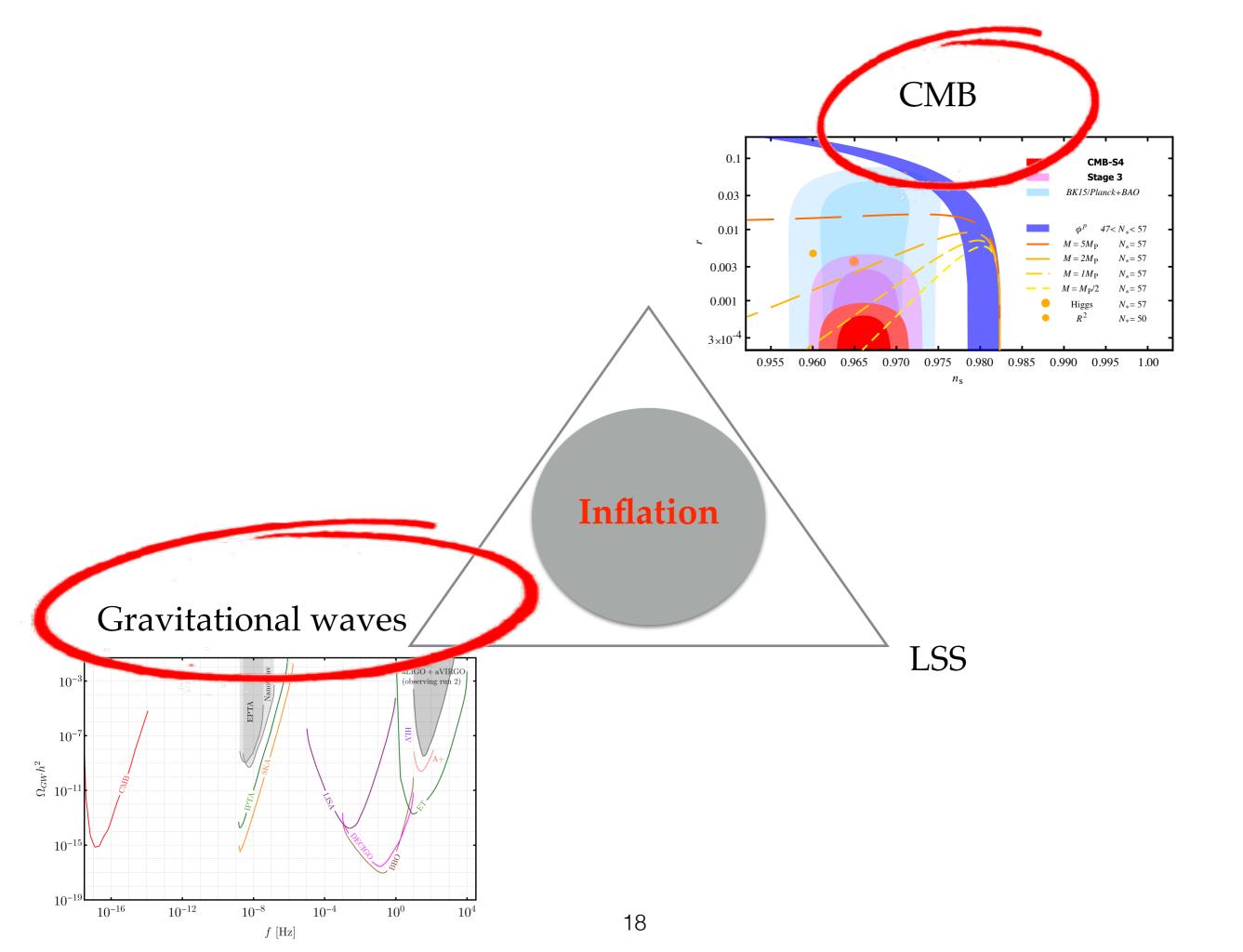
• real mode approximation to simplify the calculation



• parity odd ~ 10^{-2} parity even



• future work: analyze the BOSS data to constrain the gauge boson production



Cosmological collider physics

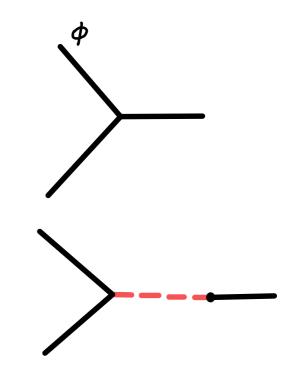
• f_{NL} ~ inflaton perturbation $\langle \phi \phi \phi \rangle$

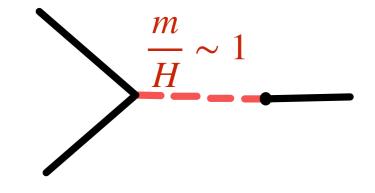
• f_{NL} may detect the inflaton interactions

exchanging particles gives an oscillating feature

$$\langle \zeta \zeta \zeta \rangle \propto (\frac{k_1}{k_3})^{3/2 \pm i\mu}, \quad \mu = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}$$

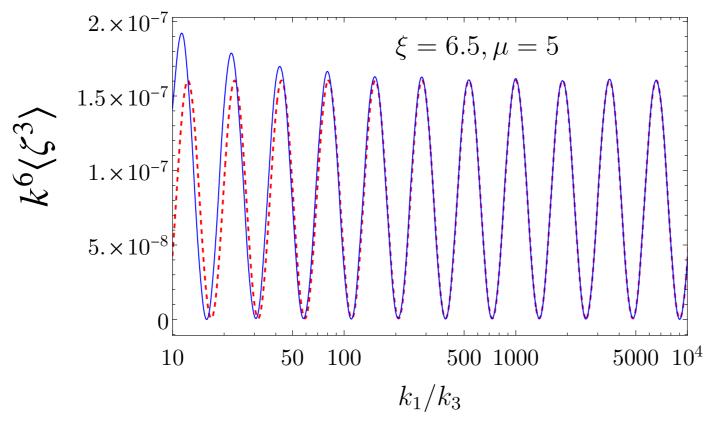
Chen, Wang 0911.3380 Arkani-Hamed, Maldacena 1503.08034





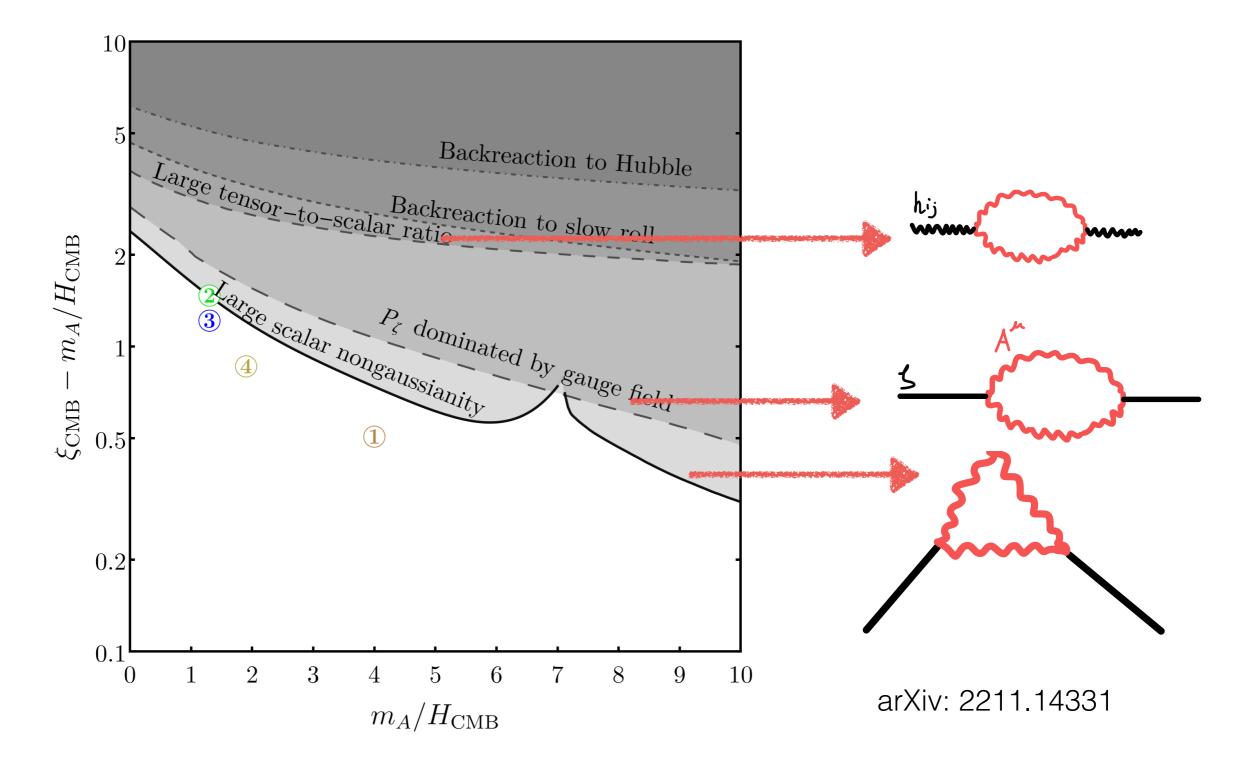
Cosmological collider physics for A_{μ}^+

- cosmological collider physics signals are normally tiny. heavy particle production is suppressed during inflation $\sim e^{-\pi\mu}$
- gauge boson production enhances the production rate using the chemical potential $e^{\pi\xi'}$



Current constraints at the CMB scale

• the equilateral shape of nonGaussianity is the most constraining one $f_{\rm NL}^{\rm eq} = -25 \pm 47$

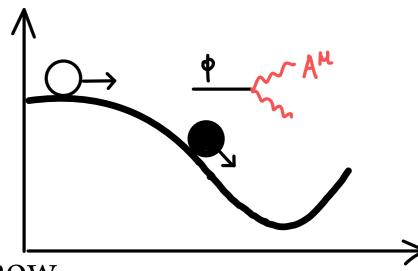


Beyond CMB scale

• gauge field's backreaction

$$\ddot{\phi}_0 + 3H\dot{\phi}_0 + \frac{dV}{d\phi_0} = \frac{1}{\Lambda} \langle \mathbf{E} \cdot \mathbf{B} \rangle$$
$$3H^2 M_{\rm Pl}^2 - \frac{1}{2} \dot{\phi}_0^2 - V = \frac{1}{2} \left\langle \mathbf{E}^2 + \mathbf{B}^2 + \frac{m_A^2}{a^2} \mathbf{A}^2 \right\rangle$$

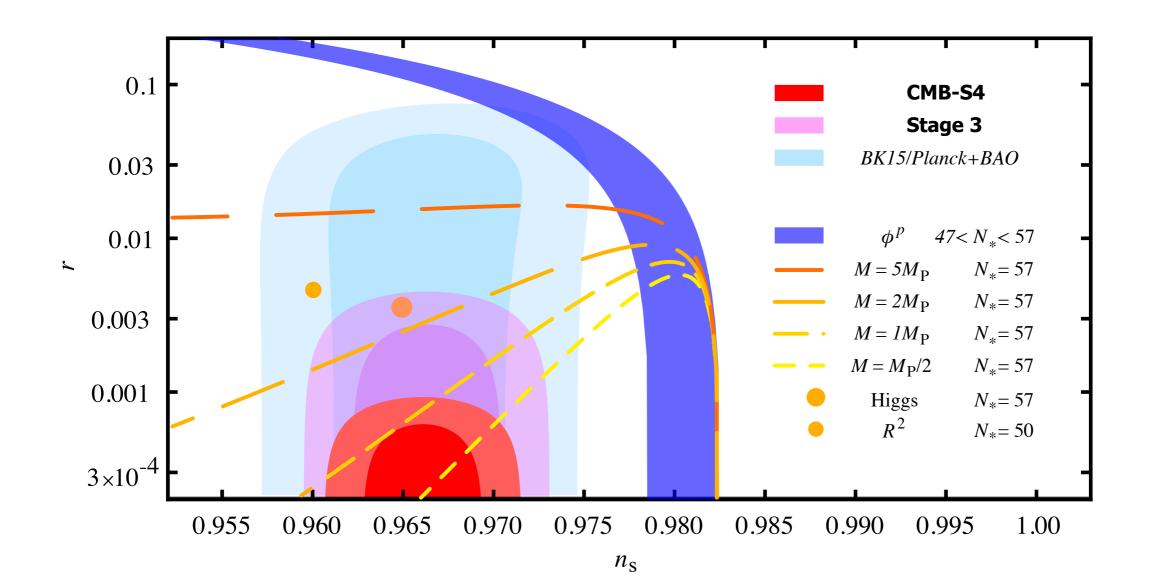
• the backreaction is negligible at the CMB at the late stage of inflation, $\dot{\phi}$ becomes large $\xi \equiv \frac{\dot{\phi}_0}{2\Lambda H}$



• we need to specify an inflationary model to know the evolution of $\dot{\phi}$

Inflationary model

• Starobinsky model $V(\phi) \sim V_0 \left(1 - e^{-\gamma \phi}\right)^2$

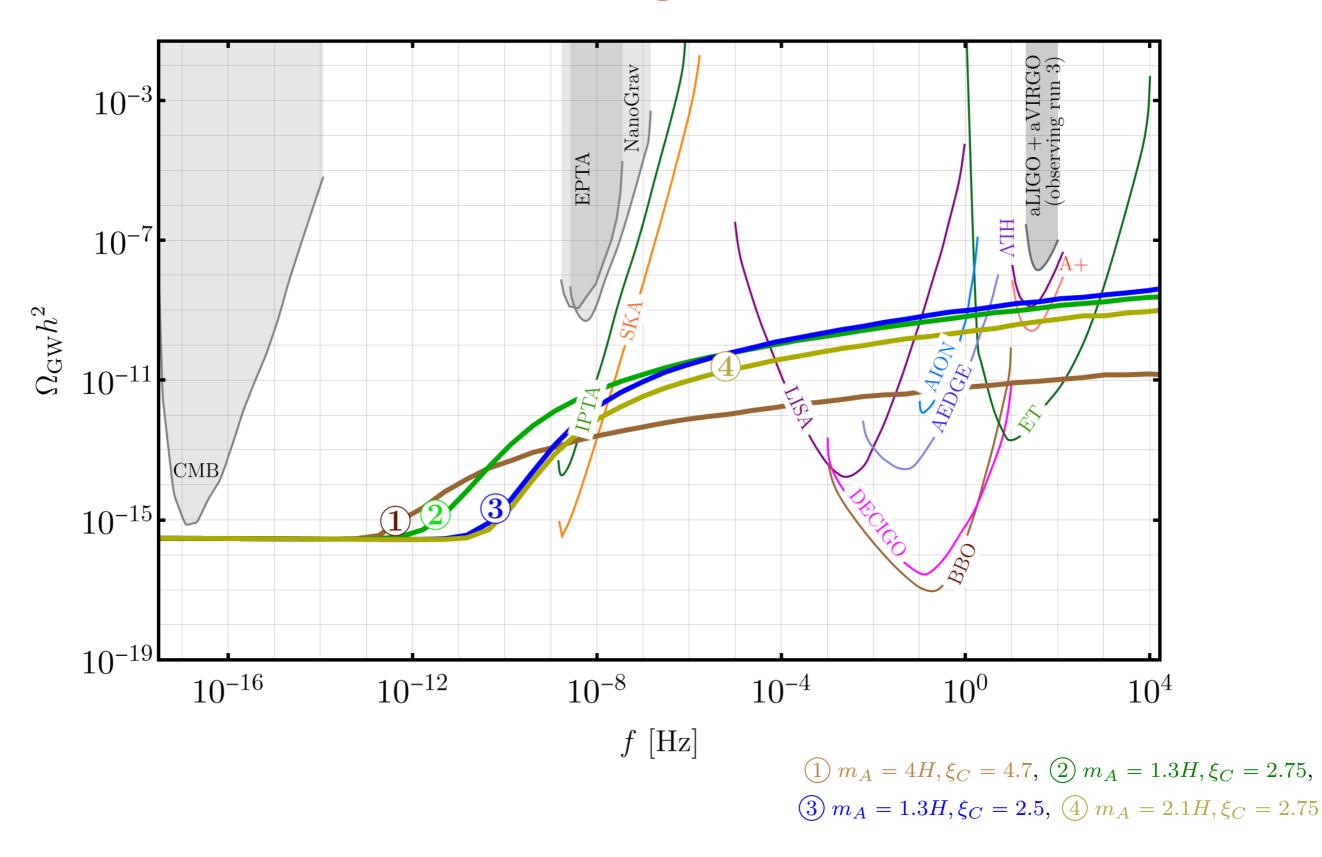


Four bench mark models $\xi = \frac{2\dot{\phi}}{\Lambda H}$ f [Hz] 10^{-16} 10^{-12} 10^{-8} 10^{-4} 10^{0} 10^{4} 10(1) $m_A = 4H, \xi_C = 4.7,$ (2) $m_A = 1.3H, \xi_C = 2.75,$ (3) $m_A = 1.3H, \xi_C = 2.5, (4) m_A = 2.1H, \xi_C = 2.75$ 8 Ś 6 4 260 5040 30 2010N



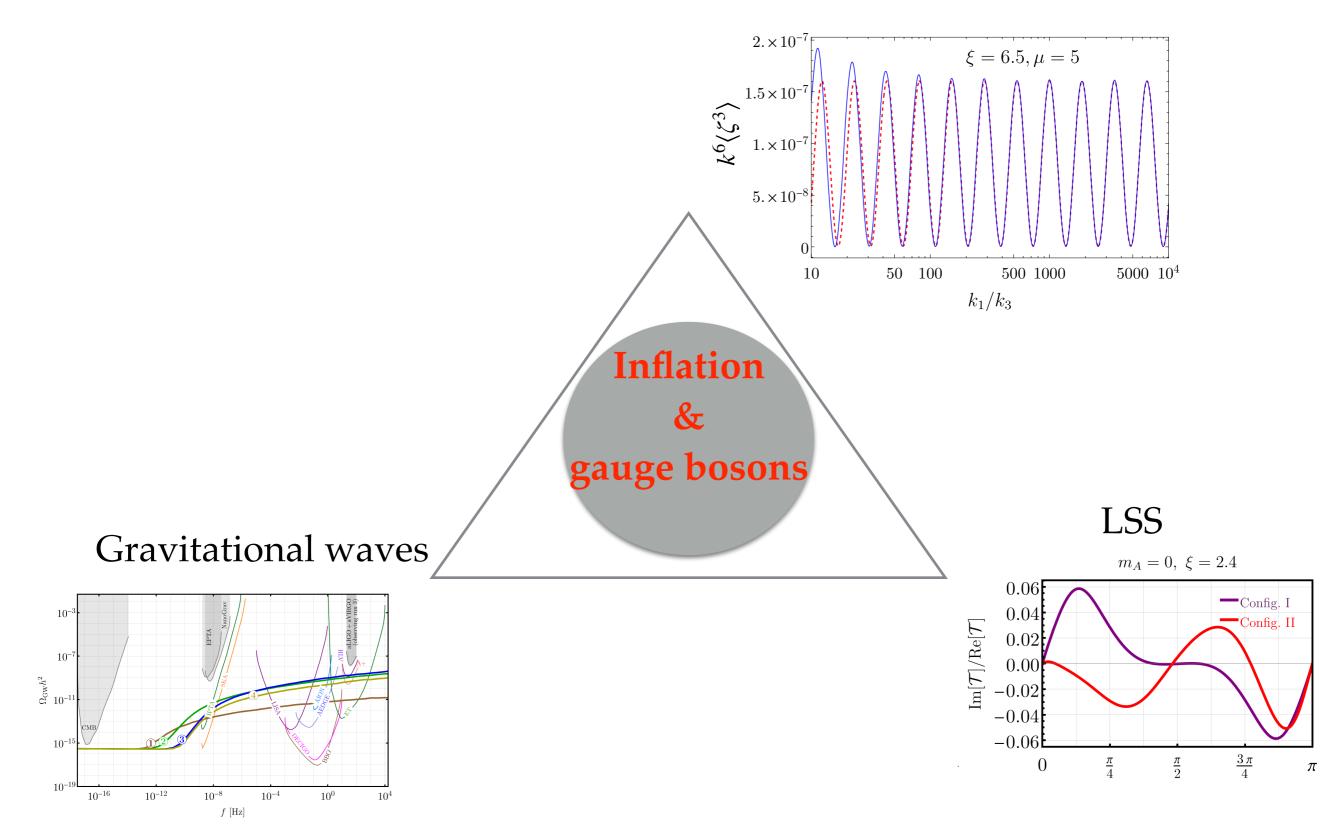
24

Gravitational wave signals



Conclusion

CMB



Primordial black holes

