

Radiation Hardness Studies of RPC Based on Diamond-Like Carbon Electrodes for MEG II Experiment

Masato Takahashi¹

Sei ban², Weiyuan Li², Atsuhiko Ochi¹, Wataru Ootani², Atsushi Oya², Hiromu Suzuki¹, Kensuke Yamamoto²

(¹Kobe University, ²The University of Tokyo)

6th – 10th November 2023 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Outline

Introduction

- MEG II experiment
- Radiative Decay Counter
- RPC based on Diamond-Like Carbon electrodes

Radiation hardness of DLC-RPC

- DLC-RPC irradiation campaign 2023
- Results of aging test

Summary and prospects

MEG II experiment at PSI

> Searches for $\mu^+ \rightarrow e^+ \gamma$ decay at Paul Scherrer Institut

- Charged lepton flavor violating process
 - Prohibited in the Standard Model
 - The new physics predicts observation

→ Clear evidence for new physics

➤ MEG II apparatus

Signal and background in MEG II

- Main background is accidental background
 - Accidental coincidence between BG-γ and BG-e⁺

Radiative Decay Counter; RDC

> Detectors for tagging BG- γ from Radiative Muon Decay

- Low energy e^+ is emitted when BG- γ is emitted from RMD
- Installed on muon beam axis

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Requirements for upstream RDC

- Upstream RDC needs to detect e⁺ from RMD
 - in a high-rate and low-momentum muon beam $(7 \times 10^7 \, \mu/s)$ (28 MeV/c)

 2.9 MHz/cm^2

- Material budget: < 0.1% of radiation length 1.
- 2. Rate capability:
- 3. **Radiation hardness:**
- 4. **Detection efficiency:**
- Time resolution: 5
- 6. **Detector size:**

- > 90 % for MIP e^+ < 1 ns
- 20 cm diameter

Developing RPC based on

Diamond-Like Carbon electrodes

RPC based on DLC electrodes

<u>Resistive Plate Chamber</u>

- Gaseous detector
- Fast response
- High detection efficiency (by multi-layering)

Diamond-Like Carbon

- High resistance thin-film
- Small material budget
- Controllable resistivity

DLC-RPC

- Extremely low mass by sputtered-DLC electrodes on thin-film
- High-rate capability by low resistivity of DLC electrodes

DLC-RPC for MEG II

> A series of R&D began in 2016 (As MEG II upstream RDC, since 2018)

- Development using a small single layer prototype
 - DLC sputtered on 50 μm-t polyimide foil
 - DLC surface resistivity: ~ 40 M\Omega/sq.
 - 384 µm-t pillars formed on DLC as spacers by photolithographic technology
- Full-scale detector will be 4 layers

Performance of the prototype DLC-RPC

Performance test using a muon beam at PSI in 2020

- Developing electrode design to improve rate capability
- Using a 4-layer prototype in the next beam test
- Expect to achieve requirements of rate capability and detection efficiency

	Contents	Requirements	Performance of the prototype
Ο	Material budget	< 0.1% X ₀	$\sim 0.095\%$ (design with 4 layers)
×	Rate capability	2.9 MHz/cm^2	1 MHz/cm ²
?	Radiation-hardness	$\sim 100 \text{ C/cm}^2$	Not evaluated
\bigtriangleup	Detection efficiency	> 90 %	> 40% (with single-layer), $> 90%$ (calculated with 4 layers)
Ο	Timing resolution	1 ns	160 ps
×	Detector size	φ 20 cm	2~cm imes 2~cm (active region)

Radiation hardness needs to be evaluated

Radiation hardness of DLC-RPC

Require continuous operation during the physics run

in the MEG II experiment

- Physics run period : 20 weeks/year
- Rate of muon beam at the center : 2.9 MHz/cm^2
- Average avalanche charge of muon : 3 pC
- \rightarrow Irradiation dose in 1 year: $\sim 100 \ C/cm^2$
- Carried out accelerated aging tests using high-intensity beam to evaluate the radiation hardness of DLC-RPC
 - Total irradiation dose was compared by integrated charge

DLC-RPC irradiation campaign in 2023

Using X-ray generator at KEK

- Test period : Aug. 17th 2023 Sep. 11th 2023
- X-ray generator properties
 - Cu target with monochromator (8 keV X-ray)
 - Maximum power 1.8 kW
 - Beam profile is localized: $\sim 5.7~GHz/cm^2$
 - MEG II environment: 2.9 MHz/cm²

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Setup of irradiation test

Setup schematic

Front of the chamber

X-ray generator is very close to the chamber window during irradiation

Irradiation dose in this test

- During X-ray irradiation:
 - DLC-RPC was operated at 2800 V
- > Integrated charge flowed over DLC-RPC electrodes:

Gas gain changes

DLC-RPC gain decreased during X-ray irradiation

Not correlated to X-ray generator output

DLC-RPC HV current during irradiation 5 DLC-RPC HV current [µA] Gas flow Trip Trip Trib rate test 3 09/06 09:00 Date 08/23 09:00 08/30 09:00 X-ray intensity X-ray monitoring device current [nA] 20 15 10 5 08/23 09:00 09/06 09:00 Date 08/30 09:00

(threshold is 20 mV)

Deposition on DLC

Discoloration of DLC and increased resistivity of DLC

- Resistivity increased: ~ 60 M $\Omega \rightarrow \mathcal{O}(100)$ M Ω
 - It might affect the rate capability of DLC-RPC
- When alcohol was flushed, something flowed out and resistivity was recovered

→ Insulator was formed on DLC

Something flowed out with alcohol

Spacers (2.5 mm pitch)

Evidence of gain reduction due to deposits

Performance recovery

 Wiped DLC electrodes with alcohol to remove deposits

Performance NOT recovery

- Gas flow without X-ray irradiation
- High voltage OFF without *X*-ray irradiation

→ Deposits on DLC caused DLC-RPC gain reduction

Electrode surface analysis

- Using X-ray photoelectron spectroscopy
- Fluorine deposited on DLC electrodes
 - Fluorine was contained in gas (Freon/iC₄H₁₀/SF₆)
 - SF₆ might create fluorine during an avalanche

 $SF_6 + e^- \rightarrow SF_6^{-*}, \quad SF_6^{-*} \rightarrow SF_5^- + F$

Ulvac-phi, Inc. PHI X-tool

DLC electrode defect

DLC peeled off by irradiation and discharges

- Difficult to distinguish between the effects of irradiation and discharges
- DLC has not peeled in a location with low total irradiation and no discharges
 - Further irradiation might cause DLC to peel off as well

DLC not peeled off

DLC peeled off

Spacers (2.5 mm pitch)

Discharge problems

Discharges via spacers often occur

- Once discharges at the spacer occurs, it made continuous operation impossible
- In addition, discharges via the spacer can occur repeatedly even after cleaning with alcohol wiping or air spray

→ Discharge via spacers must be suppressed for long-term stability

- Improve quality control of cleanliness
- Discharge due to irradiation near the spacer even without dust

 optimize spacer design
 Obligue view of the spacer

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Summary

DLC-RPC is under development for MEG II upstream RDC

- A high-rate and low-momentum muon beam must pass through
- Expected irradiation dose is ~ 100 C/cm²

> X-ray accelerated irradiation test was carried out

- Long-term operation under more severe conditions than the MEG II environment
 - MEG II : 2.9 MHz/cm² of muon, In this test: ~ 5.7 GHz/cm² of X-ray
- Total irradiation dose: ~ 54 C/cm²
- Discharges via spacers prevented stable operation twice

Aging effects

- Fluorine deposition on DLC electrodes
- Degradation of DLC-RPC gas gain
 - Detection efficiency for Sr90 beta-ray: 56 $\% \rightarrow$ 49 %
- Defects of DLC electrodes

Prospects

- Investigate methods and designs to reduce or recover the aging effects
- Improvements are needed to suppress discharges via spacers for stable operation

> Aiming for installation in the physics run in 2025

- Performance test using small-size prototype detector and high-intensity muon beam at PSI
- Production of full-scale detector (Φ20 cm)

Full-scale detector design (Φ 20 cm)

Acknowledgements

This work was supported by

- The KEK Detector R&D Platform
- JSPS KAKENHI Grant Number JP21H04991
- JST SPRING, Grant Number JPMJSP2148
- Kobe Univ. Research Facility Center for Science and Technology

e^+ distribution from RMD

- RMD e⁺ are most distributed at the center of the beam line same as muon beam profile
- > No holes can be drilled in the detector
 - RMD e⁺ are missed

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Detection efficiency

Detection efficiency of *n*-layer RPC is approximated

$$\epsilon_n = 1 - (1 - \epsilon_1)^n$$

If more than 90 % of efficiency is required with 4-layer, the detection efficiency of each layer is required ~40 % from the above equation

Setup of inside the chamber

Pulse height distribution for X-ray

DLC-RPC HV scan with minimum X-ray intensity

X-ray intensity scan

Fluorine sources

- Freon (R134a/C2H2F4) is stable
 - We think fluorine might not separated
- SF₆ might create fluorine during avalanche
 - $SF_6 + e^- \rightarrow SF_6^{-*}$, $SF_6^{-*} \rightarrow SF_5^- + F$
 - Dark matter searches group at Kobe Univ. is using above reaction for TPC

Material budget

	Material budget
Polyimide 50 µm	0.0175 % X ₀
Aluminum 30 nm	0.0034 % X ₀
Gas 2 mm	$\sim 0.001 \% X_0$
DLC ~100 nm	negligible

Resistivity measurement

Probe with solder lines

To avoid damaging the DLC

Gas flow study

DLC-RPC operated in high-flow rate and low-flow rate

- High-flow rate (~50 mL/min) / low-flow rate (~25 mL/min)
- Gas mixture did not change
- Not replicated after the aging test
 - Exhaust lines were very long in the KEK environment

DLC-RPC HV current [µA]

Ionization chamber

Hand-made ionization chamber

- Filled with argon gas
- > Pb collimator (Φ 1 mm) for profile measurement

Detector installation

Rate capability

> Large current on resistive electrodes at a high rate

- \rightarrow Voltage drop δV reduces effective applied HV V_{eff}
- → Gas gain reduction

Current paths are different between conventional and DLC-RPC

The distance between conductors affects voltage drop

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Kensuke Yamamoto's presentation at the RPC2022 conference
https://doi.org/10.1016/j.nima.2023.168450

Performance at high rate

Detection efficiency:

- 45-50% at 1 MHz/cm²
- 20-40% at 3.5 MHz/cm²

Calculated voltage drop:

- 110-170 V at 1 MHz/cm²
- 210-310 V at 3.5 MHz/cm²

→ 1 MHz/cm² rate capability

15

Kensuke Yamamoto's presentation at the RPC2022 conference
https://doi.org/10.1016/j.nima.2023.168450

Electrode to be improved

- · Voltage drop should be suppressed for higher rate capability
 - HV supply segmented for short current flow (1 cm pitch)
 - Voltage drop ∝ (current flow distance)²
 - · Need also for scalability
 - Resistivity should be low (10 MΩ/sq.)
 - Voltage drop ∝ (sheet resistivity)
 - Not too low for stable operation
- → Voltage drop will be 60-80 V at 4 MHz/cm²

Neutron irradiation campaign 2022

- Test period: Jun. 22nd 2022 Jul. 2nd 2022
- Neutron irradiation facility at Kobe Univ.
 - ${}^{9}\text{Be} + \text{d} \rightarrow {}^{10}\text{Be} + n + 4.35 \text{ MeV}$
 - Deuteron energy: 3.0 MeV
 - Neutrons energy: Peak at ~2.5 MeV
 - Number of neutrons $O(10^8) n/s$
- > Energy deposits of recoil protons by neutrons

Location of the detector

Performance during irradiation

- Total integrated charge was ~165 mC/cm²
- Pulse height distribution for Sr90 beta-ray was agreement at ~ 5 %
- Fluorine deposition was also observed
- Other aging effects was not observed

DLC sputtering

Sputtering method

- 1. Inert gas (mainly Ar) is added in a vacuum
- 2. Provides a negative charge to a deposition material
 →Ionising gas atoms by glow discharge
- 3. Gas ions collide with target at high velosity
- 4. Tapped target constituent particles adhere to and are deposited on the substrate surface
 →Forms thin films

Photolithographic technology

1. Masked and exposed to UV light

3.

4.

2. Dissolve non-exposed areas with a developer

Nov-8-23 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

DLC-RPC status during *X***-ray irradiation**

Shaded period: opening chamber due to discharges

Extrapolate to MEG II

- > Continuous operation: ~ 6 days with ~ 37 C/cm²
- Expected irradiation dose in MEG II: ~100 C/cm²
 - Using the X-ray generator is expected to take more than 16 days

