Flavour non-universality vs Naturalness

Joe Davighi, University of Zurich

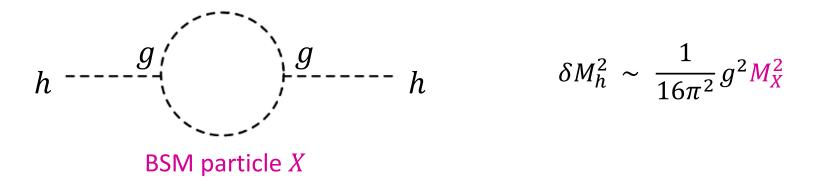
NPKI, 9th June 2023

I will not say anything new about the large hierarchy problem (TeV² vs M_{Pl}^2) I will not say anything new about reducing the little hierarchy problem (M_h^2 vs TeV²)

I will discuss:

- recent ideas for solving the flavour puzzle at low scales (TeV),
- their consequences for the (little) hierarchy problem,
- phenomenology in flavour observables, direct searches, & EW precision

Flavour puzzle


Huge (technically natural) hierarchies in SM Yukawa couplings $y \overline{\Psi}_L H \Psi_R$:

$$1 \approx y_t \gg y_c \gg y_u \sim 10^{-5}$$

 $V_{us} \gg V_{cb} \gg V_{ub}$

Highly suggestive of accidental symmetries due to heavy BSM physics, e.g. new gauge symmetries at higher scales, that couples strongly to Higgs and/or top

Heavy BSM physics that couples to Higgs means the physical Higgs mass is tuned, unless we have e.g. SUSY or compositeness at a lower scale to protect M_h


See e.g. Farina, Strumia, Pappadopulo, 1303.7244

Contrast with dark matter & strong-CP problem, which *could* be explained with *light* NP that has no direct impact on EW stability

This sensitivity of M_h^2 to flavour-puzzle-solving-BSM appears severe:

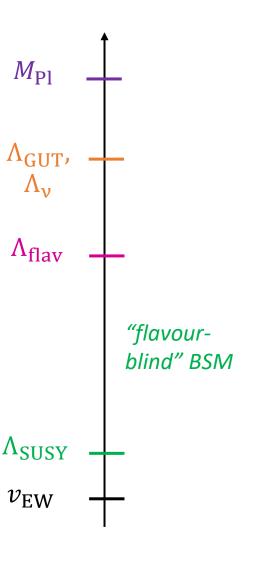
- 1. Trying to explain structure of Higgs couplings $y \overline{\Psi}_L H \Psi_R$, so the NP probably couples to Higgs
- 2. Typically many extra states, probably with large couplings to top (even 2-loop δM_h^2 can be big)
- 3. Precision flavour data means that flavour-violation naively probes very heavy scales

Neutral meson mixing constraints: probe effective scales $> 10^5$ TeV

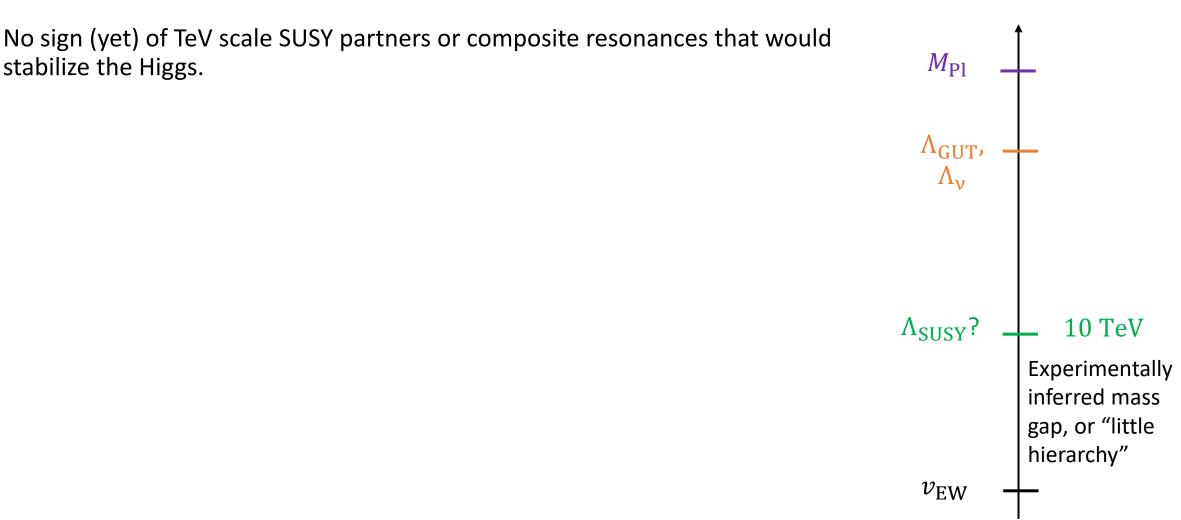
Flavour-ful BSM:

The natural view from the 2000s (Pre-LHC)

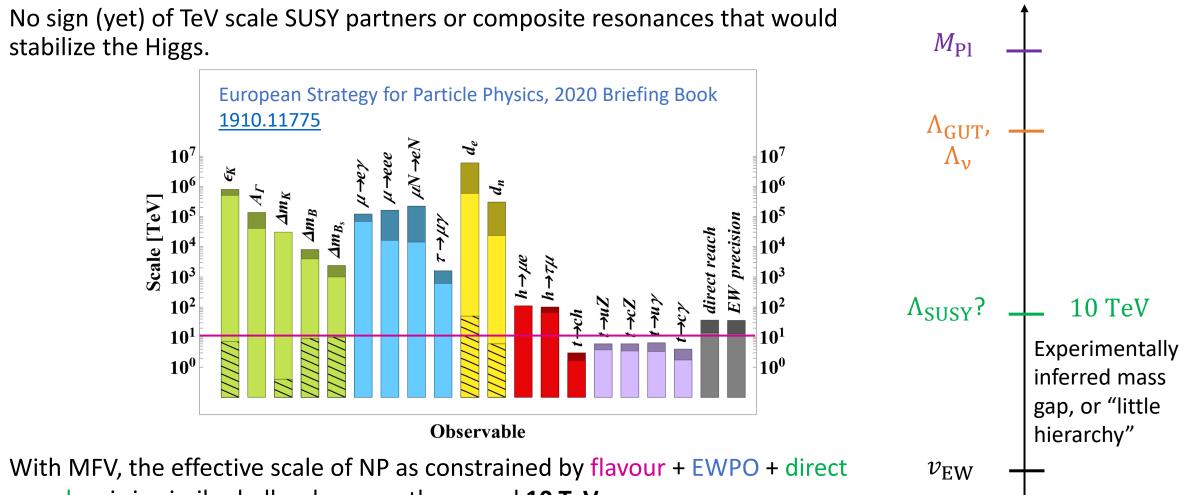
To avoid this fine-tuning, Higgs surely stabilized by SUSY or compositeness near TeV These mechanisms would protect M_h from **all** higher NP scales up to M_{Pl} ;


NP explaining flavour, gauge unification, neutrino masses, QG ...

Old Q: how to reconcile with flavour-violation constraints probing $O(10^{4-5})$ TeV?


Old A: the NP resolving the hierarchy problem is *minimally flavour violating* (MFV): nearly flavour-blind, with flavour violating effects set by SM Yukawas.

D'Ambrosio, Giudice, Isidori, Strumia, <u>hep-ph/0207036</u>


Flavour puzzle can then be solved at much higher scales without destabilising M_h^2

In 2020s, we know a lot more from the LHC + other experiments

In 2020s, we know a lot more from the LHC + other experiments

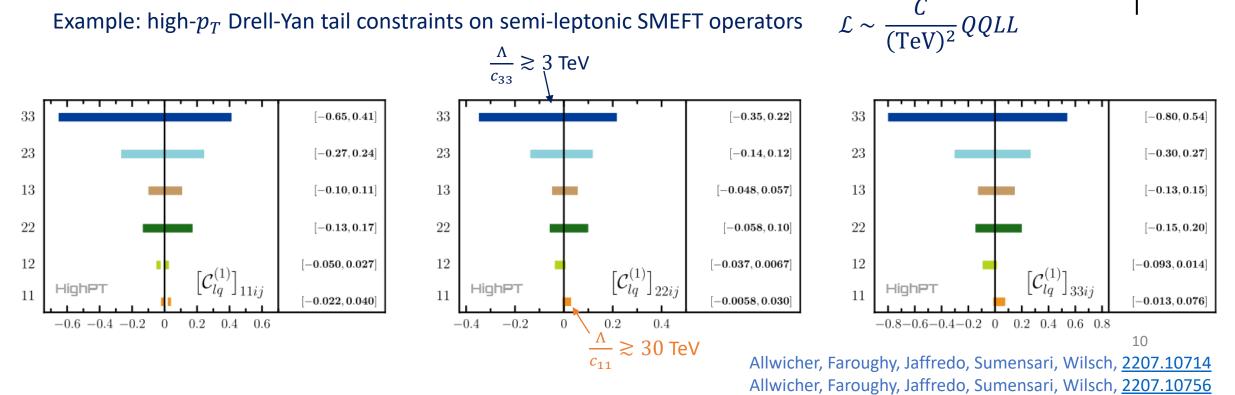
searches is in similar ballpark: currently around 10 TeV

Percent level tuning on M_h^2 in MFV SUSY / compositeness = "little hierarchy problem" See Gauthier's talk

⁹

Beyond MFV: *very flavoured* NP can be lighter!

MFV is unnecessarily aggressive: LHC direct search limits driven by contributions from light-flavour operators (PDF enhanced in pp).


LHC bounds roughly **10 times weaker** for **NP coupled mostly to 3rd family**, for which TeV scale remains viable

 Λ_{SUSY} ? — 10 TeV

 $\Lambda_{\rm flav}$?

 $v_{\rm EW}$

Example: high- p_T Drell-Yan tail constraints on semi-leptonic SMEFT operators

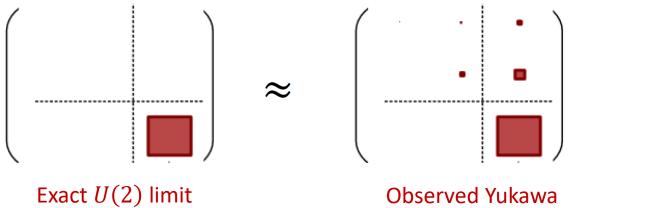
Beyond MFV: From U(3) global symmetries to U(2)

NP that couples differently to 3^{rd} family, but universally (e.g. zero) to light families, has some $U(2)^n$ flavour symmetry:

 $(\psi_1 \quad \psi_2)$ = doublets of U(2), ψ_3 = singlets of of U(2)

Imposing $U(2)^5$ flavour symmetry on NP is a weaker assumption than the $U(3)^5$ of MFV

- It allows NP coupled mostly to 3rd family, giving much weaker direct search constraints
- With a choice of minimal $U(2)^5$ -breaking spurions, one also avoids flavour bounds with NP scale around 1 TeV


Barbieri et al, <u>1105.2296</u>; Isidori, Straub, <u>1202.0464</u>; Fuentes-Martin et al, <u>1909.02519</u>

What would be the UV origin of such $U(2)^n$ flavour symmetries?

Beyond MFV: From U(2) global symmetries to non-universal gauge symmetry

The $U(2)^5$ flavour symmetry can be realised **accidentally**, from a flavour non-universal **gauge symmetry** that couples differently to 3rd family

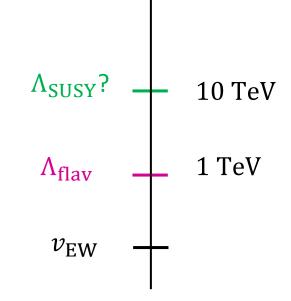
The non-universal gauge symmetry, and the $U(2)^5$ it delivers, could be the origin of **flavour hierarchies**, because it will also restrict the Yukawa couplings:

Light Yukawas (and U(2) breaking) from **higher-dimension operators**; originate from NP at higher scales

Barbieri et al, <u>1105.2296</u> Isidori, Straub, <u>1202.0464</u> Fuentes-Martin et al, <u>1909.02519</u>

The associated heavy gauge bosons inherit the $U(2)^5$ symmetric couplings to SM fermions and so can be a few TeV. Flavour could still be explained at low scale – an inversion of the MFV paradigm

TeV scale solution to flavour puzzle, via non-universal gauge interactions, is a phenomenologically viable possibility


If SUSY / compositeness doesn't kick in until 10 TeV (to resolve the large hierarchy problem), we should ask:

Have we made the little hierarchy problem (% tuning in M_h^2) worse?

Goal for rest of talk:

Use *stability of Higgs mass* to identify *natural TeV scale models of flavour* consistent with current data. We will see these models have rich pheno

Davighi, Isidori, Pesut, <u>2212.06163</u> **Davighi, Isidori <u>2303.01520</u>** Davighi, Stefanek <u>2305.16280</u> Davighi, Gosnay, Miller, Renner (work in progress)

U(2) accidental symmetries from non-universal gauge interactions

Let's work from the bottom up. SM gauge symmetry: $SU(3) \times SU(2)_L \times U(1)_Y$ Consider 'deconstructing' each factor into a separate "light family" and "third family + Higgs" part:

TeV gauge
symmetry
contains:
$$SU(3)^{[12]} \times SU(3)^{[3]}$$
 $SU(2)_L^{[12]} \times SU(2)_L^{[3]}$ $U(1)_Y^{[12]} \times U(1)_Y^{[3]}$ $Y_{ij}^F \sim \begin{pmatrix} \times \times 0 \\ \times \times 0 \\ 0 & 0 & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times \end{pmatrix}$ $Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}$ Allows 2 x 2 matrix of light
Yukawas (Higgs colourless)
Explains $V_{cb} \ll 1$
Doesn't explain $m_2 \ll m_3$ Rank-1 matrix, can be
diagonalised by a RH-rotation
that is unphysical (as in SM)Explains $V_{cb} \ll 1$
Explains $m_2 \ll m_3$

Need to deconstruct EW gauge symmetry to explain $m_2 \ll m_3^{-14}$

UV speculation: possible origin of deconstructed gauge symmetry [digression]

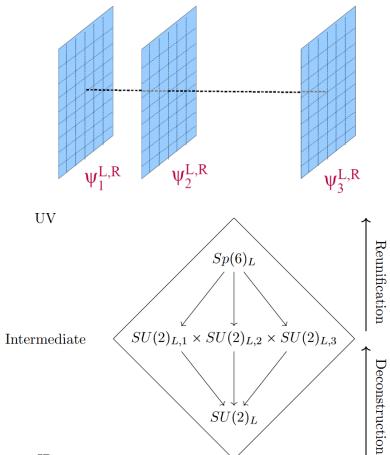
Could be the last step in a multi-scale symmetry breaking pattern from fully deconstructed $G = G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_1 > \Lambda_2 > \Lambda_3$

Example origin 1:

Can embed multi-site picture in a stable multi-brane model in 5d

Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u> Fuentes-Martin, Isidori, Lizana, Selimovic, Stefanek, <u>2203.01952</u>

Example origin 2:


"Gauge flavour unification": eg $\prod_{i=1}^{3} SU(2)_{L,i} \hookrightarrow Sp(6)_{L}$

[offers a "gauge answer" to "why 3 generations?"]

Davighi, Tooby-Smith, <u>2201.07245</u> Davighi, <u>2206.04482</u>

See also the SU(9) of Sungwoo's talk

Dvali, Shifman, <u>hep-ph/0001072</u> Panico, Pomarol, <u>1603.06609</u>

Flavour non-universality vs. Naturalness

An aggressive naturalness condition: $\delta M_h^2 \lesssim (125 \text{ GeV})^2$

Deconstructing EW symmetries give 1-loop Higgs mass corrections: (recall we need this to explain $m_2 \ll m_3$)

$$h - \frac{\zeta}{g'} - -h \qquad h - \frac{\zeta}{g'} - -h \qquad h - \frac{\zeta}{g'} - -h \qquad \Rightarrow \delta M_h^2 \sim \frac{1}{16\pi^2} g_{L/Y}^2 M_{L/Y}^2$$

Deconstructing colour gives 2-loop correction, but with big couplings:

$$M_{W'_L} \lesssim 2.5 \text{ TeV}$$

Most natural mass ranges:

Since
$$g_Y \sim \frac{1}{2}g_L$$
, which also gives safer pheno

 $M_{Z_Y'} \lesssim 5 \text{ TeV}$

$$h - \frac{g_{t}}{y_{t}} \underbrace{\underbrace{euce}_{f'}}_{f'} - h$$

$$\Rightarrow \delta M_h^2 \sim \left(\frac{1}{16\pi^2}\right)^2 g_s^2 y_t^2 M_{G'}^2$$

 $M_{G'} \lesssim 10 \text{ TeV}$

Semi-simple completions

In <u>2303.01520</u> (JD, Isidori), we made an additional assumption:

Model has semi-simple embedding in the UV i.e. no fundamental U(1) gauge symmetries (explains hypercharge quantisation; has a shot at being asymptotically free)

Semi-simple completions

In <u>2303.01520</u> (JD, Isidori), we made an additional assumption:

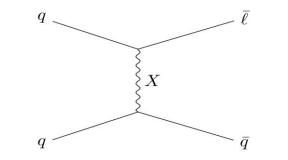
Model has semi-simple embedding in the UV i.e. no fundamental U(1) gauge symmetries (explains hypercharge quantisation; has a shot at being asymptotically free)

Semi-simple embeddings of the SM are classified^{*}; surprisingly few possibilities!

Allanach, Gripaios, Tooby-Smith, 2104.14555

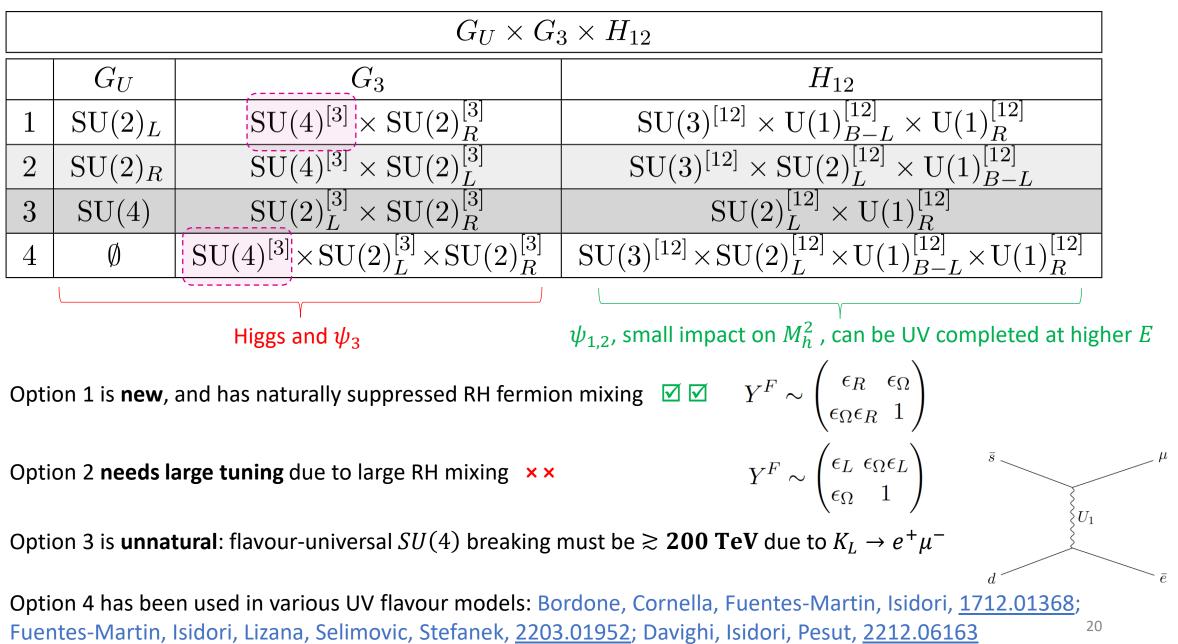
All options use one of the basic unification patterns:

- Pati—Salam $SU(4) \times SU(2) \times SU(2)$
- *SU*(5)
- *SO*(10)


Pati, Salam, <u>1974</u>

Georgi, Glashow, <u>1974</u>

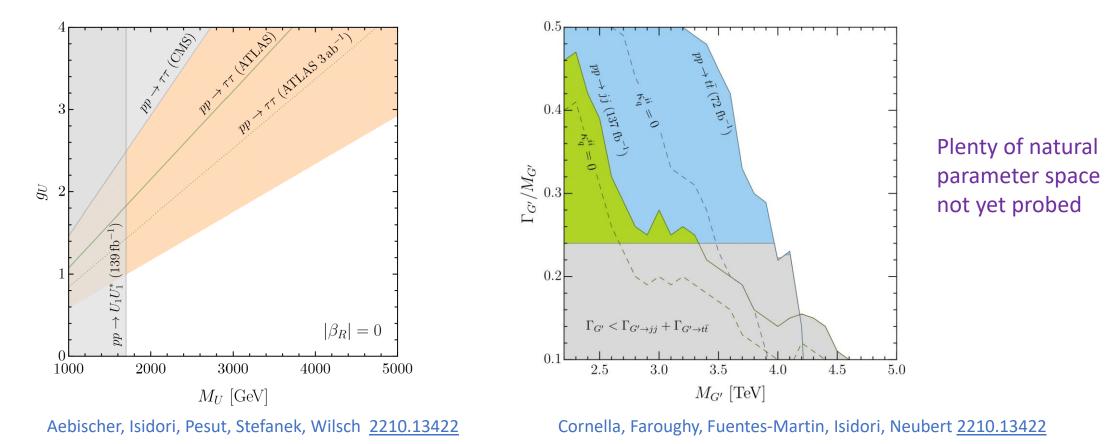
Georgi, 1975 and Fritzsch, Minkowski, 1975


$\begin{array}{l} \textbf{3 generation subalgebra 339} \\ \textbf{Algebra: } \mathfrak{so}(10) \oplus \mathfrak{su}(2) \\ \textbf{(16, 1), } (0, 0, 0, 0, 1, 0) \mapsto (D, E, L, N, Q, U) \\ \textbf{(16, 2), } (0, 0, 0, 0, 1, 1) \mapsto (D, D, E, E, L, L, N, D) \\ \textbf{Projection matrix for } \alpha: \end{array}$	N,Q,Q,U,U)
	$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 & 2 & 0 \end{pmatrix}$
$\begin{array}{l} \textbf{3 generation subalgebra 340} \\ \text{Algebra: } \mathfrak{so}(10) \\ \textbf{(16), } (0,0,0,0,1) \mapsto (D,E,L,N,Q,U) \\ \textbf{(16), } (0,0,0,0,1) \mapsto (D,E,L,N,Q,U) \\ \textbf{(16), } (0,0,0,0,1) \mapsto (D,E,L,N,Q,U) \\ \text{Projection matrix for } \alpha: \end{array}$	
	$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 6 & 4 & 0 & 2 \end{pmatrix}$

BUT SU(5) & SO(10) feature LQs that give treelevel proton decay! $\Rightarrow M_X \gtrsim$ GUT scale So SU(5) & SO(10) -based options cannot appear in our low-scale, natural models

$G_U \times G_3 \times H_{12}$			
	G_U	G_3	H_{12}
1	$\mathrm{SU}(2)_L$	$\mathrm{SU}(4)^{[3]} imes \mathrm{SU}(2)^{[3]}_R$	$SU(3)^{[12]} \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_{R}$
2	$\mathrm{SU}(2)_R$	$\mathrm{SU}(4)^{[3]} \times \mathrm{SU}(2)^{[3]}_L$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L}$
3	SU(4)	$\mathrm{SU}(2)_L^{[3]} \times \mathrm{SU}(2)_R^{[3]}$	$SU(2)_L^{[12]} \times U(1)_R^{[12]}$
4	Ø	${ m SU}(4)^{[3]} imes { m SU}(2)^{[3]}_L imes { m SU}(2)^{[3]}_R$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L} \times U(1)^{[12]}_R$
Higgs and ψ_3 $\psi_{1,2}$, small impact on M_h^2 , can be UV completed at hi			

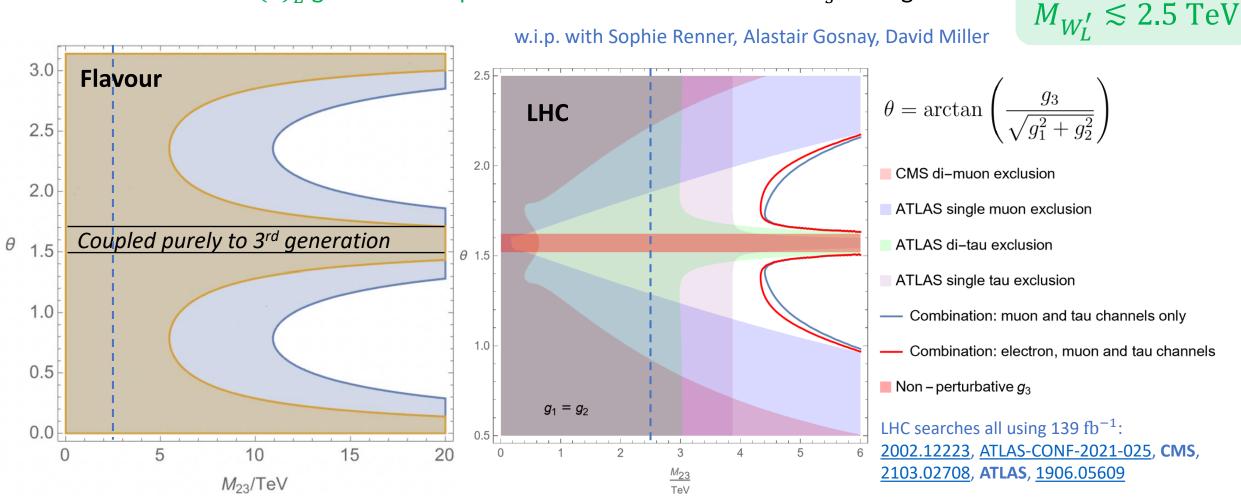
End up with a small class of natural models at the TeV scale; all feature 3rd family quark-lepton unification


End up with a small class of natural models at the TeV scale; all feature 3rd family quark-lepton unification

Flavour deconstruction (at natural scale) gives rich phenomenology

$$M_{G'} \lesssim 10 \text{ TeV}$$
 $M_{W'_L} \lesssim 2.5 \text{ TeV}$ $M_{Z'_Y} \lesssim 5 \text{ TeV}$

Deconstructed SU(3) gives 'coloron' $G \sim (\mathbf{8}, \mathbf{1})_0$ Deconstructed SU(4) also gives vector leptoquark $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3} + Z'$, M < 10 TeV


• Pheno of these particles has been well-studied in connection to *B*-anomalies

No clear "prediction" for an anomaly in $R_{D^{(*)}}$; if $M \approx 10$ TeV, $\Delta R_{D^{(*)}} \sim 10^{-3} R_{D^{(*)}}^{SM}$ (undetectable)

• Still, a sizeable (up to 10%) deviation is a plausible signature of these models

 $M_{G'} \lesssim 10 \text{ TeV}$

Deconstructed $SU(2)_L$ gives weak triplet: dominant constraints from B_s mixing + LHC

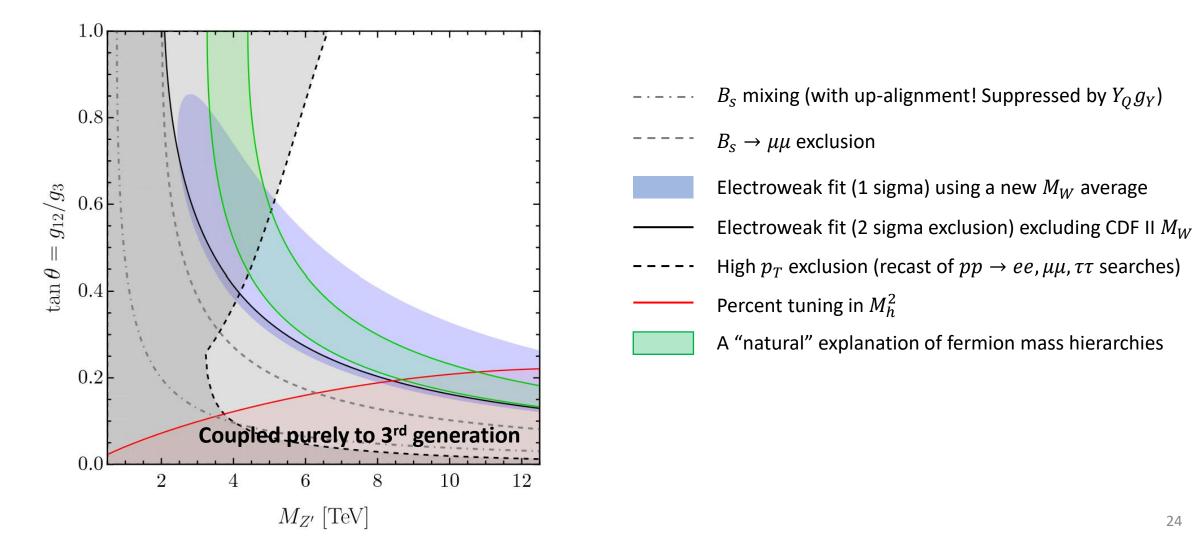
 \square B_s mixing (up-alignment)

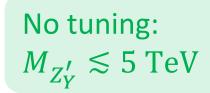
 $\square B_s$ mixing ($[V_d]_{23} = V_{cb}/2$)

(If down-alignment, there is no constraint)

LHC Drell-Yan:
$$M_{W_L} > 4.5$$
 TeV, so $\delta M_h^2 \sim 4 M_h^2$

23

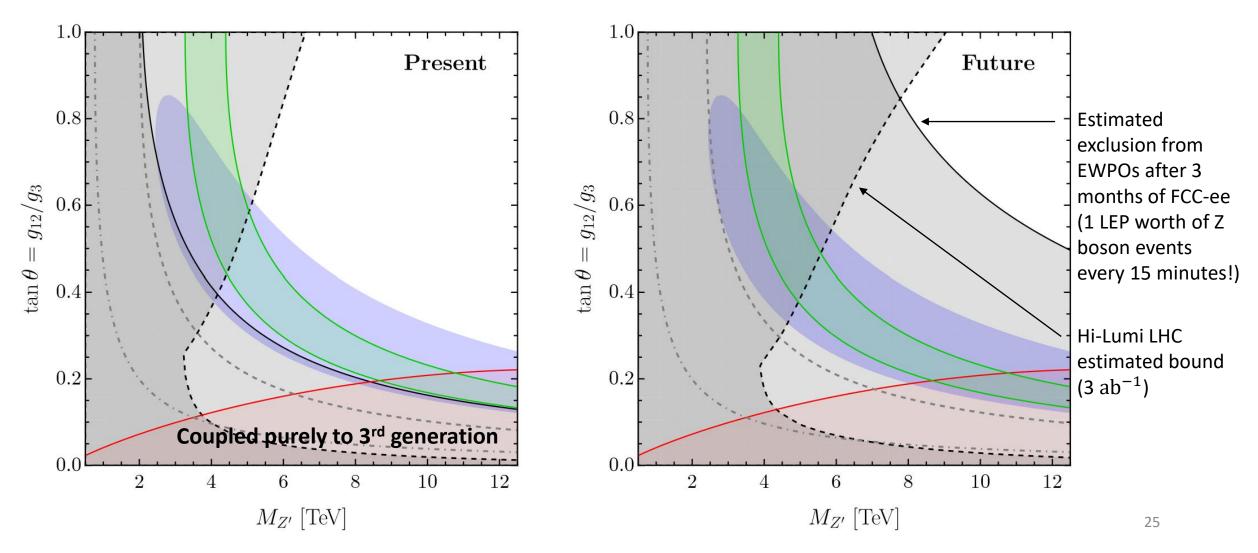

Computed using **HighPT** package:


Allwicher et al, 2207.10756

No tuning:

Deconstructed $U(1)_Y$ gives Z': viable at lower mass (Double benefit from $g_Y < g_L$: smaller Higgs mass correction, and smaller NP effects)

We built an explicit model in <u>2305.16280</u> (JD, Stefanek). Main constraints now **EWPOs**



Deconstructed $U(1)_Y$ gives Z': viable at lower mass (Double benefit from $g_Y < g_L$: smaller Higgs mass correction, and smaller NP effects)

No tuning: $M_{Z'_Y} \lesssim 5 \text{ TeV}$

We built an explicit model in 2305.16280 (JD, Stefanek). Main constraints now EWPOs

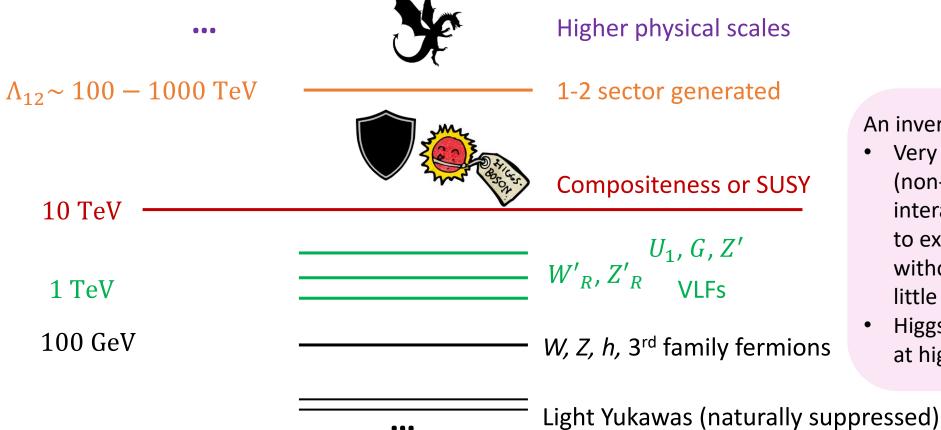
A key pheno message:

An EW precision machine like FCC-ee easily has power to completely exclude natural parameter space of this deconstructed $U(1)_Y$ model of flavour – which we identified as the most natural option in absence of SUSY / compositeness below 10 TeV

... and what of the large hierarchy problem?

"UV problems" that remain:

- 1. Resolve **1-2 sector** at $\sim 1000 \text{ TeV}$
- **2.** Neutrino masses... eg by see-saw from near GUT scale $\sim 10^{12}$ TeV
- 3. Quantum gravity at M_{Pl} (*wave hands*)


We imagine SUSY / compositeness could still enter ~ 10 TeV, protecting M_h^2 from the deep UV

... and what of the large hierarchy problem?

"UV problems" that remain:

- 1. Resolve **1-2 sector** at $\sim 1000 \text{ TeV}$
- **2.** Neutrino masses... eg by see-saw from near GUT scale $\sim 10^{12}$ TeV
- 3. Quantum gravity at $M_{\rm Pl}$ (*wave hands*)

We imagine SUSY / compositeness could still enter ~ 10 TeV, protecting M_h^2 from the deep UV

An inversion of MFV paradigm

- Very flavoured physics (non-universal gauge interaction) enters at TeV to explain flavour, but without worsening the little hierarchy problem
- Higgs is properly stabilized at higher scales, say 10 TeV

Summary

- 1. Flavour could be explained at TeV scale, without worsening the little hierarchy problem
- 2. Deliver accidental U(2) symmetries by deconstructing SM gauge symmetry; get flavoured heavy versions of the SM gauge bosons
- 3. Must deconstruct part of EW symmetry to explain fermion mass hierarchies; inevitably gives large-ish 1-loop Higgs mass corrections, so naturalness favours a low scale
- 4. Most natural option is to just deconstruct hypercharge near TeV scale
- 5. If also require semi-simple UV gauge group, also require 3rd family quark-lepton unification
- 6. Rich TeV pheno in colliders, flavour, and EWPOs. FCC-ee has huge potential to probe it.
- 7. SUSY or compositeness could still kick in at higher scale O(10 TeV) to stabilize H from the deep UV

Thanks!