
Preparation for HL-LHC Run 4 scenarios

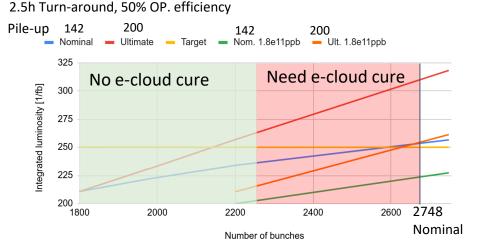
H. Bartosik, X. Buffat, R. De Maria, I. Efthymiopoulos, S. Kostoglou, M. Giovannozzi, G. Iadarola, E. Metral, L. Metter, N. Mounet, B. Salvant, G. Sterbini, R. Tomas

HL-LHC schedule and Run 4 ramp-up

Potential HL-LHC schedule and performance for ATLAS/CMS. Heavy ion runs considered at the end of each year.

<u>No surface treatments</u>: 22% to 30% integrated lumi loss. <u>Partial mitigations</u>: high pile-up, hybrid scheme, low- β^* <u>Pure 8b+4e</u>: heat load <120 W/h-cel in the worst case.

Run 4 aims at approaching 250 fb⁻¹ in the last year after ramping up phase.


15 Weeks EYETS	рр	Yets	Commis sioning	Scrubbi ng	lon + comm.	OP efficienc y	∫ L dt
year							[fb ⁻¹]
2029	90	105	80	10	34	0.4	64
2030	120	105	60	2	34	0.5	185
2031	160	105	25	2	34	0.5	254
2032	160	105	25	2	34	0.5	260
Run 5 avg	172	105	27	2.5	34	0.5	280
Run 6 avg	190	105	25	2	34	0.5	309

The ramping up phase is needed to account for learning new beam equipment and detectors and address unknown issues

19 Weeks YETS requires 7.5 10^{34} cm⁻²s⁻¹ to reach >3000 fb⁻¹.

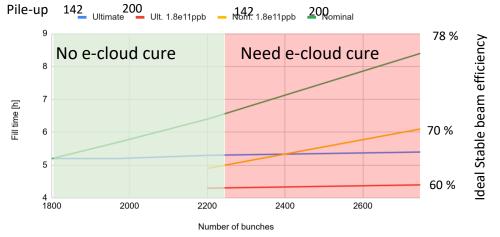
Present state e-cloud limitation is already challenging Run 4 and HL-LHC, requiring a review of the baseline parameters.

Run 4 and e-cloud limitations

E-clouds limitation reduce by 30% HL-LHC capabilities. To recover 3000fb⁻¹, one needs:

- pile-up of 200
- exceed 5 10^{34} cm⁻²s⁻¹ to recover
- flat optics

amd fills to get shorter and performance more sensitive to turn-around time.


N_{Bunches} for 2.3 10^{11} and 7 TeV	N _b	8b+4e
Cured by task force!	2748	0%
Not worse than 2022	2250	65%
Worsen like 2018-2022 (25% in S78)	2100	84%
Worst case	1972	100%

2.3 10¹¹ are essential to HiLumi. Injectors should inject 2.3 10¹¹ as soon as possible in the LHC to study

- Study E-cloud in the LHC
- Discover unknown hardware limits (if any) on time before LS3.

Run 4 and e-cloud limitations

2.5h Turn-around, 50% OP. efficiency

E-clouds limitation reduce by 30% HL-LHC capabilities. To recover 3000fb⁻¹, one needs:

- pile-up of 200
- exceed 5 10^{34} cm⁻²s⁻¹ to recover
- flat optics

amd fills to get shorter and performance more sensitive to turn-around time.

N_{Bunches} for 2.3 10^{11} and 7 TeV	N _b	8b+4e
Cured by task force!	2748	0%
Not worse than 2022	2250	65%
Worsen like 2018-2022 (25% in S78)	2110	84%
Worst case	1972	100%

2.3 10¹¹ are essential to HiLumi. Injectors should inject 2.3 10¹¹ as soon as possible in the LHC to study

- Study E-cloud in the LHC
- Discover unknown hardware limits (if any) on time before LS3.

Impact of e-cloud limit at 2200 bunches and mitigations (lev. lumi limited to nominal)

For all cases: $L_{lev.} = 5 \times 10^{34} \text{ cm}^{-2}/\text{s}$, crossing angle = 500 μ m

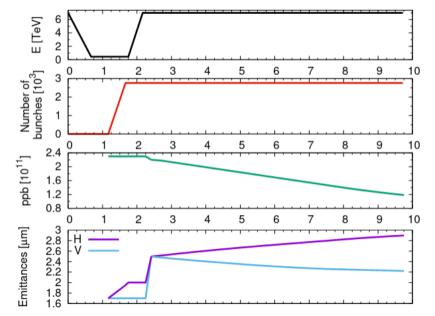
# of bunches	<i>β</i> *x,y [cm]		ppb _{endLev} ppb _{end} [10 ¹¹]	Pile-up	Fill length [h]	Hardware / comment
2748	20, 20	242	1.40-1.18	131	7.3	baseline
2200	20, 20	215	1.60-1.27	164	5.6	Lifetime!?
2200	15, 15	226	1.43-1.17	164	6.1	+MS10+BETS
2200	18, 9	234	1.30-1.09	164	6.6	+MS10+BETS
1972	18,9	221.6	1.40-1.1	180	5.7	+MS10+BETS
2200	18, 7.5	237	1.26-1.05	164	6.6	+MS10+CuCD+BETS

E-cloud with only 8b4e mitigation reduces performance by about 11% with respect to 242 fb⁻¹ when resorting to 200 pile-up.

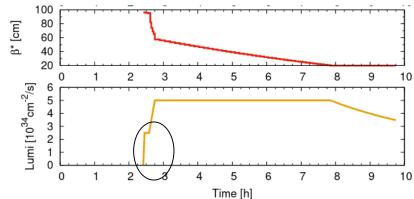
DA and lifetime challenged by the larger bunch intensity, to be studied.

MS10, CuCD, BETS upgrade would be needed both for lifetime and performance.

Impact of e-cloud limit at 2200 bunches and 200 pileup


For all cases with 2200 bunches: $L_{lev.} = 6.1 \times 10^{34} \text{ cm}^{-2}/\text{s}$, crossing angle = 500 µm

# of bunches	β *x,y [cm]		ppb _{endLev} ppb _{end} [10 ¹¹]	Pile-up	Fill length [h]	Hardware / comment
2748	18, 9	318.2	1.40-1.13	200	5.4	
2748	20, 20			200		Lifetime?
2200	20, 20	229	1.76-1.30	200	4.9	Lifetime!!?
2200	15, 15			200		+MS10+BETS
2200	18, 9	257	1.44-1.15	200	5.2	+MS10+BETS
2200	18, 7.5	261	1.40-1.11	200	5.4	+MS10+CuCD+BETS
1972	18, 9	231	1.40-1.10	200	5.2	+MS10+BETS


Ultimate scenario brings very little improvement (far from the 320 fb⁻¹) with DA and lifetime even more challenged -> Very important to fix arc78 for Run 4 !

HL-LHC luminosity cycle

Injection, ramp&squeeze, cryo-jump, lumi-levelling, lumi-decay, rampdown

HL-LHC Run 4 proton operational scenario, R Tomas et al, CERN-ACC-2022-001

Cryo step at 2.5×10^{34} cm⁻²s⁻¹ for 10 min and then linear ramp to stabilize heat extractions. Experience could allow to reduce it.

CC noise, without feedback, causes loss of 1-3% in lumi. To be updated when feedback performance estimate is known.

As usual: IBS and SR. Minimum turn-around time 2.5h.

BETS and optics flexibility

Needs to ramp-up and unknown requires flexibility in beta* at flat top, collapse, start of levelling, end of levelling.

 β_x at TCDQ cannot be stabilized for the entire range of tele-index factors needed for all possible scenarios.

TCDQ gaps cannot be changed at flat top with present BETS:

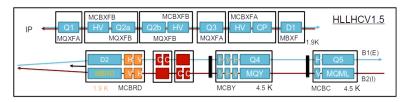
- Not possible to squeeze to the minimum β^* for all scenarios.
- Braking modularity of the ramp.

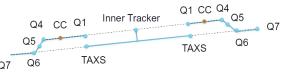
β*	Tele-index	β_x TCDQ	BETS upgrade
Collision	1/1 - 1/0.5 (CC)	tbc	no tbc
20	2.5/2.5	512/512	no
15	3.3/3.3	512/500	at the limit
9/18	5.5/2.7	far tbc	yes
7.5/15	6.6/3.3	far tbc	yes
Anti-ATS (tbc)	0.3/0.3	yes tbc	yes tbc

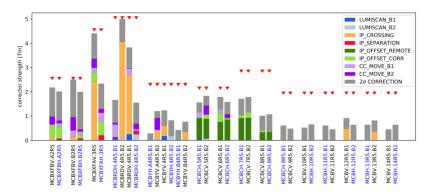
BETS needs upgrade enable gap change at flat top to for fully exploit β^* and needed operational flexibility

HL-LHC orbit and alignment aspects

HL-LHC alignment constraints in LSS1/5:


- Orbit at the crabs < 0.5 mm [New for HL-LHC]
- IP position vs inner tracker < 0.5 mm


Orbit correctors can cope with triplet misalignment up to 0.5 mm (maximum ground motion expected in 1 year).


Corrector would require considerable strengths and are not optimally correcting orbit (very large offsets in triplets and crab cavities).

HL-LHC choice extended FRAS (initially introduced for ALARA) to be used to obtain long term orbit stability.

- Lumi scan: 100 um
- IP Offset Corr: 0.5 mm
- IP Crossing: 295 µrad
 - CC Move: 0.5 mm
- IP Separation: 0.75 mm
- IP Offset FRAS: 2 mm
- 2σ CORR: 0.5 mm transverse offset -0.1 mrad roll – transfer fun. 20 units

FRAS usage scenarios during year

Period	FRAS Activity	Expected range
During beam commissioning.	Reduce orbit corrector strength during first orbit optimization (safe beam/injection) using FRAS on the quadrupoles to compensate for fiducialization uncertainty	+- 250 um
After first collisions during beam commissioning if IP outside 0.5 mm from the inner target.	Re-align Q5L-Q5R to new target	+-2 mm from 2029!
During year-end technical stops	Re-align equipment to past values using FRAS and recover FRAS neutral positions using manual alignment	+-2 mm
If ground motion or mechanical deformation exceed 0.5 mm in the middle of a run (not likely)	Re-align equipment to past values using FRAS	+- 500 um

Open points:

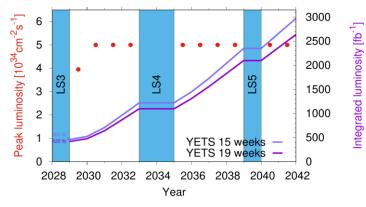
- Can orbit beam response (direct, precise, accurate) be also used to steer re-alignments?
- Can we apply more frequent adjustments to keep the machine stable, rather than accumulating misalignents until reaching the limit:

Advantages: stable orbit, stable corrections, stable beam-lifetime, reduced commissioning time

Challenges: FRAS movements needs to be predictable and reproducible, understand well mechanics under fatigue conditions

Conclusion

Present e-cloud limitation on the number of bunches has a strong impact on HL-LHC potential.


Using margins reserved for ultimate performance it possible to mitigate, on paper, the integrate luminosity loss as soon as Run 4.

This requires 200 pile-up, 2.3 10¹¹, flat optics, BETS upgrade and 2.5 hour average turn-around time.

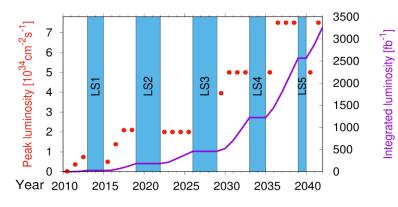
HL-LHC has a new needs and new hardware system to maintaining orbit stability around the interaction point, that needs to be operation from the first year of operation.

Back-up

HL-LHC schedule and Run 4 ramp-up

Potential HL-LHC schedule and performance for ATLAS/CMS. Heavy ion runs considered at the end of each year.

<u>No surface treatments</u>: 22% to 30% integrated lumi loss. <u>Partial mitigations</u>: high pile-up, hybrid scheme, low- β^* <u>Pure 8b+4e</u>: heat load <120 W/h-cel in the worst case.


Run 4 aims at approaching 250 fb⁻¹ in the last year after ramping up phase.

19 Weeks EYETS	рр	Yets	Commis sioning	Scrubbi ng	lon + comm.	OP efficienc y	∫ L dt
year							[fb ⁻¹]
2029	80	133	80	10	29	0.4	57
2030	107	133	60	2	29	0.5	165
2031	142	133	25	2	29	0.5	225
2032	142	133	25	2	29	0.5	231
Run 5 avg	154	133	27	2.5	29	0.5	299
Run 6 avg	166	133	25	2	29	0.5	303

The ramping up phase is needed to account for learning new beam equipment and detectors and address unknown issues

Present state e-cloud limitation is already challenging Run 4 and HL-LHC, requiring a review of the baseline parameters.

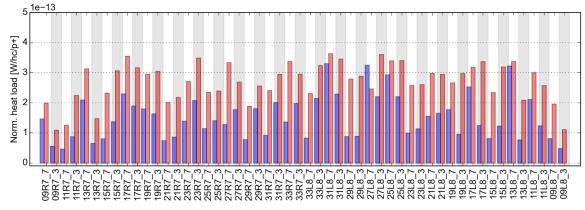
Ultimate + 19 weeks YETS

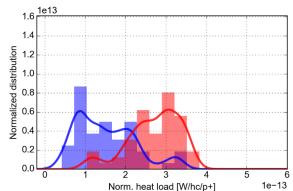
Potential HL-LHC schedule and performance for ATLAS/CMS. Heavy ion runs considered at the end of each year.

<u>No surface treatments</u>: 22% to 30% integrated lumi loss. <u>Partial mitigations</u>: high pile-up, hybrid scheme, low- β^* <u>Pure 8b+4e</u>: heat load <120 W/h-cel in the worst case.

Run 4 aims at approaching 250 fb⁻¹ in the last year after ramping up phase.

19 Weeks YETS	рр	Yets	Commis sioning		lon + comm.	OP efficiency	∫ L dt
year							[fb ⁻¹]
2029	80	133	80	10	29	0.4	57
2030	107	133	60	2	29	0.5	165
2031	142	133	25	2	29	0.5	225
2032	142	133	25	2	29	0.5	231
Run 5 avg	154	133	27	2.5	29	0.5	299
Run 6 avg	166	133	25	2	29	0.5	303

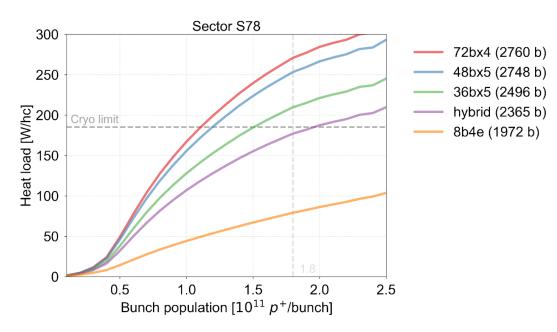

The ramping up phase is needed to account for learning new beam equipment and detectors and address unknown issues


Present state e-cloud limitation is already challenging Run 4 and HL-LHC, requiring a review of the baseline parameters.

Current conditioning state in S78

Cell-by-cell heat load comparison w.r.t 2018

Sector 78, 52 cells, recalc. values


Fill	7252	8484
Started on	03 Oct 2018 01:41	25 Nov 2022 06:56
T_sample [h]	1.40	7.70
Energy [GeV]	6499	6799
N_bunches (B1/B2)	2556/2556	2462/2462
Intensity (B1/B2) [p]	2.82e14/2.85e14	2.65e14/2.75e14
Bun.len. (B1/B2) [ns]	1.09/1.12	1.13/1.13
H.L. S78 (avg) [W]	86.07	146.00
H.L. S78 (std) [W]	41.15	34.19
H.L. exp. imped. [W]	8.89	8.14
H.L. exp. synrad [W]	12.07	13.76
T_nobeam [h]	0.20	0.20

L. Mether

210th HiLumi WP2 meeting, 13 December 2022

The intensity reach for different filling schemes is determined by the limitation in S78

	4x72b	5x48b	5x36b	hybrid	8b+4e
Bunches per beam	2760	2748	2496	2365	1972
Bunch intensity	1.1	1.2	1.5	1.9	-

L. Mether

210th HiLumi WP2 meeting, 13 December 2022

Achievable performance for HL-LHC

• Assuming heat loads increased by ~25 % with respect to 2022 (pessimistic)

Scenario	Pile-up	Lev. lumi 10 ³⁴ cm ⁻² s ⁻¹	Bunch intensity	N. bunches	Heat load W/h-cell	Needs surface treatment	Int. lumi ^(*) fb ⁻¹ /day	
Baseline 130	130	5	2.2 x 10 ¹¹	2748	420	Yes	3.3	
Baseline 200	200	7.5	2.2 x 10 ¹¹	2748	420	Yes	4.2 (4.4 with flat)	+30%
8b4e	200	5.4	2.2 x 10 ¹¹	1972	~120	No	3.0 (3.2 with flat)	
hybrid	200	5.75	2.2 x 10 ¹¹	2110	190	No	3.2 (3.4 with flat)	

Assuming no degradation with respect to 2022 (optimistic)

Scenario	Pile-up	Lev. lumi 10 ³⁴ cm ⁻² s ⁻¹	Bunch intensity	N. bunches	Heat load W/h-cell	Needs surface treatment	Int. lumi ^(*) fb ⁻¹ /day	
Baseline 130	130	5	2.2 x 10 ¹¹	2748	330	Yes	3.3	
Baseline 200	200	7.5	2.2 x 10 ¹¹	2748	330	Yes	4.2 (4.4 with flat)	+22%
8b4e	200	5.4	2.2 x 10 ¹¹	1972	~90	No	3.0 (3.2 with flat)	
hybrid	200	6.1	2.2 x 10 ¹¹	2250	190	No	3.4 (3.6 with flat)	

L. Mether

^(*) Approximate lumi estimates (to be refined) 210th HiLumi WP2 meeting, 13 December 2022