

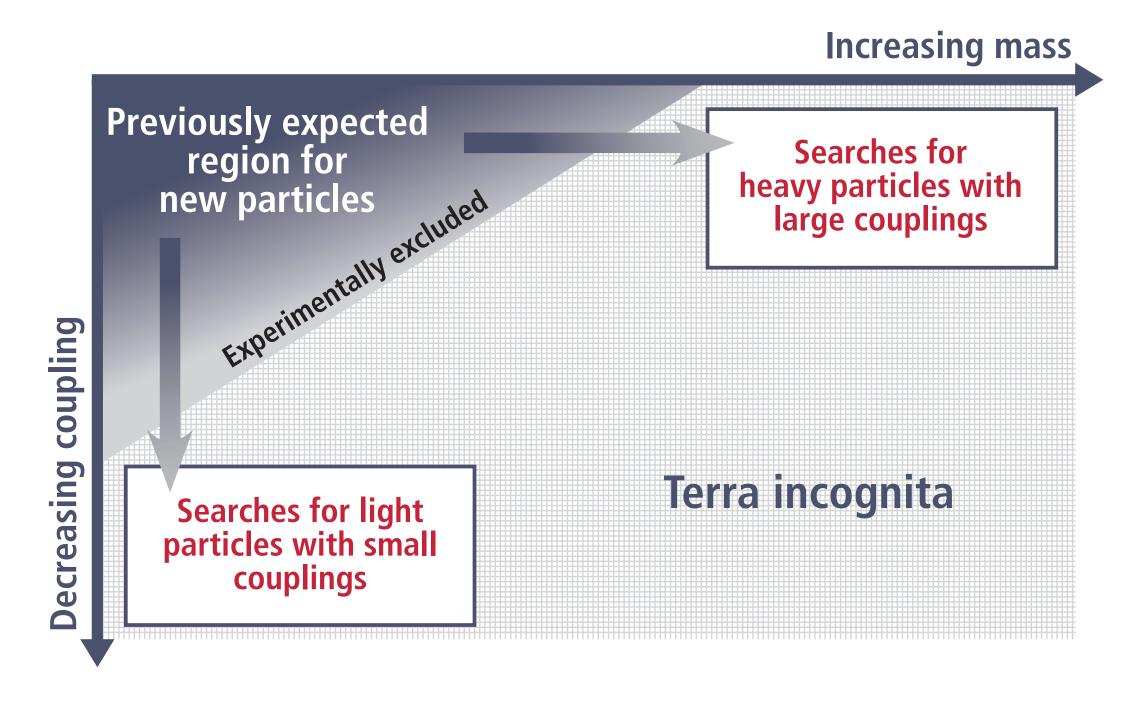
Introduction

 SMEFT: systematic framework for describing effects of heavy new physics on "low-energy" observables involving SM particles only

Assumes SM gauge group and EWSB hold up to some high scale

 $\Lambda_{\rm UV} \gg \nu_{\rm EWSB}$

 But what if the SM is extended by a light new particle with feeble interwith SM fields? Are there any implications for SMEFT?



Introduction

- If the new particle is described by a renormalizable Lagrangian ($D \le 4$ operators), the answer is NO:
 - for observables involving SM fields only, the effects of the new particle can be absorbed into the renormalized SM parameters
 - only trace of its existence lies in its contributions to the β-functions of the SM parameters, which are small in the case of weak coupling
- Statement is rather generic, but an important exception exists
- BSM theories featuring light new particles with only higher-dimensional interactions with the SM give rise to different, more interesting effects!

Axions and axion-like particles

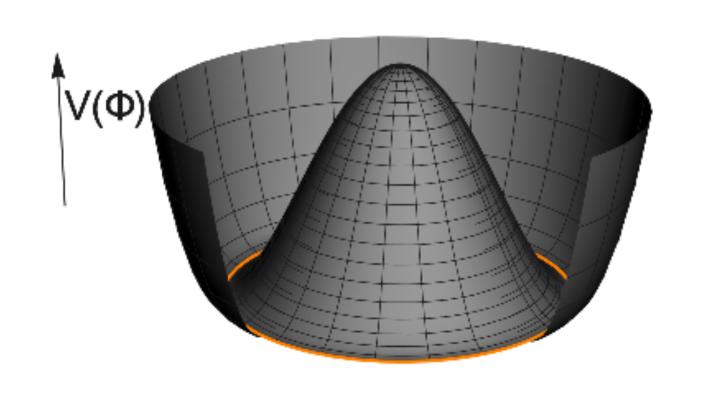
Motivation for ALPs

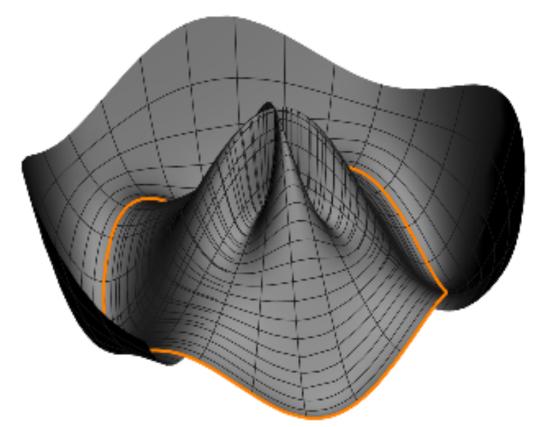
Axions and axion-like particles (ALPs) are well motivated theoretically:

Peccei-Quinn solution to strong CP problem: [Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]

$$\mathcal{L} = \frac{\theta \alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} + \dots$$

- introduce scalar field $\Phi=\left|\Phi\right|e^{ia/f_a}$ charged under a new U(1)_{PQ}
- QCD instantons break the continuous shift symmetry to a discrete subgroup:





minimum has $\theta + \langle a \rangle / f_a = 0$ modulo 2π

⇒ generates an ALP mass!

Motivation for ALPs

Axions and axion-like particles (ALPs) are well motivated theoretically:

- Peccei-Quinn solution to strong CP problem
- more generally: ALPs as pseudo Nambu-Goldstone bosons of a spontaneously broken global symmetry
- light ALPs can be promising Dark Matter candidates or mediators to the dark sector
- low-energy processes are important in constraining the ALP couplings to the SM fields



[Bauer, MN, Thamm (2017)]

• Assume the scale of global symmetry breaking $\Lambda = 4\pi f$ is above the weak scale, and consider the most general effective Lagrangian for a pseudoscalar boson a coupled to the SM via classically shift-invariant interactions, broken only by a soft mass term: [Georgi, Kaplan, Randall (1986)]

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} \left(\partial_{\mu}a\right) \left(\partial^{\mu}a\right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu}a}{f} \sum_{F} \bar{\psi}_{F} \boldsymbol{c}_{F} \gamma_{\mu} \psi_{F}$$

$$+ c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Couplings to Higgs bosons arise in higher orders only:

[Dobrescu, Landsberg, Matchev (2000); Bauer, MN, Thamm (2017)]

$$\mathcal{L}_{\text{eff}}^{D \ge 6} = \frac{C_{ah}}{f^2} (\partial_{\mu} a)(\partial^{\mu} a) \phi^{\dagger} \phi + \frac{C'_{ah}}{f^2} m_{a,0}^2 a^2 \phi^{\dagger} \phi + \dots$$

A useful alternative form of the Lagrangian involves non-derivative couplings:

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 - \frac{a}{f} \left(\bar{Q} \phi \tilde{\boldsymbol{Y}}_{d} d_R + \bar{Q} \tilde{\phi} \tilde{\boldsymbol{Y}}_{u} u_R + \bar{L} \phi \tilde{\boldsymbol{Y}}_{e} e_R + \text{h.c.} \right)$$

$$+ C_{GG} \frac{a}{f} G_{\mu\nu}^a \tilde{G}^{\mu\nu,a} + C_{WW} \frac{a}{f} W_{\mu\nu}^I \tilde{W}^{\mu\nu,I} + C_{BB} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
[Bauer, MN, Renner, Schnubel, Thamm (2020)]

where:

$$\tilde{\boldsymbol{Y}}_{d} = i\left(\boldsymbol{Y}_{d}\,\boldsymbol{c}_{d} - \boldsymbol{c}_{Q}\boldsymbol{Y}_{d}\right), \qquad \tilde{\boldsymbol{Y}}_{u} = i\left(\boldsymbol{Y}_{u}\,\boldsymbol{c}_{u} - \boldsymbol{c}_{Q}\boldsymbol{Y}_{u}\right), \qquad \tilde{\boldsymbol{Y}}_{e} = i\left(\boldsymbol{Y}_{e}\,\boldsymbol{c}_{e} - \boldsymbol{c}_{L}\boldsymbol{Y}_{e}\right)$$

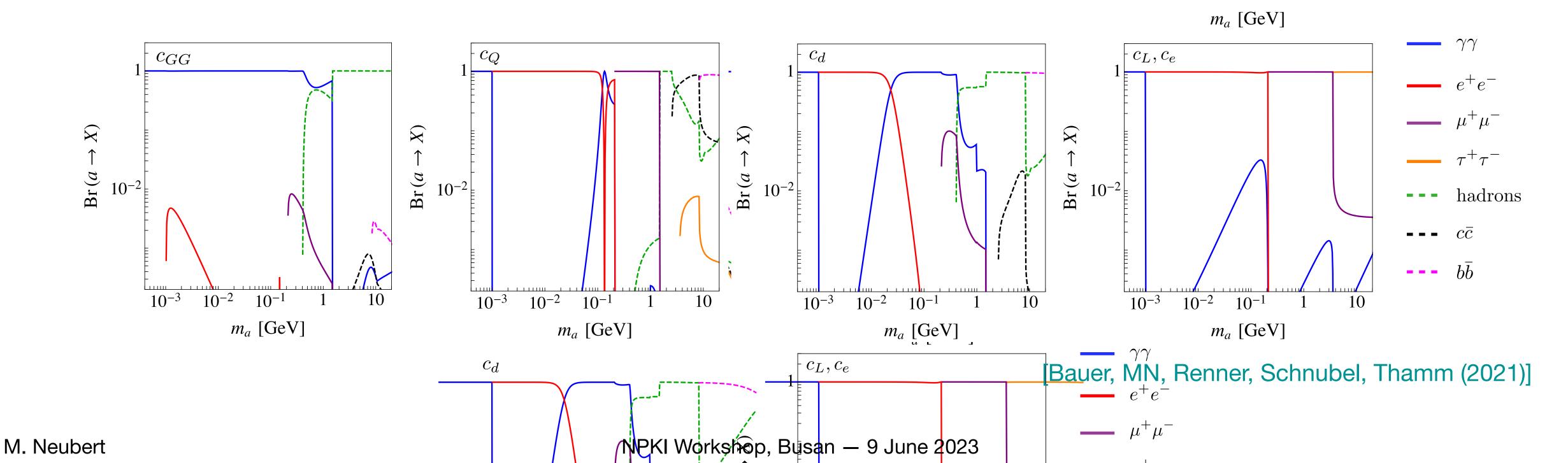
$$C_{GG} = \frac{\alpha_{s}}{4\pi}\left[c_{GG} + \frac{1}{2}\operatorname{Tr}\left(\boldsymbol{c}_{d} + \boldsymbol{c}_{u} - 2\boldsymbol{c}_{Q}\right)\right]$$

$$C_{WW} = \frac{\alpha_{2}}{4\pi}\left[c_{WW} - \frac{1}{2}\operatorname{Tr}\left(N_{c}\boldsymbol{c}_{Q} + \boldsymbol{c}_{L}\right)\right]$$

$$C_{BB} = \frac{\alpha_{1}}{4\pi}\left[c_{BB} + \operatorname{Tr}\left[N_{c}\left(\boldsymbol{\mathcal{Y}}_{d}^{2}\,\boldsymbol{c}_{d} + \boldsymbol{\mathcal{Y}}_{u}^{2}\,\boldsymbol{c}_{u} - 2\,\boldsymbol{\mathcal{Y}}_{Q}^{2}\,\boldsymbol{c}_{Q}\right) + \boldsymbol{\mathcal{Y}}_{e}^{2}\,\boldsymbol{c}_{e} - 2\,\boldsymbol{\mathcal{Y}}_{L}^{2}\,\boldsymbol{c}_{L}\right]\right]$$

Direct searches for ALPs are strongly model dependent:

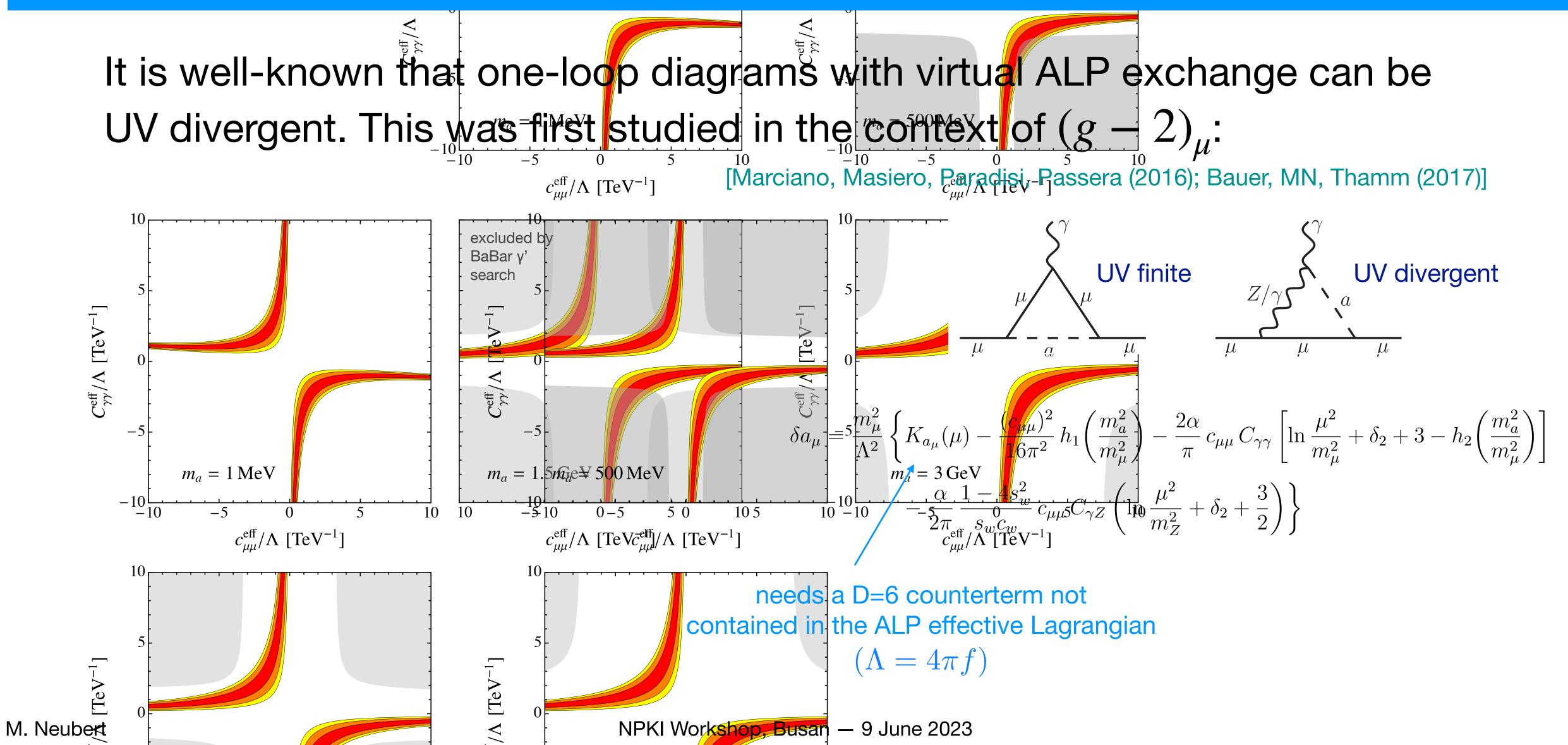
- sensitivity to many different ALP couplings entering the production, decay and lifetime of the ALP
- branching fractions assuming a single non-zero coupling at $\Lambda = 4\pi f$, with f = 1 TeV:



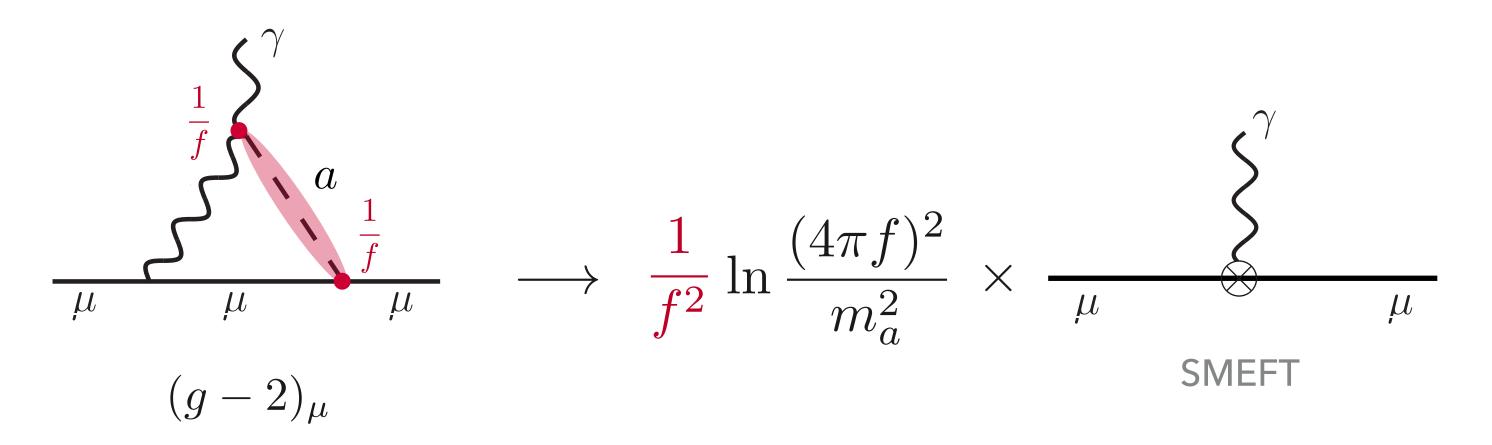
Direct searches for ALPs are strongly model dependent:

- sensitivity to many different ALP couplings entering the production, decay and lifetime of the ALP
- ▶ searches probe high-dimensional parameter spaces ⇒ need for strong model assumptions, e.g. existence of a single non-zero ALP coupling (strong biases)
- long-lived ALPs and ALPs decaying into hadrons or heavy fermions can escape detection

Indirect searches (effects of virtual ALPs) offer a promising alternative!



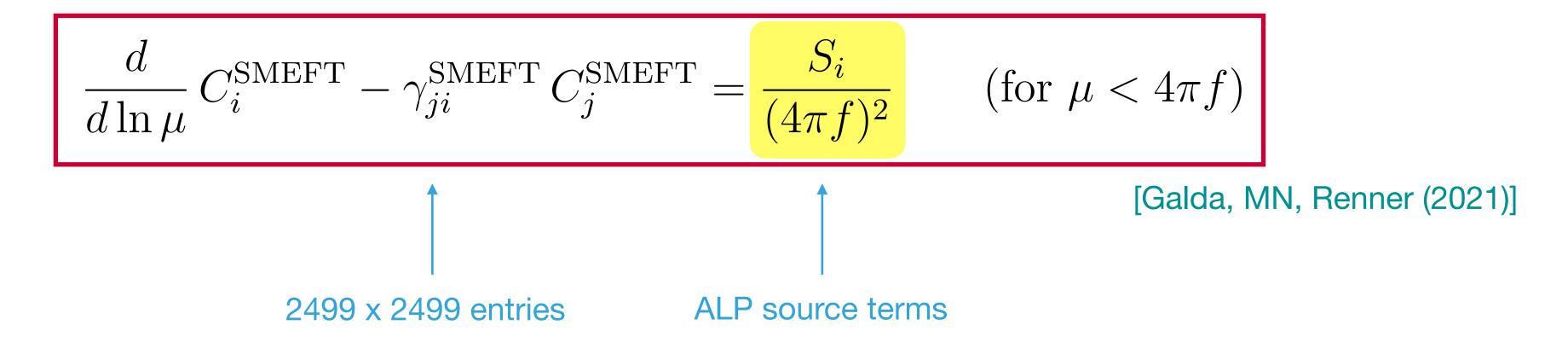
Schematically:



Consistent effective field theory:

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + rac{1}{f} \, \mathcal{L}_{ ext{ALP}}^{(D \, \geq \, 5)} + rac{1}{f^2} \, \mathcal{L}_{ ext{SMEFT}}^{(D \, \geq \, 6)}$$
 direct searches indirect searches

Irrespective of the existence of other new physics, the presence of a light ALP provides source terms S_i for the D=6 SMEFT Wilson coefficients:



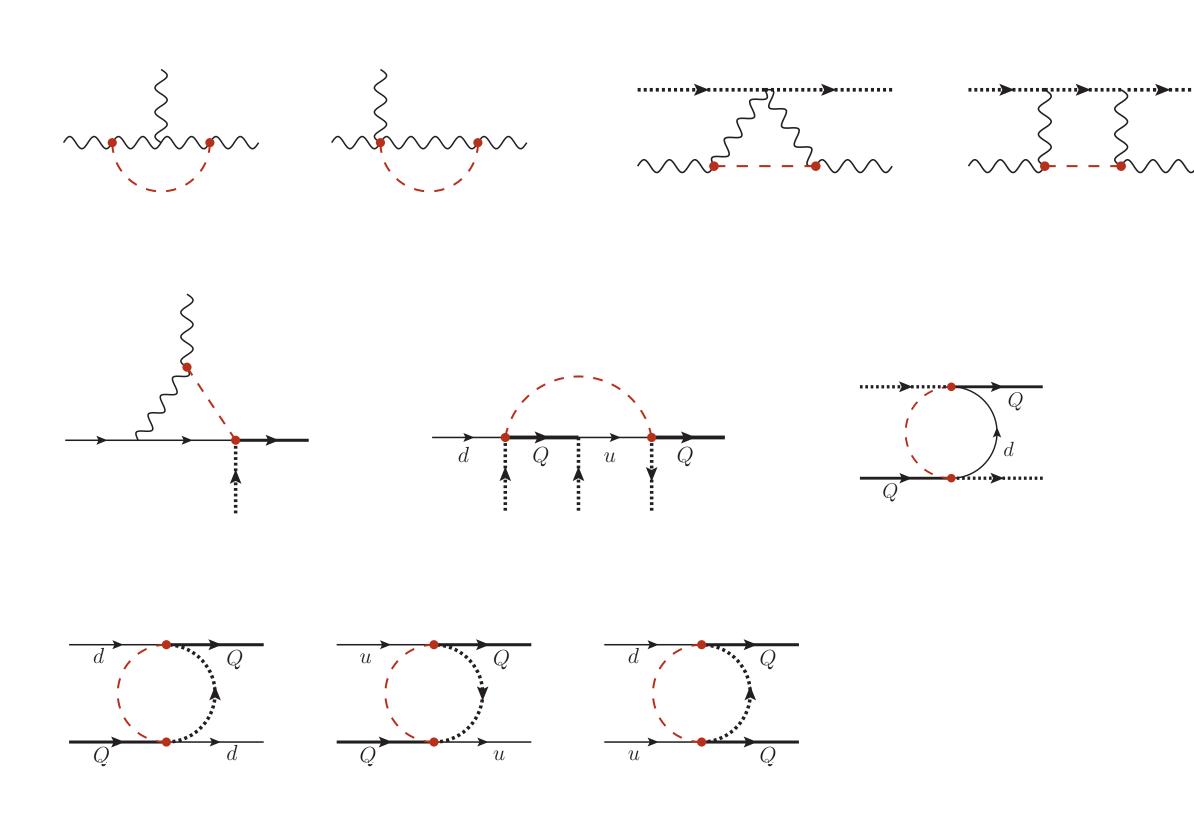
- Global new-physics searches using SMEFT can serve as indirect probes of the ALP couplings
- Exciting prospect: constrain all ALP couplings in a model-independent way, insensitive to the ALP lifetime and branching fractions!

ALP-SI erference

Systematic study of divergent Green's functions with ALP exchange

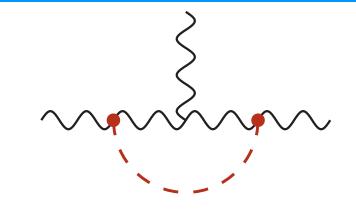
[Galda, MN, Renner (2021)]

Operator class	Warsaw basis	Way of generation	
Purely bosonic			
X^3	yes	direct	_
X^2D^2	no	direct	
X^2H^2	yes	direct	
XH^2D^2	no		
H^6	yes		EOM
H^4D^2	yes		EOM
H^2D^4	no		
Single fermion current			
$\psi^2 X D$	no	_	
$\psi^2 D^3$	no		
$\psi^2 X H$	yes	direct	
$\psi^2 H^3$	yes	direct	EOM
$\psi^2 H^2 D$	yes	direct	EOM
$\psi^2 H D^2$	no		
4-fermion operators			
$(\bar{L}L)(\bar{L}L)$	yes		EOM
$(\bar{R}R)(\bar{R}R)$	yes		EOM
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM
$(\bar{L}R)(\bar{R}L)$	yes	direct	_
$(\bar{L}R)(\bar{L}R)$	yes	direct	_
B-violating	yes		_



[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]

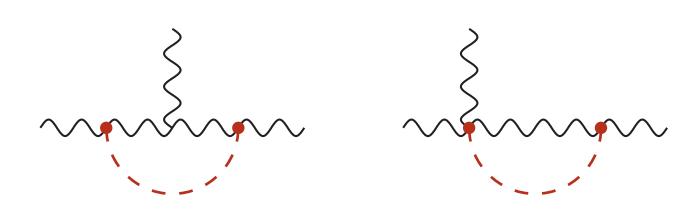
ALP—SMEFT inter



Systematic study of divergent Green's functions with ALP exchange

[Galda, MN, Renner (2021)]

Sample calculation: UV divergences of the three-gluon amplitude



$$\mathcal{A}(gg(g)) = -\frac{C_{GG}^2}{\epsilon} \left[4g_s \langle Q_G \rangle + \frac{4}{3} \langle \widehat{Q}_{G,2} \rangle - 2m_a^2 \langle G_{\mu\nu}^a G^{\mu\nu,a} \rangle \right] + \text{finite}$$

Source term for Weinberg operator:

$$S_G = 8g_s C_{GG}^2$$

Eliminate redundant operator $\widehat{Q}_{G,2} = (D^{\rho}G_{\rho\mu})^a (D_{\omega}G^{\omega\mu})^a$ using the EOMs:

$$\begin{split} \widehat{Q}_{G,2} &\cong g_s^2 \left(\bar{Q} \gamma_{\mu} T^a Q + \bar{u} \gamma_{\mu} T^a u + \bar{d} \gamma_{\mu} T^a d \right)^2 \\ &= g_s^2 \left[\frac{1}{4} \left(\left[Q_{qq}^{(1)} \right]_{prrp} + \left[Q_{qq}^{(3)} \right]_{prrp} \right) - \frac{1}{2N_c} \left[Q_{qq}^{(1)} \right]_{pprr} + \frac{1}{2} \left[Q_{uu} \right]_{prrp} - \frac{1}{2N_c} \left[Q_{uu} \right]_{pprr} \\ &+ \frac{1}{2} \left[Q_{dd} \right]_{prrp} - \frac{1}{2N_c} \left[Q_{dd} \right]_{pprr} + 2 \left[Q_{qu}^{(8)} \right]_{pprr} + 2 \left[Q_{qd}^{(8)} \right]_{pprr} + 2 \left[Q_{ud}^{(8)} \right]_{pprr} \right] \end{split}$$

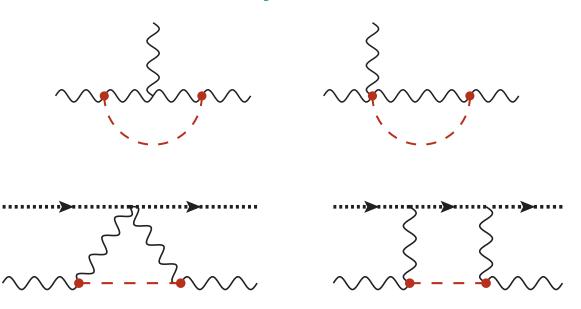
[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]

→ generates further source terms

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of a	generation	
Purely bosonic				
X^3	yes	direct		
X^2D^2	no	direct		
X^2H^2	yes	direct	<u></u> -	_
XH^2D^2	no			
H^6	yes		EOM	
H^4D^2	yes		EOM	
H^2D^4	no			

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]



$$S_{G} = 8g_{s}C_{GG}^{2}, S_{\widetilde{G}} = 0$$

$$S_{W} = 8g_{2}C_{WW}^{2}, S_{\widetilde{W}} = 0$$

$$S_{HG} = 0, S_{H\widetilde{G}} = 0$$

$$S_{HW} = -2g_{2}^{2}C_{WW}^{2}, S_{H\widetilde{W}} = 0$$

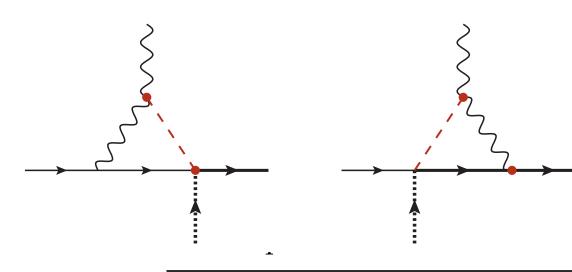
$$S_{HB} = -2g_{1}^{2}C_{BB}^{2}, S_{H\widetilde{W}} = 0$$

$$S_{HWB} = -4g_{1}g_{2}C_{WW}C_{BB}, S_{H\widetilde{W}B} = 0$$

$$S_{H} = \frac{8}{3}\lambda g_{2}^{2}C_{WW}^{2}, S_{H\widetilde{W}B} = 0$$

$$S_{H} = 2g_{2}^{2}C_{WW}^{2} + \frac{8}{3}g_{1}^{2}\mathcal{Y}_{H}^{2}C_{BB}^{2}$$

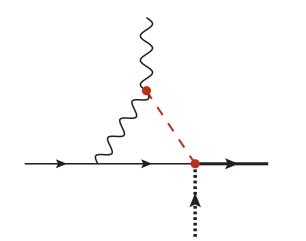
$$S_{HD} = \frac{32}{3}g_{1}^{2}\mathcal{Y}_{H}^{2}C_{BB}^{2}.$$

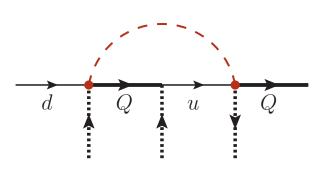


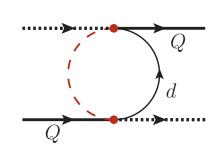
:s for the ALP source terms in the Warsaw basis:

saw basis	Way of generation

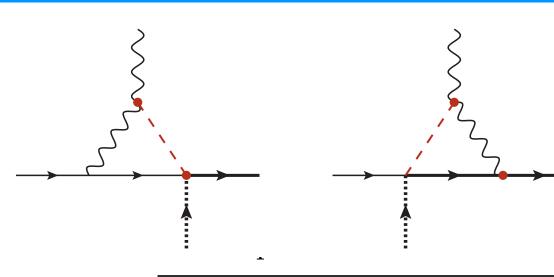
Single fermion current				
$\psi^2 X D$	no			
$\psi^2 D^3$	no			
$\psi^2 X H$	yes	direct		
$\psi^2 H^3$	yes	direct	EOM	
$\psi^2 H^2 D$	yes	direct	EOM	
$\psi^2 HD^2$	no			







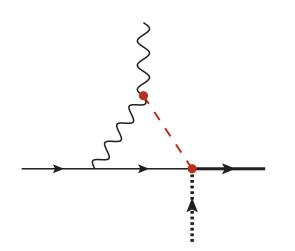
$$egin{aligned} oldsymbol{S}_{eW} &= -ig_2 \, oldsymbol{\widetilde{Y}}_e \, C_{WW} \ oldsymbol{S}_{eB} &= -2ig_1 \, (\mathcal{Y}_L + \mathcal{Y}_e) \, oldsymbol{\widetilde{Y}}_e \, C_{BB} \ oldsymbol{S}_{uG} &= -4ig_s \, oldsymbol{\widetilde{Y}}_u \, C_{GG} \ oldsymbol{S}_{uW} &= -ig_2 \, oldsymbol{\widetilde{Y}}_u \, C_{WW} \ oldsymbol{S}_{uB} &= -2ig_1 \, (\mathcal{Y}_Q + \mathcal{Y}_u) \, oldsymbol{\widetilde{Y}}_u \, C_{BB} \ oldsymbol{S}_{dG} &= -4ig_s \, oldsymbol{\widetilde{Y}}_d \, C_{GG} \ oldsymbol{S}_{dW} &= -ig_2 \, oldsymbol{\widetilde{Y}}_d \, C_{WW} \ oldsymbol{S}_{dB} &= -2ig_1 \, (\mathcal{Y}_Q + \mathcal{Y}_d) \, oldsymbol{\widetilde{Y}}_d \, C_{BB} \end{aligned}$$

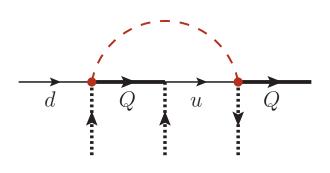


:s for the ALP source terms in the Warsaw basis:

saw basis Way of generation	Way of generation
-----------------------------	-------------------

Single fermion current				
$\psi^2 X D$ $\psi^2 D^3$	no			
$\psi^2 D^3$	no			
$\psi^2 X H$	yes	direct		
$\psi^2 H^3$	yes	direct	EOM	
$\psi^2 H^2 D$	yes	direct	EOM	
$\psi^2 HD^2$	no			





$$Q$$
 d

$$S_{Hl}^{(1)} = \frac{1}{4} \widetilde{\boldsymbol{Y}}_{e} \widetilde{\boldsymbol{Y}}_{e}^{\dagger} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{L} C_{BB}^{2} \mathbf{1}$$

$$S_{Hl}^{(3)} = \frac{1}{4} \widetilde{\boldsymbol{Y}}_{e} \widetilde{\boldsymbol{Y}}_{e}^{\dagger} + \frac{4}{3} g_{2}^{2} C_{WW}^{2} \mathbf{1}$$

$$S_{He} = -\frac{1}{2} \widetilde{\boldsymbol{Y}}_{e}^{\dagger} \widetilde{\boldsymbol{Y}}_{e} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{e} C_{BB}^{2} \mathbf{1}$$

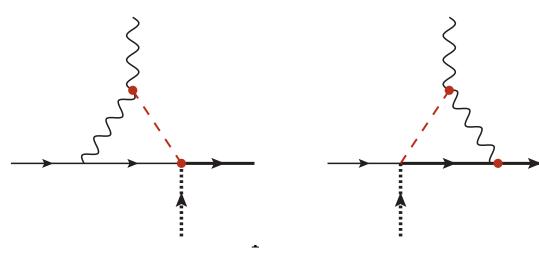
$$S_{Hq}^{(1)} = \frac{1}{4} \left(\widetilde{\boldsymbol{Y}}_{d} \widetilde{\boldsymbol{Y}}_{d}^{\dagger} - \widetilde{\boldsymbol{Y}}_{u} \widetilde{\boldsymbol{Y}}_{u}^{\dagger} \right) + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{Q} C_{BB}^{2} \mathbf{1}$$

$$S_{Hq}^{(3)} = \frac{1}{4} \left(\widetilde{\boldsymbol{Y}}_{d} \widetilde{\boldsymbol{Y}}_{d}^{\dagger} + \widetilde{\boldsymbol{Y}}_{u} \widetilde{\boldsymbol{Y}}_{u}^{\dagger} \right) + \frac{4}{3} g_{2}^{2} C_{WW}^{2} \mathbf{1}$$

$$S_{Hu} = \frac{1}{2} \widetilde{\boldsymbol{Y}}_{u}^{\dagger} \widetilde{\boldsymbol{Y}}_{u} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{u} C_{BB}^{2} \mathbf{1}$$

$$S_{Hd} = -\frac{1}{2} \widetilde{\boldsymbol{Y}}_{d}^{\dagger} \widetilde{\boldsymbol{Y}}_{d} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{d} C_{BB}^{2} \mathbf{1}$$

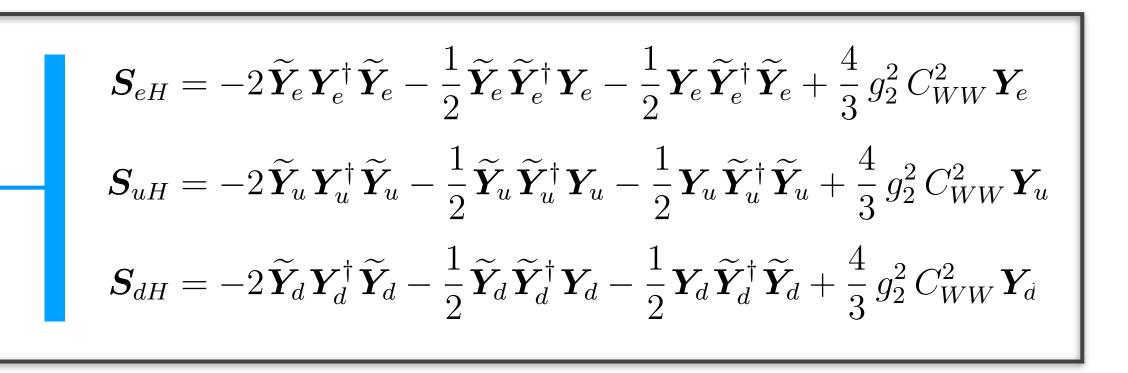
$$S_{Hud} = -\widetilde{\boldsymbol{Y}}_{u}^{\dagger} \widetilde{\boldsymbol{Y}}_{d}$$

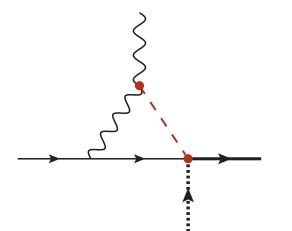


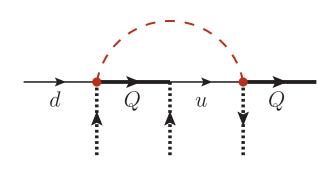
:s for the ALP source terms in the Warsaw basis:

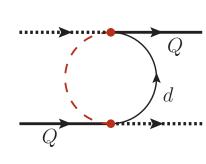
saw basis	Way of	generation
-----------	--------	------------

Single fermion current				
$\psi^2 X D$ $\psi^2 D^3$	no	—		
$\psi^2 D^3$	no			
$\psi^2 X H$	yes	direct		
$\psi^2 H^3$	yes	direct	EOM	
$\psi^2 H^2 D$	yes	direct	EOM	
$\psi^2 H D^2$	no	—		









One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of	generation
4-fermion operators			
$(\bar{L}L)(\bar{L}L)$	yes		EOM
$(\bar{R}R)(\bar{R}R)$	yes		EOM
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM
$(\bar{L}R)(\bar{R}L)$	yes	direct	
$(\bar{L}R)(\bar{L}R)$	yes	direct	
B-violating	yes		

$$\begin{aligned}
& \left[S_{ll} \right]_{prst} = \frac{2}{3} g_2^2 C_{WW}^2 \left(2 \delta_{pt} \delta_{sr} - \delta_{pr} \delta_{st} \right) + \frac{8}{3} g_1^2 \mathcal{Y}_L^2 C_{BB}^2 \delta_{pr} \delta_{si} \\
& \left[S_{qq}^{(1)} \right]_{prst} = \frac{2}{3} g_s^2 C_{GG}^2 \left(\delta_{pt} \delta_{sr} - \frac{2}{N_c} \delta_{pr} \delta_{st} \right) + \frac{8}{3} g_1^2 \mathcal{Y}_Q^2 C_{BB}^2 \delta_{pr} \delta_{st} \\
& \left[S_{qq}^{(3)} \right]_{prst} = \frac{2}{3} g_s^2 C_{GG}^2 \delta_{pt} \delta_{sr} + \frac{2}{3} g_2^2 C_{WW}^2 \delta_{pr} \delta_{st} \\
& \left[S_{lq}^{(1)} \right]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_L \mathcal{Y}_Q C_{BB}^2 \delta_{pr} \delta_{st} \\
& \left[S_{lq}^{(3)} \right]_{prst} = \frac{4}{3} g_2^2 C_{WW}^2 \delta_{pr} \delta_{st}
\end{aligned}$$

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of	generation
4-fermion operators			
$(\bar{L}L)(\bar{L}L)$	yes		EOM
$(\bar{R}R)(\bar{R}R)$	yes		EOM
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM
$(\bar{L}R)(\bar{R}L)$	yes	direct	
$(\bar{L}R)(\bar{L}R)$	yes	direct	
B-violating	yes		

$$[S_{ee}]_{prst} = \frac{8}{3} g_1^2 \mathcal{Y}_e^2 C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{uu}]_{prst} = \frac{4}{3} g_s^2 C_{GG}^2 \left(\delta_{pt} \delta_{sr} - \frac{1}{N_c} \delta_{pr} \delta_{st} \right) + \frac{8}{3} g_1^2 \mathcal{Y}_u^2 C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{dd}]_{prst} = \frac{4}{3} g_s^2 C_{GG}^2 \left(\delta_{pt} \delta_{sr} - \frac{1}{N_c} \delta_{pr} \delta_{st} \right) + \frac{8}{3} g_1^2 \mathcal{Y}_d^2 C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{eu}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_e \mathcal{Y}_u C_{BB}^2 \delta_{pr} \delta_{st}$$

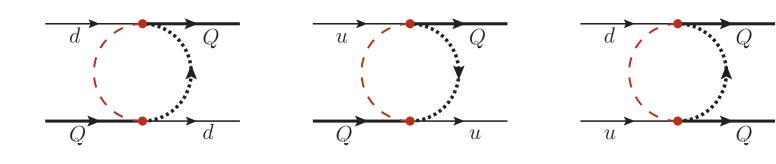
$$[S_{ed}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_e \mathcal{Y}_d C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{ud}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_u \mathcal{Y}_d C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{ud}]_{prst} = \frac{16}{3} g_s^2 C_{GG}^2 \delta_{pr} \delta_{st}$$

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of	generation
4-fermion operators			
$(\bar{L}L)(\bar{L}L)$	yes		EOM
$(\bar{R}R)(\bar{R}R)$	yes		EOM
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM -
$(\bar{L}R)(\bar{R}L)$	yes	direct	
$(\bar{L}R)(\bar{L}R)$	yes	direct	
B-violating	yes		



$$[S_{le}]_{prst} = (\tilde{\mathbf{Y}}_e)_{pt} (\tilde{\mathbf{Y}}_e^{\dagger})_{sr} + \frac{16}{3} g_1^2 \mathcal{Y}_L \mathcal{Y}_e C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{lu}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_L \mathcal{Y}_u C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{ld}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_L \mathcal{Y}_d C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{qe}]_{prst} = \frac{16}{3} g_1^2 \mathcal{Y}_Q \mathcal{Y}_e C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{qe}]_{prst} = \frac{1}{N_c} (\tilde{\mathbf{Y}}_u)_{pt} (\tilde{\mathbf{Y}}_u^{\dagger})_{sr} + \frac{16}{3} g_1^2 \mathcal{Y}_Q \mathcal{Y}_u C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{qu}^{(1)}]_{prst} = 2 (\tilde{\mathbf{Y}}_u)_{pt} (\tilde{\mathbf{Y}}_u^{\dagger})_{sr} + \frac{16}{3} g_2^2 C_{GG}^2 \delta_{pr} \delta_{st}$$

$$[S_{qu}^{(1)}]_{prst} = \frac{1}{N_c} (\tilde{\mathbf{Y}}_d)_{pt} (\tilde{\mathbf{Y}}_d^{\dagger})_{sr} + \frac{16}{3} g_1^2 \mathcal{Y}_Q \mathcal{Y}_d C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{qd}^{(1)}]_{prst} = 2 (\tilde{\mathbf{Y}}_d)_{pt} (\tilde{\mathbf{Y}}_d^{\dagger})_{sr} + \frac{16}{3} g_1^2 \mathcal{Y}_Q \mathcal{Y}_d C_{BB}^2 \delta_{pr} \delta_{st}$$

$$[S_{qd}^{(8)}]_{prst} = 2 (\tilde{\mathbf{Y}}_d)_{pt} (\tilde{\mathbf{Y}}_d^{\dagger})_{sr} + \frac{16}{3} g_2^2 C_{GG}^2 \delta_{pr} \delta_{st}$$

One-loop results for the ALP source terms in the Warsaw basis:

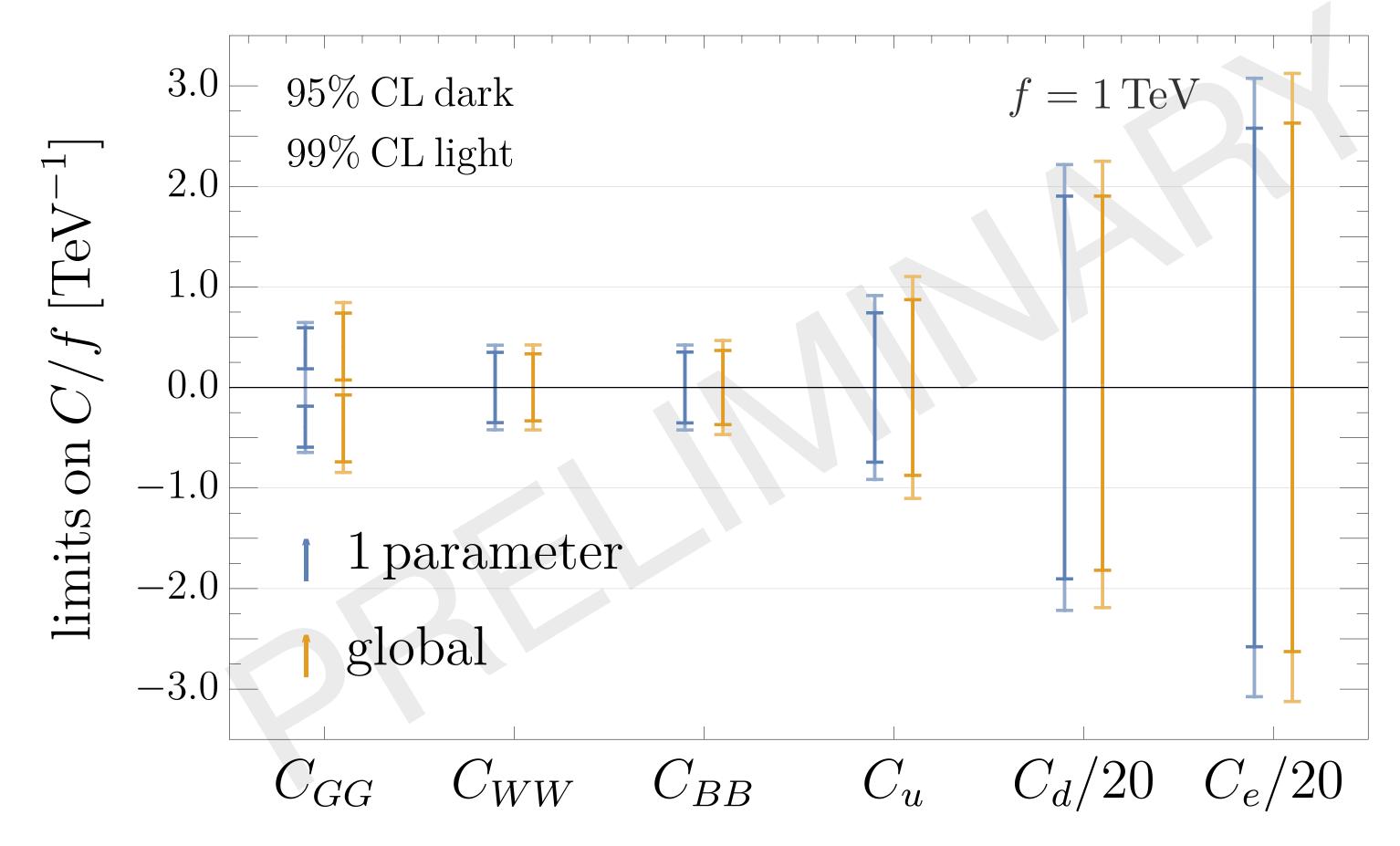
Operator class	Warsaw basis	Way of	generation		$\left[S_{ledq}\right]_{prst} = -2\left(\widetilde{\boldsymbol{Y}}_{e}\right)_{pr}\left(\widetilde{\boldsymbol{Y}}_{d}^{\dagger}\right)_{st}$
4-fermion operators					$\left[S_{quqd}^{(1)}\right]_{prst} = -2\left(\widetilde{\boldsymbol{Y}}_{u}\right)_{pr}\left(\widetilde{\boldsymbol{Y}}_{d}\right)_{st}$
$(\bar{L}L)(\bar{L}L)$	yes		EOM		
$(\bar{R}R)(\bar{R}R)$	yes		EOM		$\left[S_{quqd}^{(8)}\right]_{prst}=0$ (starts at 2 loops)
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM		$\left[S_{lequ}^{(1)}\right]_{prst} = 2\left(\widetilde{\boldsymbol{Y}}_{e}\right)_{pr}\left(\widetilde{\boldsymbol{Y}}_{u}\right)_{st}$
$(\bar{L}R)(\bar{R}L)$	yes	direct			
$(\bar{L}R)(\bar{L}R)$	yes	direct			$\left[S_{lequ}^{(3)}\right]_{prst}=0$ (starts at 2 loops)
B-violating	yes				

With very few exceptions, all operators in the Warsaw basis are generated at one-loop order in the ALP model!

Assuming the SM plus a light ALP (and nothing else), **model-independent** constraints on ALP couplings can be derived from global SMEFT fits using data on electroweak precision observables, top physics, Higgs physics, and low-energy precision measurements

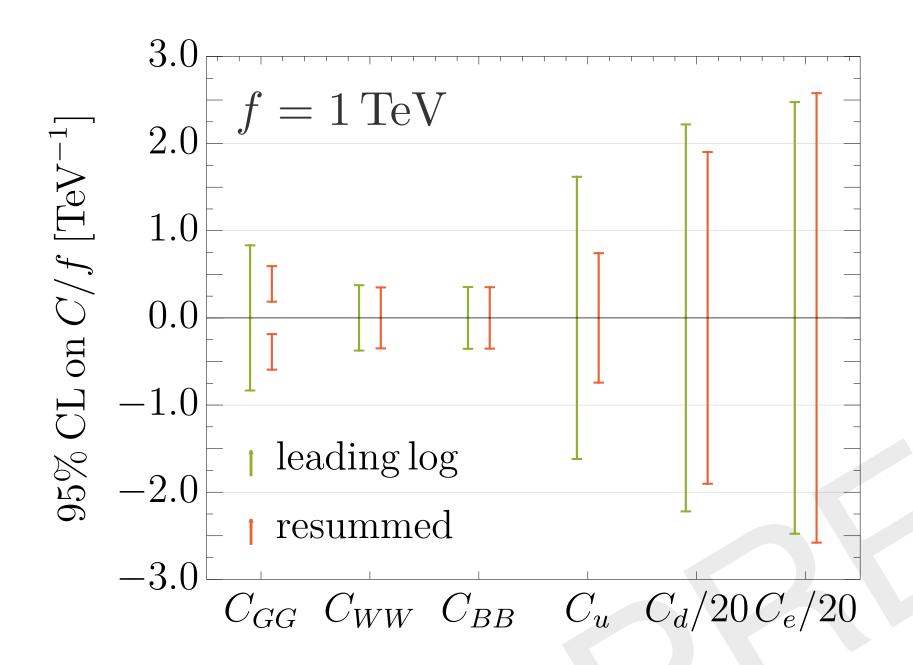
- have implemented the ALP source terms in the RGEs for the D=6 SMEFT operators in DsixTools, running from $\Lambda = 4\pi f$ down to the scale of the measurements
- perform leading-log resummation in all couplings, combined with tree-level matrix elements
- Caveat: neglect matching corrections at the scale Λ , which would require a concrete UV completion of the ALP model

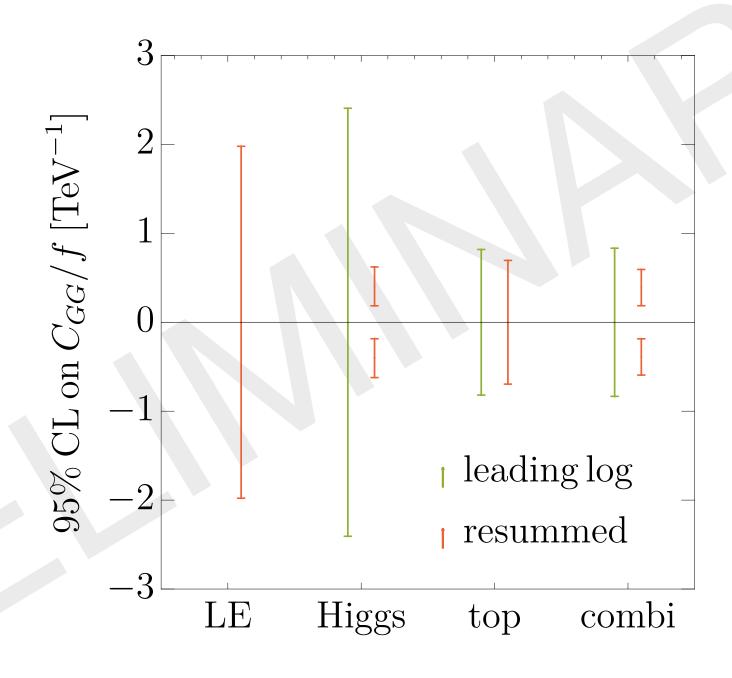
95% CL (dark) and 99% CL (light) limits on ALP couplings from an individual fit (blue) and a global analysis marginalizing over the remaining parameters (orange): [Biekötter, Fuentes-Martín, Galda, MN: to appear]

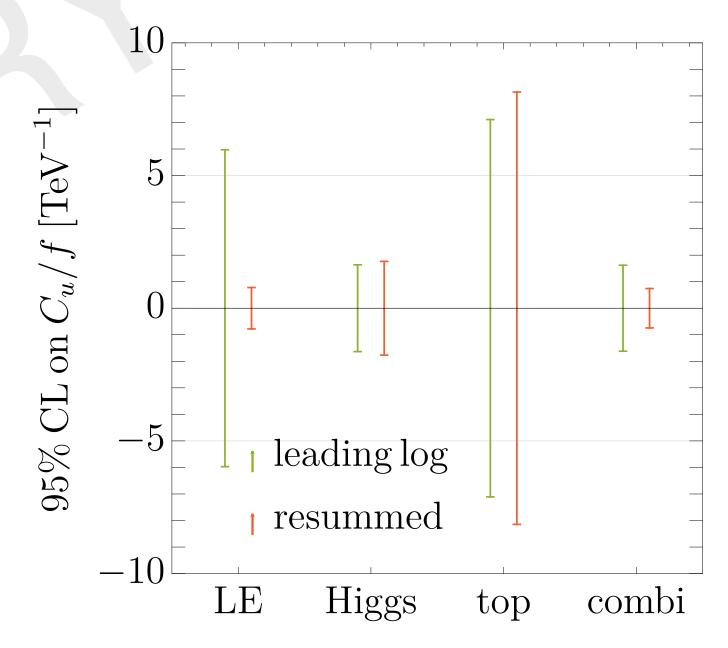


Limits on ALP couplings obtained using the leading-log approximation (green) vs. the full one-loop RG evolution (red):

[Biekötter, Fuentes-Martín, Galda, MN: to appear]

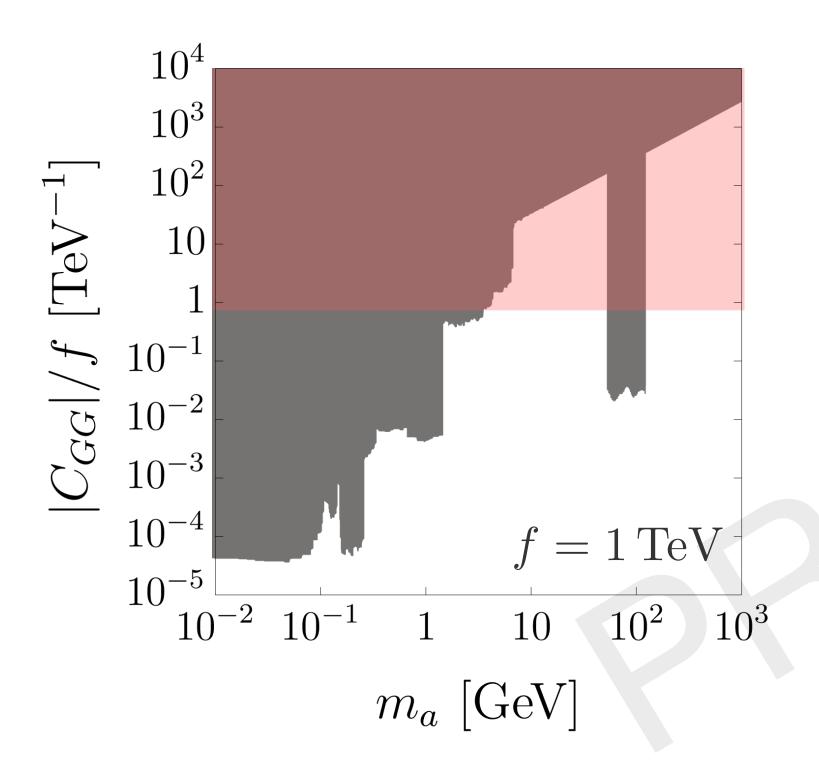


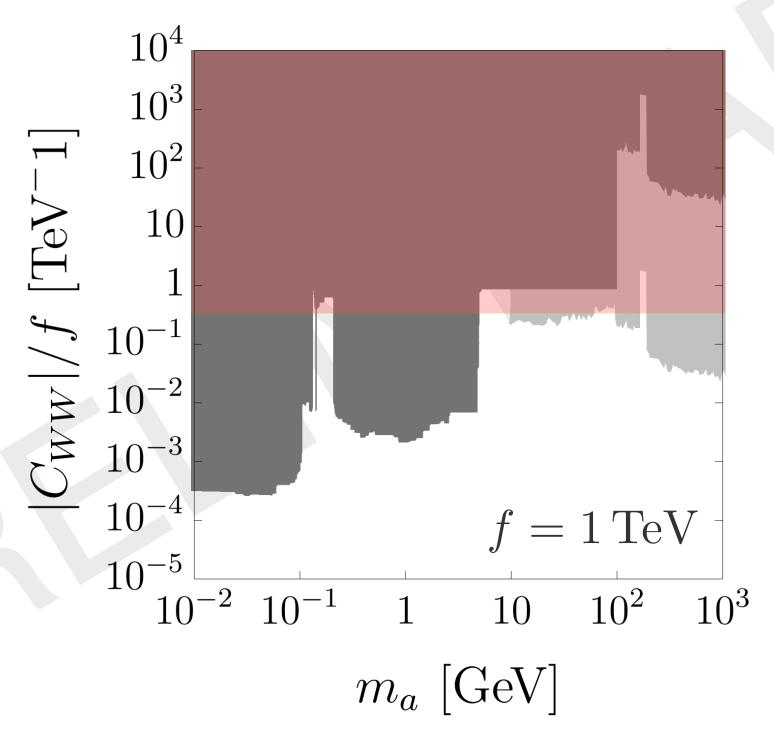


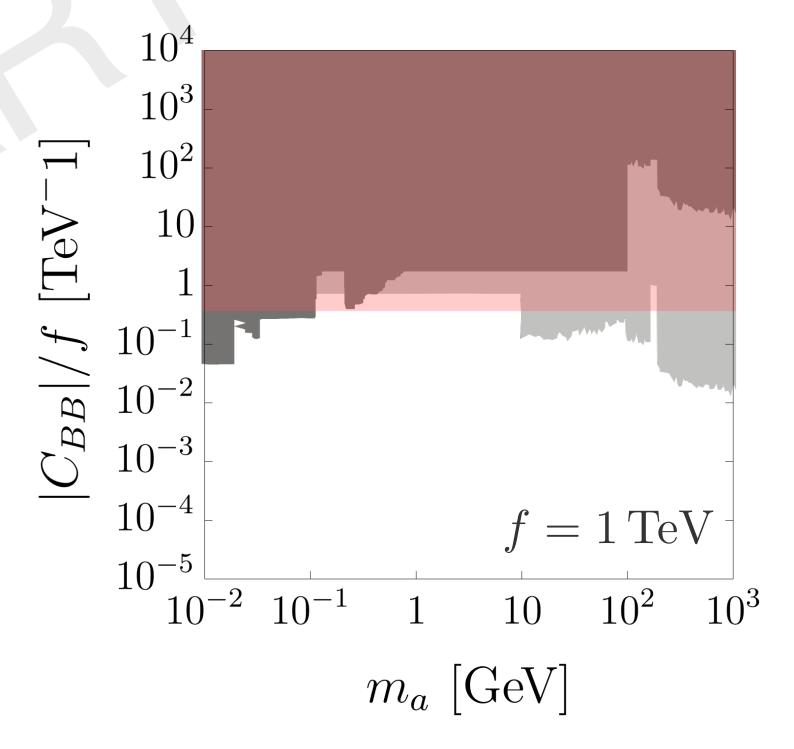


Indirect 95% CLM limits on ALP—boson couplings from ALP-SMEFT interference (red) compared to **highly model-dependent** direct bounds from flavor, beam-dump and collider experiments as well as supernova data. **Direct bounds assume all other couplings to be zero.** The light grey region is obtained from bounds on the ALP-photon coupling and assumes a 100% $a \rightarrow \gamma\gamma$ branching ratio:

[Biekötter, Fuentes-Martín, Galda, MN: to appear]

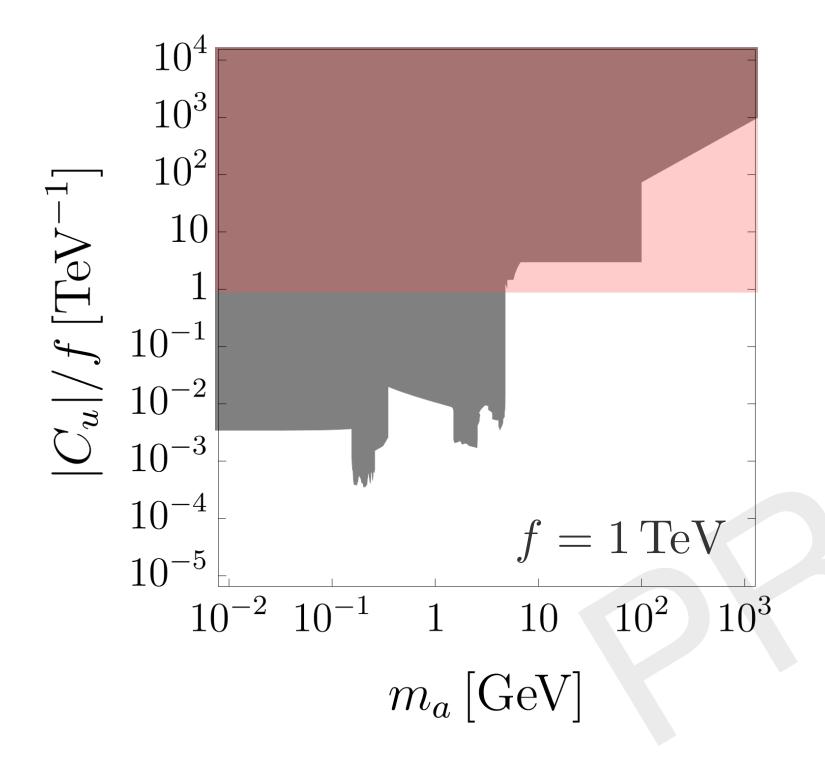


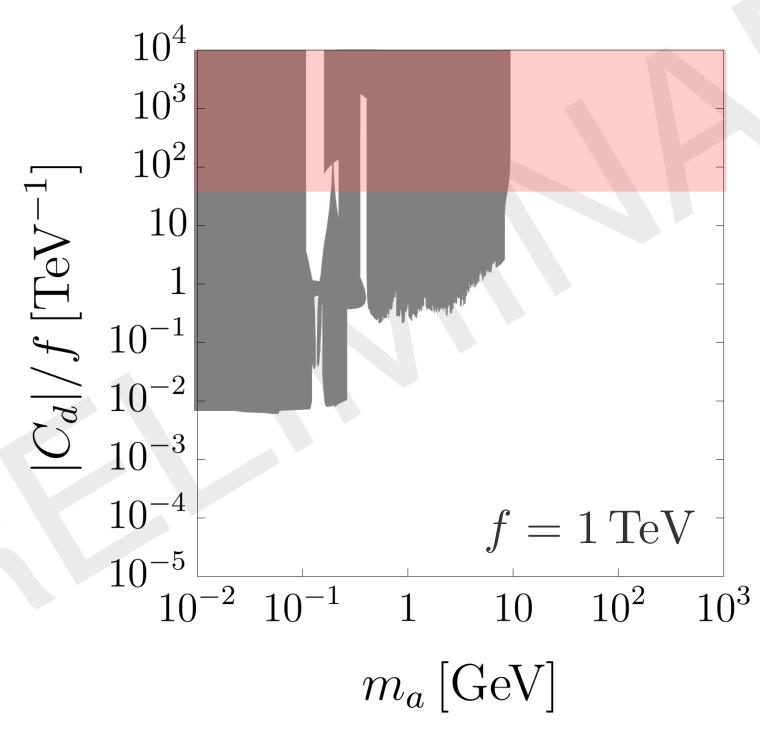


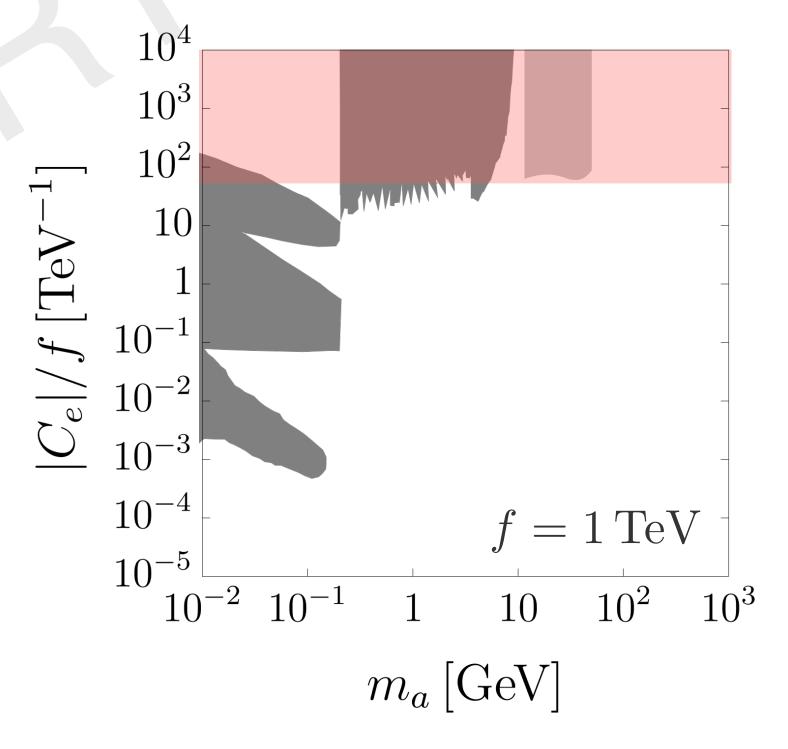


Indirect 95% CLM limits on ALP—fermion couplings from ALP-SMEFT interference (red) compared to **highly model-dependent** direct bounds from flavor, beam-dump and collider experiments as well as supernova data. **Direct bounds assume all other couplings to be zero.** The light grey region is obtained from bounds on the ALP-photon coupling and assumes a 100% $a \rightarrow \gamma\gamma$ branching ratio:

[Biekötter, Fuentes-Martín, Galda, MN: to appear]







Summary

- Axions and axion-like particles belong to a class of BSM particles which interact via higher-dimensional operators with the SM
- They are an interesting target for searches in high-energy physics, using flavor, collider and precision probes; however direct searches are strongly model dependent
- Even a light ALP provides source terms for (almost) all D=6 SMEFT operators: ALP-SMEFT interference
- Indirect searches thus provide a complementary way to constrain ALP couplings using global fits to precision data