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• What is the standard inflationary model? 
How do inflatons interact with the other particles? 
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Figure 8. Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0. Also shown
are the current best constraints from a combination of the BICEP2/Keck Array experiments and Planck
[5]. The Starobinsky model and Higgs inflation are shown as small and large orange filled circles. The lines
show the classes of model that naturally explain the observed value of ns. The corresponding potentials all
either polynomially or exponentially approach a plateau. The scale in field space over which the potential
approaches the plateau is referred to as the “characteristic scale” (see Ref. [3] for more details). We show
di↵erent values, M = MP/2, M = MP, M = 2MP, and M = 5MP. Longer dashes correspond to larger
values of the scale M . The Planck scale plays an important role because the gravitational scale and the
characteristic scale share a common origin. The number of e-folds N⇤ chosen for the figure corresponds to
nearly instantaneous reheating, which leads to the smallest values for r for a given model. Other reheating
scenarios predict larger values of r and are easier to detect or exclude.

Fig. 7, and the entire class of models is shown in Fig. 8. The second class consists of models in which the
potential V (�) approaches a plateau, either polynomially or exponentially. The potential for models in this
class has a characteristic scale over which the potential varies [3].2 The sensitivity of CMB-S4 is chosen to
exclude all models in this class with a characteristic scale that exceeds the Planck scale. The Planck scale
constitutes an important threshold because the scale of gravitational interactions and the characteristic
scale may share a common origin and be linked to each other, such as in the Starobinsky model [7], in Higgs
inflation [8], or more general models involving non-minimally coupled scalar fields. As a consequence, even
in the absence of a detection CMB-S4 would significantly advance our understanding of inflation, and would
dramatically a↵ect how we think about the theory. The classes of model that naturally predict the observed
value of ns, together with current constraints and constraints expected for CMB-S4, are shown in Fig. 8.

1.2.2 Primordial density perturbations

CMB-S4 can also seek to characterize the primordial Universe by searching for well-motivated signatures in
the scalar fluctuations, in the primordial power spectrum, and non-Gaussianities.

2This characteristic scale was introduced in Ref. [3] and should not be confused with the field range or the energy scale of
inflation. For a discussion see Refs. [3] and [20].

CMB-S4 Science Case, Reference Design, and Project Plan
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Axion as inflaton
• axion-like particle as inflaton 

    approximate shift-symmetry  
    couples to gauge boson via anomaly term 
    

   S = ∫ d4x −g ( 1
2 m2

AAμAμ− 1
4Λ ϕF̃μνFμν)

•  gauge boson associated with a hidden    
or the Standard Model photon
Aμ U(1)

• gauge boson mass 1)  Hubble scale  
                                 2) 

m ≪ H
m ∼ H

4AM
2

⑱

I• during inflation  ϕ → γγ
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Particle production during inflation
• one transverse mode is dominantly produced 

 

          ,      ∂2
τ A±(τ, k) + (k2 + a(τ)2m2

A ± 2kξ
τ ) A±(τ, k) = 0 ξ ≡

·ϕ0
2ΛH

• particle production via gravity 
during inflation 
 
     

 
particle production via  
the Chern-Simons terms 
    

A ∝ exp(−π
mA

H
)

A ∝ exp(+πξ)
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Corrections to inflationary perturbations

• inflation curvature perturbation     

  Power spectrum 

ζ ∼ H
·ϕ

H
(2π)

) ∼ H2

·ϕ2
H2

(2π)2

• corrections to n-point correlation functions 
 

                  
 

      vertices ,     ,   

⟨ζ⋯ζ⟩ ∼ propagtors × vertices

∼ 1
Λ = 2Hξ

·ϕ
propagator ∼ ⟨AA⟩ ∼ e2πξ′ ξ′ ≡ ξ − m

H

• gauge boson loop correction 
 

     

  

) ∼ 1
·ϕ2

1
Λ2 e4πξ′ ∼ ) ()e4πξ′ )

3

A Au
3 tret 3 hij m

n munEn En
Al A

E see
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Distinct signals
• three-point function (cosmological collider) 

 

   

               

⟨ζζζ⟩ ∼ 1
·ϕ3

1
Λ3 e3×2πξ′ ∼ )2 ()e6πξ′ )

fNL ∼ )e6πξ′ 

3

AI
3 m hij m
En we

mu

E see
3

AI
3 m hij m
En we

mu

E see
• four-point function (large-scale structure) 

 

   

               

⟨ζζζζ⟩ ∼ 1
·ϕ4

1
Λ4 e4×2πξ′ ∼ )3 ()e8πξ′ )

τNL ∼ )e8πξ′ 

• gravitational waves  
 

   

             

⟨h+h+⟩ ∼ H4

M4
pl

e2×2πξ′ ∼ )h ()he4πξ′ )

3
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En we
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Inflation

CMB

Gravitational waves
LSS
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Parity violation in galaxy survey
• four point correlation functions of galaxy overdensity 

   parity vs rotation 

• In momentum space, four-point function  
                               
              

k1 ⋅ k2 → k1 ⋅ k2
k1 × (k2 ⋅ k3) → −k1 × (k2 ⋅ k3)



Detection significance in the CMASS sample

JH, Slepian, Cahn 2022
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Parity violation Signals in BOSS data
Measurement of Parity-Odd Modes in the Large-Scale 4-Point Correlation Function of 
SDSS BOSS DR12 CMASS and LOWZ Galaxies   
 [arXiv 2206.03625]                                                           J. Hou, Z. Slepian, R. Cahn                            
 

Probing parity violation with the four-point correlation function of BOSS 
galaxies 
[arXiv 2206.04227]                                                                        O.Philcox 
2.9 σ

7.1 σ
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Inflation as the origin of the parity odd signals
• Cosmological evolution by gravity does not give  

parity violation signals in the large scale structure
3

AI
3 m hij m
En we

mu

E see
• parity signal ,  

parity odd signal from  
only one polarization of gauge bosons is produced 
chemical potential   enhances the trispectrum

ϕ → γγ

ξ

• most of the models of inflation do not break the parity

• ghost inflation, non-standard vacuum, etc 
Without tuning, trispectrum signals are tiny
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In-in formalism
• in-in formalism to derive the n-point function  

 

    ⟨0(τ)⟩ = ⟨[T̄ exp(i∫
τ

−∞
dτHI(τ))] 0I(τ)[T exp(−i∫

τ

−∞
dτHI(τ))]⟩

• parity odd of four point is a imaginary part 
   

Parity : ⟨∏n
i ζ(t, ki)⟩ → ⟨∏n

i ζ(t, − ki)⟩ = ⟨∏n
i ζ(t, ki)⟩

*

• parity odd signals from gauge bosons 

  

Polarization  gives the imaginary part,  
but the loop integration is involved due to the mode function 

A(τ, x) = ∑
λ=±,0

∫ d3k
(2π)3 [ϵλ(k)aλ(k)Aλ(τ, k)eik⋅x + h.c.]

ϵλ(k)
Aλ(τ, k)

S. Weinberg [hep-th/0506236]
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Real mode function approximation
• in-in formalism gives  terms and 7-dim integration0(100)

• neglect the imaginary part of the mode function 
7-dim integration is factorized into 3+1+1+1+1 dim integration
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Constraints from CMB 

arXiv: 2211.14331
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Parity odd and Parity even trispectrum

Figure 5. Momentum configurations I (left) and II (right). The red and the blue triangles are in
different planes.

(Re[T ]) signal is at least O(10), and can be as large as O(100) near �r ! 0 (for Config. I)
and �r ! ⇡ (for both Config. I and II). Config. I yields a dominant signal by an O(1) factor
compared to Config. II. The parity-odd (Im[T ]) signal vanishes for �r = 0,⇡/2 and ⇡. It is
typically suppressed compared with the parity-even signal, |Im[T ]|/Re[T ] < 6%.

(a) (b) (c)

Figure 6. Parity-even and odd signals and their ratio as a function of �r for massless vector boson. The
purple curves correspond to Config. I, and the red ones correspond to Config. II.

We then turn to see the dependence of the trispectrum on the chemical potential ⇠. We
restrict our scan to the region 1.55  ⇠  2.4 where the uncertainty associated with using the
dominant real mode function lies below 1%. We fix the angle �r to be ⇡/12 and 3⇡/5 for Config. I
and Config. II, respectively. As expected, the signals exponentially depend on ⇠. Consequently,
O(10) ⇠ O(100) parity-even signals occur for large ⇠, which is close to the upper bound from
fNL as shown in fig. 4. Config. I consistently yields a slightly larger signal than Config. II. We
observe similar behavior for the parity-odd signal. The ratio of the parity-odd to parity-even
signal is up to O(1)% in the region of interest.
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• two configurations

• Parity even (real part) and parity odd (imaginary part)
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Summary

• real mode approximation to simplify the calculation 
 

• parity odd ~  parity even 
 
 

• future work: analyze the BOSS data to constrain  
                       the gauge boson production 

10−2

Figure 5. Momentum configurations I (left) and II (right). The red and the blue triangles are in
different planes.

(Re[T ]) signal is at least O(10), and can be as large as O(100) near �r ! 0 (for Config. I)
and �r ! ⇡ (for both Config. I and II). Config. I yields a dominant signal by an O(1) factor
compared to Config. II. The parity-odd (Im[T ]) signal vanishes for �r = 0,⇡/2 and ⇡. It is
typically suppressed compared with the parity-even signal, |Im[T ]|/Re[T ] < 6%.

(a) (b) (c)

Figure 6. Parity-even and odd signals and their ratio as a function of �r for massless vector boson. The
purple curves correspond to Config. I, and the red ones correspond to Config. II.

We then turn to see the dependence of the trispectrum on the chemical potential ⇠. We
restrict our scan to the region 1.55  ⇠  2.4 where the uncertainty associated with using the
dominant real mode function lies below 1%. We fix the angle �r to be ⇡/12 and 3⇡/5 for Config. I
and Config. II, respectively. As expected, the signals exponentially depend on ⇠. Consequently,
O(10) ⇠ O(100) parity-even signals occur for large ⇠, which is close to the upper bound from
fNL as shown in fig. 4. Config. I consistently yields a slightly larger signal than Config. II. We
observe similar behavior for the parity-odd signal. The ratio of the parity-odd to parity-even
signal is up to O(1)% in the region of interest.

– 12 –
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Figure 8. Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0. Also shown
are the current best constraints from a combination of the BICEP2/Keck Array experiments and Planck
[5]. The Starobinsky model and Higgs inflation are shown as small and large orange filled circles. The lines
show the classes of model that naturally explain the observed value of ns. The corresponding potentials all
either polynomially or exponentially approach a plateau. The scale in field space over which the potential
approaches the plateau is referred to as the “characteristic scale” (see Ref. [3] for more details). We show
di↵erent values, M = MP/2, M = MP, M = 2MP, and M = 5MP. Longer dashes correspond to larger
values of the scale M . The Planck scale plays an important role because the gravitational scale and the
characteristic scale share a common origin. The number of e-folds N⇤ chosen for the figure corresponds to
nearly instantaneous reheating, which leads to the smallest values for r for a given model. Other reheating
scenarios predict larger values of r and are easier to detect or exclude.

Fig. 7, and the entire class of models is shown in Fig. 8. The second class consists of models in which the
potential V (�) approaches a plateau, either polynomially or exponentially. The potential for models in this
class has a characteristic scale over which the potential varies [3].2 The sensitivity of CMB-S4 is chosen to
exclude all models in this class with a characteristic scale that exceeds the Planck scale. The Planck scale
constitutes an important threshold because the scale of gravitational interactions and the characteristic
scale may share a common origin and be linked to each other, such as in the Starobinsky model [7], in Higgs
inflation [8], or more general models involving non-minimally coupled scalar fields. As a consequence, even
in the absence of a detection CMB-S4 would significantly advance our understanding of inflation, and would
dramatically a↵ect how we think about the theory. The classes of model that naturally predict the observed
value of ns, together with current constraints and constraints expected for CMB-S4, are shown in Fig. 8.

1.2.2 Primordial density perturbations

CMB-S4 can also seek to characterize the primordial Universe by searching for well-motivated signatures in
the scalar fluctuations, in the primordial power spectrum, and non-Gaussianities.

2This characteristic scale was introduced in Ref. [3] and should not be confused with the field range or the energy scale of
inflation. For a discussion see Refs. [3] and [20].

CMB-S4 Science Case, Reference Design, and Project Plan



P

Es

* He-
E

m
H

∼ 1

19

Cosmological collider physics
•    ~ inflaton perturbation  fNL ⟨ϕϕϕ⟩

P

Es

* He-
E

•    may detect the inflaton interactionsfNL

P
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E

• exchanging particles gives an oscillating 
feature 
          

 ,     ⟨ζζζ⟩ ∝ ( k1
k3

)3/2±iμ μ = m2

H2 − 9
4

Chen, Wang 0911.3380 
Arkani-Hamed, Maldacena 1503.08034
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Cosmological collider physics for A+
μ

• cosmological collider physics signals are normally tiny. 
heavy particle production is suppressed during inflation 
    

• gauge boson production enhances the production rate  
using the chemical potential 

∼ e−πμ

eπξ′ 

10 50 100 500 1000 5000 104

0

5.× 10-8

1.× 10-7

1.5× 10-7

2.× 10-7

Figure 3. Oscillatory pattern of the scale-independent shape function of the scalar bispectrum in the
squeezed limit for a benchmark point ⇠ = 6.5, µ = 5. The solid blue line is the shape function calculated
from eq. (3.9). The red dashed line is a fitting function of the form a+ b cos [2µ log (k1/k3) + #], showing
that the oscillatory bispectrum’s frequency is 2µ =

p
(2mA/H)2 � 1 with respect to log (k1/k3).

3.2 Oscillatory bispectrum in the “squeezed” limit

We would like to briefly comment on the “cosmological collider” signal — the three-point cor-
relation function in the “squeezed” limit, where one of the external momenta is much smaller
compared to the other two, k3 ⌧ k1 ⇡ k2 = k. We can extract the overall momentum scale
dependence by defining a ‘shape’ function

S(k2/k1, k3/k1) = k
6h⇣k1(⌧0)⇣k2(⌧0)⇣k3(⌧0)i0(1). (3.9)

In the squeezed limit k1/k3 � 1 , the shape function takes the form

S(k2/k1, k3/k1) = a+ b cos [2µ log (k1/k3) + #]. (3.10)

In fig. 3 we plot this ‘shape’ function as a function of k1/k3. It is an oscillatory function
with frequency 2µ and the envelope of its amplitude asymptotes to a constant for k1/k3 � 1.

3.3 Tensor Perturbation

Because of the exponential enhancement by the chemical potential, the gauge field can source
large tensor modes in the primordial fluctuation [55–58]. We use the scalar-vector-tensor de-
composition of the perturbed metric and write it only in terms of the tensor perturbation hij

ds
2
= a

2
(⌧)

⇥
d⌧

2 � (�ij + hij)dx
i
dx

j
⇤
, (3.11)

where hij is transverse (@ihij = 0) and traceless (hii = 0). We decompose the tensor perturbation
into two helicity modes

hij(⌧,p) =
X

�=±
✏
�

i (p)✏
�

j (p)
⇣
a�(p)h

�

p(⌧) + a
†
�
(�p)h�⇤p (⌧)

⌘
⌘

X

�=±
✏
�

i (p)✏
�

j (p)h
�
(⌧,p), (3.12)

Using the in-in formalism, we can write the one-loop radiative correction to two-point
correlation function of the tensor perturbations as

– 6 –

k6 ⟨ζ
3 ⟩
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Current constraints at the CMB scale
• the equilateral shape of nonGaussianity is  

the most constraining one        f eq
NL = − 25 ± 47

Figure 4. Shaded regions denote exclusion of the massive gauge boson’s parameter space from various
constraints. Circled numbers represent the benchmark points listed in Table 1.

4.3 Tensor Power Spectrum

In the absence of massive gauge field production, the tensor power spectrum contributed by the
usual vacuum fluctuations and is given by

P
[�]
h

=
2

⇡2

✓
H

MPl

◆2

. (4.4)

Similar to the scalar power spectrum, the contribution of the gauge field induced tensor pertur-
bations to the power spectrum is given by

P
[A],±
h

=
2k

3

(2⇡)2
hh±(⌧0,k1)h

±
(⌧0,�k1)i(1). (4.5)

where ± corresponds to the two polarizations of the graviton. The total power spectrum is
expressed as

Ph = P
[�]
h

+ P
[A],+
h

+ P
[A],�
h

(4.6)

.
Even though gravitational waves generated from the tensor power spectrum has not been

detected at the CMB scale, there are strict constraints on the ratio of tensor power spectrum to
scalar power spectrum. This parameter, dubbed as tensor-to-scalar ratio, is defined as

r ⌘ Ph

P⇣

=
P

+
h

+ P
�
h

2.5⇥ 10�9
. (4.7)

– 8 –

3

AI
3 m hij m
En we

mu

E see

A
3 m hisen

n munEn En

-

E 3

3

AI
3 m hij m
En we

mu

E see

arXiv: 2211.14331



4AM
2

·

22

Beyond CMB scale
• gauge field’s backreaction  

 
             

                      

··ϕ0 + 3H ·ϕ0 + dV
dϕ0

= 1
Λ ⟨E ⋅ B⟩

3H2M2
Pl − 1

2
·ϕ2
0 − V = 1

2 ⟨E2 + B2 + m2
A

a2 A2⟩
• the backreaction is negligible at the CMB 

 at the late stage of inflation,  becomes large 

           

·ϕ
ξ ≡

·ϕ0
2ΛH

• we need to specify an inflationary model to know  
the evolution  of ·ϕ
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Figure 8. Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0. Also shown
are the current best constraints from a combination of the BICEP2/Keck Array experiments and Planck
[5]. The Starobinsky model and Higgs inflation are shown as small and large orange filled circles. The lines
show the classes of model that naturally explain the observed value of ns. The corresponding potentials all
either polynomially or exponentially approach a plateau. The scale in field space over which the potential
approaches the plateau is referred to as the “characteristic scale” (see Ref. [3] for more details). We show
di↵erent values, M = MP/2, M = MP, M = 2MP, and M = 5MP. Longer dashes correspond to larger
values of the scale M . The Planck scale plays an important role because the gravitational scale and the
characteristic scale share a common origin. The number of e-folds N⇤ chosen for the figure corresponds to
nearly instantaneous reheating, which leads to the smallest values for r for a given model. Other reheating
scenarios predict larger values of r and are easier to detect or exclude.

Fig. 7, and the entire class of models is shown in Fig. 8. The second class consists of models in which the
potential V (�) approaches a plateau, either polynomially or exponentially. The potential for models in this
class has a characteristic scale over which the potential varies [3].2 The sensitivity of CMB-S4 is chosen to
exclude all models in this class with a characteristic scale that exceeds the Planck scale. The Planck scale
constitutes an important threshold because the scale of gravitational interactions and the characteristic
scale may share a common origin and be linked to each other, such as in the Starobinsky model [7], in Higgs
inflation [8], or more general models involving non-minimally coupled scalar fields. As a consequence, even
in the absence of a detection CMB-S4 would significantly advance our understanding of inflation, and would
dramatically a↵ect how we think about the theory. The classes of model that naturally predict the observed
value of ns, together with current constraints and constraints expected for CMB-S4, are shown in Fig. 8.

1.2.2 Primordial density perturbations

CMB-S4 can also seek to characterize the primordial Universe by searching for well-motivated signatures in
the scalar fluctuations, in the primordial power spectrum, and non-Gaussianities.

2This characteristic scale was introduced in Ref. [3] and should not be confused with the field range or the energy scale of
inflation. For a discussion see Refs. [3] and [20].

CMB-S4 Science Case, Reference Design, and Project Plan

23

Inflationary model
• Starobinsky model 

            
           

V(ϕ) ∼ V0 (1 − e−γϕ)2



(a) (b)

Figure 4. Evolution of model parameters ⇠ and mA/H for four benchmark points: 1 mA = 4H, ⇠C =

4.5, 2 mA = 1.3H, ⇠C = 2.75, 3 mA = 1.3H, ⇠C = 2.5, 4 mA = 1.9H, ⇠C = 2.75 in the context of the
Starobinsky model. See text for details.

where V0 and � are free parameters, which can be constrained from CMB measurements of
ns = 0.9649 ± 0.0042 (at 68% CL) and r < 0.056 (at 95%CL) [62]. We choose �

2
= 8/125

and V0 ⇡ 1.6 ⇥ 10
�9. In App. B we justify the choice of these parameters. The evolution of ⇠

and mA/H as a function of N are shown in fig. 4 for four benchmark points. These points are
chosen because they will be used later to illustrate gravitational wave signals sensitive to various
interferometers.

We choose ⇠ and mA/H for all benchmark points at the CMB scale (N ' 60) such that
they are in the standard slow-roll regime where backreaction effects can be neglected. Initially ⇠

increases rapidly until N ⇠ 30� 40, when backreaction effects start to slow down its rise. Near
the end of inflation backreaction becomes so severe that slow-roll condition is again established
and ⇠ rises swiftly. On the other hand, Hubble rate H experiences a rather mild and monotonic
decrease as N decreases.

5 Phenomenological Constraints at CMB Scale

In this section we relate the n-point correlation functions computed in section 3 to phenomeno-
logical observables at the CMB scale. In appropriate cases, we constrain the model parameter
space from observational results.

5.1 Scalar Power Spectrum

In the absence of gauge field production, the scalar power spectrum is contributed by the usual
vacuum fluctuations, and is given by

P
[�]
⇣

⌘
✓
H

�̇0

◆2✓
H

2⇡

◆2

. (5.1)
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Four bench mark models

ξ = 2 ·ϕ
ΛH

Figure 4. Shaded regions denote exclusion of the massive gauge boson’s parameter space from various
constraints. Circled numbers represent the benchmark points listed in Table 1.

4.3 Tensor Power Spectrum

In the absence of massive gauge field production, the tensor power spectrum contributed by the
usual vacuum fluctuations and is given by

P
[�]
h

=
2

⇡2

✓
H

MPl

◆2

. (4.4)

Similar to the scalar power spectrum, the contribution of the gauge field induced tensor pertur-
bations to the power spectrum is given by

P
[A],±
h

=
2k

3

(2⇡)2
hh±(⌧0,k1)h

±
(⌧0,�k1)i(1). (4.5)

where ± corresponds to the two polarizations of the graviton. The total power spectrum is
expressed as

Ph = P
[�]
h

+ P
[A],+
h

+ P
[A],�
h

(4.6)

.
Even though gravitational waves generated from the tensor power spectrum has not been

detected at the CMB scale, there are strict constraints on the ratio of tensor power spectrum to
scalar power spectrum. This parameter, dubbed as tensor-to-scalar ratio, is defined as

r ⌘ Ph

P⇣

=
P

+
h

+ P
�
h

2.5⇥ 10�9
. (4.7)

– 8 –

Gravitational Wave Spectrum

1 mA “ 4H, ⇠C “ 4.7, 2 mA “ 1.3H, ⇠C “ 2.75,

3 mA “ 1.3H, ⇠C “ 2.5, 4 mA “ 2.1H, ⇠C “ 2.75

Moinul Rahat (M.H.Rahat@soton.ac.uk) Dalitz Seminar at Oxford October 27, 2022 19 / 20



25

Gravitational wave signals

Figure 6. Gravitational wave spectrum for four benchmark points listed in Table 1 in the context of the
generalized Starobinsky model. For comparison we show the current upper bound (in gray) and future
sensitivities (in color) of ongoing and proposed interferometers. See text for details.

Benchmark Point mA/HCMB ⇠CMB

1 4 4.5

2 1.3 2.75

3 1.3 2.5

4 1.95 2.75

Table 1. Benchmark points for gravitational wave signals.

set by LIGO+VIRGO but remains sensitive to their planned upgrades. This embodies the main
characteristic of gravitational wave signals generated by massive gauge fields produced through
the �FF̃ interaction — low-lying signals undetectable at CMB scales rising at larger frequencies
to be probed in a wide range of ground- and space-based interferometers.

Benchmark points 2 and 4 demonstrate how this signal depends on the two parameters ⇠
and mA/H at the CMB scales. Compared to 3 , ⇠ is higher in 2 keeping mA/H unchanged. As
expected, a higher chemical potential makes the contribution of the gauge field larger, and the
signal surpasses the vacuum contribution earlier. However, at larger frequencies, backreaction
effects also become stronger as seen in fig. (5a), so much so that this signal goes slightly below 3 .
On the other hand, at the CMB scale benchmark point 4 has the same ⇠ as 2 , while its mA/H

is larger. Heavier particles are less abundantly produced, and it takes longer for the gauge field
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Figure 3. Oscillatory pattern of the scale-independent shape function of the scalar bispectrum in the
squeezed limit for a benchmark point ⇠ = 6.5, µ = 5. The solid blue line is the shape function calculated
from eq. (3.9). The red dashed line is a fitting function of the form a+ b cos [2µ log (k1/k3) + #], showing
that the oscillatory bispectrum’s frequency is 2µ =

p
(2mA/H)2 � 1 with respect to log (k1/k3).

3.2 Oscillatory bispectrum in the “squeezed” limit

We would like to briefly comment on the “cosmological collider” signal — the three-point cor-
relation function in the “squeezed” limit, where one of the external momenta is much smaller
compared to the other two, k3 ⌧ k1 ⇡ k2 = k. We can extract the overall momentum scale
dependence by defining a ‘shape’ function

S(k2/k1, k3/k1) = k
6h⇣k1(⌧0)⇣k2(⌧0)⇣k3(⌧0)i0(1). (3.9)

In the squeezed limit k1/k3 � 1 , the shape function takes the form

S(k2/k1, k3/k1) = a+ b cos [2µ log (k1/k3) + #]. (3.10)

In fig. 3 we plot this ‘shape’ function as a function of k1/k3. It is an oscillatory function
with frequency 2µ and the envelope of its amplitude asymptotes to a constant for k1/k3 � 1.

3.3 Tensor Perturbation

Because of the exponential enhancement by the chemical potential, the gauge field can source
large tensor modes in the primordial fluctuation [55–58]. We use the scalar-vector-tensor de-
composition of the perturbed metric and write it only in terms of the tensor perturbation hij

ds
2
= a

2
(⌧)

⇥
d⌧

2 � (�ij + hij)dx
i
dx

j
⇤
, (3.11)

where hij is transverse (@ihij = 0) and traceless (hii = 0). We decompose the tensor perturbation
into two helicity modes

hij(⌧,p) =
X

�=±
✏
�

i (p)✏
�

j (p)
⇣
a�(p)h

�

p(⌧) + a
†
�
(�p)h�⇤p (⌧)

⌘
⌘

X

�=±
✏
�

i (p)✏
�

j (p)h
�
(⌧,p), (3.12)

Using the in-in formalism, we can write the one-loop radiative correction to two-point
correlation function of the tensor perturbations as
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Figure 5. Momentum configurations I (left) and II (right). The red and the blue triangles are in
different planes.

(Re[T ]) signal is at least O(10), and can be as large as O(100) near �r ! 0 (for Config. I)
and �r ! ⇡ (for both Config. I and II). Config. I yields a dominant signal by an O(1) factor
compared to Config. II. The parity-odd (Im[T ]) signal vanishes for �r = 0,⇡/2 and ⇡. It is
typically suppressed compared with the parity-even signal, |Im[T ]|/Re[T ] < 6%.

(a) (b) (c)

Figure 6. Parity-even and odd signals and their ratio as a function of �r for massless vector boson. The
purple curves correspond to Config. I, and the red ones correspond to Config. II.

We then turn to see the dependence of the trispectrum on the chemical potential ⇠. We
restrict our scan to the region 1.55  ⇠  2.4 where the uncertainty associated with using the
dominant real mode function lies below 1%. We fix the angle �r to be ⇡/12 and 3⇡/5 for Config. I
and Config. II, respectively. As expected, the signals exponentially depend on ⇠. Consequently,
O(10) ⇠ O(100) parity-even signals occur for large ⇠, which is close to the upper bound from
fNL as shown in fig. 4. Config. I consistently yields a slightly larger signal than Config. II. We
observe similar behavior for the parity-odd signal. The ratio of the parity-odd to parity-even
signal is up to O(1)% in the region of interest.
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Figure 6. Gravitational wave spectrum for four benchmark points listed in Table 1 in the context of the
generalized Starobinsky model. For comparison we show the current upper bound (in gray) and future
sensitivities (in color) of ongoing and proposed interferometers. See text for details.
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2 1.3 2.75

3 1.3 2.5

4 1.95 2.75

Table 1. Benchmark points for gravitational wave signals.

set by LIGO+VIRGO but remains sensitive to their planned upgrades. This embodies the main
characteristic of gravitational wave signals generated by massive gauge fields produced through
the �FF̃ interaction — low-lying signals undetectable at CMB scales rising at larger frequencies
to be probed in a wide range of ground- and space-based interferometers.

Benchmark points 2 and 4 demonstrate how this signal depends on the two parameters ⇠
and mA/H at the CMB scales. Compared to 3 , ⇠ is higher in 2 keeping mA/H unchanged. As
expected, a higher chemical potential makes the contribution of the gauge field larger, and the
signal surpasses the vacuum contribution earlier. However, at larger frequencies, backreaction
effects also become stronger as seen in fig. (5a), so much so that this signal goes slightly below 3 .
On the other hand, at the CMB scale benchmark point 4 has the same ⇠ as 2 , while its mA/H

is larger. Heavier particles are less abundantly produced, and it takes longer for the gauge field
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Primordial black holes

Figure 7. Evolution of the scalar power spectrum in the context of the generalized Starobinsky model
for the same benchmark points as in fig. 6. Gray area represents overproduction of primordial black holes.
The upper line corresponds to gaussian perturbations and the lower curve corresponds to non-Gaussian
perturbations. See text for details.

Note that the bound derived in Ref. [48] has an O(1) uncertainty because of the approx-
imations involved in the calculation. Our benchmark points violate this bound only at high
frequencies by O(1). Furthermore, in recent literature this bound has been debated from vari-
ous considerations. In deriving this bound, Ref. [48] assumed that the curvature perturbation
is non-Gaussian and can be expressed as

⇣ = g
2 � hg2i, (6.3)

where g follows a gaussian distribution. Consequently, the probability distribution function of
⇣ can be derived from P (⇣)d⇣ = P (g)dg, and follows a chi-squared distribution

P (⇣) =
1p

2⇡(⇣ + �2)�
e
� ⇣+�

2

2�2 , (6.4)

with �
2 ⌘ hg2i. A recent lattice study [104] shows that at smaller scales the curvature per-

turbation actually becomes nearly gaussian because of the strong backreaction from gauge field
production. A plausible explanation is, in the strong backreaction regime, large number of
excited gauge modes are produced contributing to the source term E ·B, and central limit the-
orem dictates that their overall effect is gaussian. If the curvature perturbation follows a nearly
gaussian statistics, the upper bound on primordial black hole overproduction is relaxed [48, 105]

P (⇣) . 0.008� 0.05. (6.5)

We have shown the P⇣ > 0.008 region in fig. 7 bounded with a dot-dashed line. While our
benchmark points violate the bound for non-Gaussian perturbations at high frequencies by
O(1), assuming a reversion to gaussianity at those scales would relax the bound and potentially
allow this model to avoid the overproduction of primordial black holes.

eq. (3.2). The scalar spectrum curves shown in fig. 7 have been derived using an approximate formula following

the technique of Ref. [48].
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